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The representation of smooth functions

in terms of the fundamental solution of a

linear parabolic equation

by Neil A. Watson (Christchurch)

Abstract. Let L be a second order, linear, parabolic partial differential operator,
with bounded Hölder continuous coefficients, defined on the closure of the strip X =
R
n
× ]0, a[. We prove a representation theorem for an arbitrary C2,1 function, in terms

of the fundamental solution of the equation Lu = 0. Such a theorem was proved in an
earlier paper for a parabolic operator in divergence form with C∞ coefficients, but here
much weaker conditions suffice. Some consequences of the representation theorem, for the
solutions of Lu = 0, are also presented.

1. Introduction. Let L be a second order, linear, parabolic partial
differential operator, with bounded Hölder continuous coefficients (described
more precisely below), defined on the closure of X = R

n × ]0, a[. We prove
a representation theorem for an arbitrary C2,1 function, in terms of the
fundamental solution of the equation Lu = 0. Such a formula in terms of
the fundamental solution of Laplace’s equation is classical [3, p. 11]. The
result presented below was given, in the case where L is the heat operator, by
Smyrnélis [5] and, in a less natural form, by Doob [3, p. 271]. Subsequently,
Watson [8] gave a proof for a parabolic operator in divergence form with
C∞ coefficients. In the present note, the operator does not have to be in
divergence form and the coefficients do not need to be so smooth. The
techniques used here differ substantially from those in [8].

Some consequences of the representation theorem are also presented, and
these again generalise the results in [8]. If E is an open subset of X, K is a
compact subset of E, and u is a solution of Lu = 0 on E \K, we show that
u can be written uniquely in the form u = v + w, where v is a solution of
Lv = 0 on the whole of E, w is a solution on X \ K, and w vanishes both
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at infinity and on R
n × ]0, k[, where

k = inf{t : K ∩ (Rn × {t}) 6= ∅}.

This decomposition theorem permits an easy deduction of a general analogue
of Bôcher’s theorem from the particular case where E is an infinite strip.
Finally, in the case where K is a subset of R

n × {b}, we give conditions
on u which ensure that w is the integral of a signed measure against the
fundamental solution of Lu = 0.

We consider the partial differential equation

(1) Lu ≡
n

∑

i,j=1

aijDiDju +
n

∑

j=1

bjDju + cu − Dtu = 0

where Dju = ∂u/∂xj for j ∈ {1, . . . , n} and Dtu = ∂u/∂t. We assume that
all the coefficients aij , bj , c are bounded continuous functions on X, and that
they satisfy a Hölder condition in x uniformly with respect to t. We also
assume that the coefficients aij satisfy a Hölder condition in t uniformly
with respect to x, and that there is a positive constant λ such that

n
∑

i,j=1

aij(x, t)yiyj ≥ λ‖y‖2

whenever (x, t) ∈ X and y ∈ R
n. We assume, in addition, that the deriva-

tives Djaij , DiDjaij , Djbj are bounded continuous functions on X which
satisfy a Hölder condition in x uniformly with respect to t.

Under these conditions, the parametrix method can be used to construct
a non-negative fundamental solution Γ (x, t; y, s) of (1). Thus we obtain the
function Γ : X × X → R which has the following properties:

(i) For each fixed point (y, s) ∈ X, the function Γ (·, ·; y, s) is a solution
of (1) on R

n × ]s, a[, and is zero on R
n × [0, s].

(ii) For each continuous function f on R
n with compact support, and

each s ∈ [0, a[, we have \
Rn

Γ (x, t; y, s)f(y) dy → f(ξ)

as (x, t) → (ξ, s+) for any ξ ∈ R
n.

(iii) There exist positive constants C, c such that

Γ (x, t; y, s) ≤ C(t − s)−n/2 exp

(

−
c‖x − y‖2

t − s

)

whenever (x, t), (y, s) ∈ X and s < t. There is therefore a constant K such
that \

Rn

Γ (x, t; y, s) dy ≤ K.
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(iv) As t → s+, \
Rn

Γ (x, t; y, s) dy → 1

and, for any positive constant δ,\
‖x−y‖>δ

Γ (x, t; y, s) dy → 0.

(v) For each fixed point (x, t) ∈ X , the function Γ (x, t; ·, ·) satisfies the
equation adjoint to (1), namely

L∗u ≡
n

∑

i,j=1

DiDj(aiju) −
n

∑

j=1

Dj(bju) + cu + Dtu = 0,

on R
n × ]0, t[.

Details can be found in [4].

The expressions Lu and L∗v combine to give us Green’s formula for L:\
D

(vLu − uL∗v) dq

=
\

∂D

[(

n
∑

j=1

aij(vDju − uDjv) +
(

bi −
n

∑

j=1

Djaij

)

vu
)

νi − vuνt

]

dσ,

where D is a bounded open subset of X with a piecewise smooth boundary,
dq is the element of (n + 1)-dimensional Lebesgue measure, (ν1, . . . , νn, νt)
is the outward unit normal to ∂D, and dσ is the element of surface area
measure.

2. The main result

Theorem 1. Let E be a bounded open subset of X with a piecewise

smooth boundary , let (x0, t0)∈E, let Γ0 =Γ (x0, t0; ·, ·), and let u∈C2,1(E).
Then

u(x0, t0) = −
\
E

Γ0Ludq

+
\

∂E

[(

n
∑

j=1

aij(Γ0Dju − uDjΓ0) +
(

bi −
n

∑

j=1

Djaij

)

Γ0u
)

νi − Γ0uνt

]

dσ.

P r o o f. For each β > 0, we put Eβ = {(x, t) ∈ E : t < t0−β}. We apply
Green’s formula for L, with D = Eβ and v = Γ0 (so that L∗v = 0 on Eβ ,
by (v)). Thus we obtain
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Eβ

Γ0Ludq

=
\

∂Eβ

[(

n
∑

j=1

aij(Γ0Dju − uDjΓ0) +
(

bi −
n

∑

j=1

Djaij

)

Γ0u
)

νi − Γ0uνt

]

dσ.

We shall make β → 0 to obtain the required result.
If χβ denotes the characteristic function of Eβ , then because u ∈ C2,1(E)

and the coefficients of L are bounded, we have |χβΓ0Lu| ≤ supE |Lu|Γ0.
Since Γ0 is integrable (by (iii)), it follows that

lim
β→0

\
Eβ

Γ0Ludq =
\
E

Γ0Ludq.

Now consider the integral over ∂Eβ . We put

∂Eβ = (∂E)β ∪ Hβ ,

where

(∂E)β = {(x, t) ∈ ∂E : t < t0 − β}, Hβ = {(x, t) ∈ ∂Eβ : t = t0 − β},

and denote the integrand by f . Since f is piecewise continuous on ∂E, and
f(x, t) = 0 whenever t ≥ t0, we have

lim
β→0

\
(∂E)β

f dσ =
\

∂E

f dσ.

There remains the integral over Hβ , where νi = 0 for all i ∈ {1, . . . , n},
νt = 1, and dσ = dy is the element of n-dimensional Lebesgue measure.
Therefore we have only to consider\

Hβ

Γ0u dy =
\

Hβ

Γ0(u − u(x0, t0)) dy + u(x0, t0)
\

Hβ

Γ0 dy.

Given ε > 0, we choose a closed cylinder

S = {(y, s) : ‖x0 − y‖ ≤ δ, t0 − δ ≤ s ≤ t0} ⊆ E

such that
|u(y, s) − u(x0, t0)| < ε for all (y, s) ∈ S.

We put B(δ) = {(y, t0 − β) : ‖x0 − y‖ ≤ δ}. If β < δ, then\
Hβ

Γ0|u − u(x0, t0)| dy

=
( \

B(δ)

+
\

Hβ\B(δ)

)

Γ0|u − u(x0, t0)| dy

≤ ε
\

Rn

Γ0(y, t0 − β) dy + 2 sup
E

|u|
\

‖x0−y‖>δ

Γ0(y, t0 − β) dy

≤ Kε + o(1)
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as β → 0, in view of (iii) and (iv). Hence

lim
β→0

\
Hβ

Γ0(u − u(x0, t0)) dy = 0.

Finally, it follows from (iv) that

u(x0, t0)
\

Hβ

Γ0 dy = u(x0, t0)
( \

B(δ)

+
\

Hβ\B(δ)

)

Γ0 dy

= u(x0, t0)(1 + o(1))

as β → 0. The result follows.

Corollary. If u ∈ C2,1(X) and has compact support in X, then

u(x0, t0) = −
\
X

Γ (x0, t0; ·, ·)Ludq

for each (x0, t0) ∈ X.

P r o o f. In Theorem 1, we choose E to contain both (x0, t0) and the
support of u.

Using this corollary, we can extend to the solutions of (1) the decompo-
sition theorem proved in [8]. The proof is unchanged.

Theorem 2. Let E be an open subset of X, let K be a compact subset of

E, and let u be a solution of (1) on E \ K. Then u can be written uniquely

in the form u = v + w, where v is a solution of (1) on E, w is a solution

of (1) on X \ K, and w is zero both at infinity and on R
n × ]0, k[ for k =

inf{t : K ∩ (Rn × {t}) 6= ∅}.

Theorem 2 enables us to deduce the following analogue of Bôcher’s the-
orem from the particular case of an infinite strip given in [2]. The proof
follows that of Theorem 3 in [8], where references to related works can be
found.

Theorem 3. Let E be an open subset of X, let (y0, s0) ∈ E, and let u be

a solution of (1) on E \ {(y0, s0)} that is bounded below on some cylinder

{(y, s) : ‖y − y0‖ < r, s0 < s < t0}. Then u can be written uniquely in

the form u = v + κΓ (·, · ; y0, s0), where v is a solution of (1) on E, and

κ ∈ [0,∞[.

Again following the methods of [8], we can improve Theorem 3 in several
directions. This necessitates the use of techniques from [7], and therefore the
precise lower estimate of the fundamental solution established by Aronson
in [1].

Following [7], we call a family F of closed balls in R
n an abundant Vitali

covering of R
n if, for any x ∈ R

n and ε > 0, F contains uncountably many
balls centred at x with radius less than ε.
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Given any open subset D of R
n+1 such that D∩ (Rn ×{0}) 6= ∅, we put

D(0) = {x ∈ R
n : (x, 0) ∈ D} and D+ = D ∩ X.

Theorem 4. Let u be a solution of (1) such that

u(x, t) =
\

Rn

Γ (x, t; y, 0) dµ(y) + v(x, t)

for all (x, t) ∈ D+, where µ is a signed measure concentrated on D(0) and v
is a solution of (1) on D+ with a continuous extension to 0 on D(0)×{0}.
Let F be an abundant Vitali covering of R

n. If there is a signed measure ν
concentrated on D(0) such that

lim
t→0+

\
A∩V

u(x, t) dx = ν(A ∩ V )

whenever A,V ∈ F , V ⊆ D(0), and A ∩ V 6= ∅, then µ = ν.

Theorem 4, combined with results from [1] and [6], allows us to prove
the following result.

Theorem 5. Let E be an open subset of X, and let K be a nonempty

compact subset of E ∩ (Rn × {b}). If u is a solution of (1) on E \ K such

that

lim inf
t→b+

\
U

u+(x, t) dx < ∞

for some relatively open subset U of R
n such that K ⊆ U × {b}, then there

exist a unique solution v of (1) on E, and a unique signed measure µ sup-

ported in K(b) = {x ∈ R
n : (x, b) ∈ K}, such that

u(x, t) = v(x, t) +
\

K(b)

Γ (x, t; y, b) dµ(y)

for all (x, t) ∈ E \ K.
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