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DYNAMICS OF A TWO SEX POPULATION

WITH GESTATION PERIOD

Abstract. We investigate a mathematical model of population dynamics
for a population of two sexes (male and female) in which new individuals
are conceived in a process of mating between individuals of opposed sexes
and their appearance is postponed by a period of gestation. The model is a
system of two partial differential equations with delay which are additionally
coupled by mathematically complicated boundary conditions. We show that
this model has a global solution. We also analyze stationary (“permanent”)
solutions and show that such solutions exist if the model parameters satisfy
two nonlinear relations.

1. Introduction. The purpose of the paper is the development and
analysis of a mathematical model of a population in which individuals are
characterized by sex (male or female) and age. In this model we assume
that new individuals are conceived in a process of mating between male
and female partners. We also take into account the period of gestation.
To simplify the model we are not considering the formation of pairs, so a
male individual is allowed to mate any nonpregnant female. Considering
the formation of pairs would imply a more sophisticated model (cf. [2]),
which is postponed to future research. As we shall see later the model con-
sists essentially of a system of two nonlinear partial differential equations
which are nonlinearly coupled by boundary conditions. The presence of a
gestation period introduces a delay time. The model has been developed
by L. Teglielli [3] and is a generalization of a simpler model proposed by G.
Busoni and S. Matucci [1].
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We begin the description of the model by introducing the numerical den-
sities of individuals of each sex as functions of their age, the age of both their
parents and time. Let sm(a, u, v, t) be the distribution at time t of males of
age a, born from a father whose present age would be u and a mother whose
present age would be v (we are not taking into account whether the father
or mother are still alive or not, hence u and v refer to virtual age, measur-
ing only time from the birth of these individuals). Analogously sf(b, u, v, t)
is the distribution at time t of females of age b, born from a father whose
present age would be u and a mother whose present age would be v.

From these definitions it is clear that u > a, v > a, u > b and v > b.
Obviously the age of any individual is bounded: a ≤ al < ∞, b ≤ bl < ∞.
The virtual age of parents (u and v) has a different upper bound as it
measures the time from the moment of birth and not the real age (u ≤ 2al
and v ≤ 2bl).

We denote by µm(a) and µf(b) the mortalities of males and females,
respectively. We assume that these functions are also defined for negative
a and b to account for mortality of foetuses. This means that µm = 0 for
a < −g and µf = 0 for b < −g, where g is the gestation time.

We now define the total number of males and females of a given age:

(1.1)
M(a, t) =

\
sm(a, u, v, t) du dv,

F (b, t) =
\
sf(b, u, v, t) du dv.

To model the mating process, we have to distinguish between pregnant
and nonpregnant females. LetH(b, t) be the distribution of pregnant females
and N(b, t) the distribution of nonpregnant ones (H(b, t)+N(b, t) = F (b, t)).
Following Hadeler [2] we assume that the density of mating (density of new
pregnancies) is given by the expression

(1.2) φ(a, b, t) = 2k(a, b)
M(a, t)N(b, t)Tal

0
M(u, t) du +

Tbl
0
N(v, t) dv

,

where k(a, b) is the mating factor. Clearly φ = 0 if a or b are negative. This
gives the following expression for the distribution of pregnant females:

(1.3) H(b, t) =

t\
t−g

al\
0

φ(u, b− (t− s), s) exp
(
−

t\
s

µf(b− t+ τ) dτ
)
du ds.

For the distribution functions sm and sf we have the usual evolution
equations

(1.4)

(
∂

∂t
+

∂

∂a
+

∂

∂u
+

∂

∂v

)
sm(a, u, v, t) = −µm(a)sm(a, u, v, t),

(
∂

∂t
+

∂

∂b
+

∂

∂u
+

∂

∂v

)
sf(b, u, v, t) = −µf(b)sf(b, u, v, t).
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We now present the model of boundary conditions. The functions
sm(0, u, v, t) and sf(0, u, v, t) are the numbers of newborn males and fe-
males, respectively, which were conceived at time t − g by fathers of age
u− g and mothers of age v − g and survived the gestation period [t− g, t].
The evolution of foetuses is described by the following equation, which takes
into account the mortality of foetuses and the mortality of pregnant fe-
males:

(1.5)
d

dt
sj( t− t, u− t+ t, v − t+ t, t )

= −(µj( t− t) + µf(v − t+ t ))sj( t− t, u− t+ t, v − t+ t, t ),

where j = m or f. The above equation is supplemented by the initial con-
dition describing the distribution of conceived foetuses at time t− g:

(1.6) sj(−g, u − g, v − g, t− g) = βj(u− g, v − g)φ(u − g, v − g, t− g),

where t ∈ [t−g, t]. βm(a, b) and βf(a, b) denote the number of individuals of
male and female sex, respectively, conceived in the mating of a male of age
a and a female of age b. As previously we assume that βm = 0 and βf = 0
if a or b is negative.

Solving equation (1.5) we obtain

(1.7) sj( t− t, u− t+ t, v − t+ t, t )

= βj(u− g, v − g)φ(u − g, v − g, t− g)

× exp
(
−

t\
t−g

(µj(s − t) + µf(v − t+ s)) ds
)
.

This gives the boundary conditions for equations (1.4) at t = t:

sj(0, u, v, t) = βj(u− g, v − g)φ(u − g, v − g, t− g)(1.8)

× exp
(
−

t\
t−g

(µj(s− t) + µf(v − t+ s)) ds
)
.

The model presented above was first analyzed by Busoni and Matucci [1].
In that paper only partial analytical and numerical results for a simplified
version of the model described by ordinary differential equations with con-
stant coefficients were obtained. Here we would like to extend the previous
results to the full model of partial differential equations with variable coef-
ficients.

To obtain a closed model we have to find equations describing the evolu-
tion of the densities M(a, t) and N(b, t). To this end, we integrate equations
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(1.4) with respect to u and v to get

(1.9)

(
∂

∂t
+

∂

∂a

)
M(a, t) = −µm(a)M(a, t),

(
∂

∂t
+

∂

∂b

)
F (b, t) = −µf(b)F (b, t).

Differentiating equation (1.3) we obtain

(1.10)

(
∂

∂t
+

∂

∂b

)
H(b, t) = −µf(b)H(b, t) +

al\
0

φ(u, b, t) du

− exp
(
−

t\
t−g

µf(b− t+ τ)dτ
) al\

0

φ(u, b− g, t− g) du.

Since N = F −H, we have

(1.11)

(
∂

∂t
+

∂

∂b

)
N(b, t) = −µf(b)N(b, t) −

al\
0

φ(u, b, t) du

+exp
(
−

t\
t−g

µf(b− t+ τ) dτ
) al\

0

φ(u, b− g, t− g) du.

For equations (1.9) and (1.11) we have the following boundary condi-
tions:

(1.12)

M(0, t) =

al\
g

bl\
g

sm(0, u, v, t) du dv,

N(0, t) = F (0, t) =

al\
g

bl\
g

sf(0, u, v, t) du dv.

Because of delay in equation (1.11) the initial distributions have to be given
on the whole time interval [−g, 0]. Hence we assume that for t ∈ [−g, 0] we
have

(1.13) M(a, t) = M̂(a, t), N(b, t) = N̂(b, t),

where M̂ and N̂ are given functions.

Summarizing, we obtain the following model of population dynamics.
There are two species: male individuals with density distribution M(a, t)
and nonpregnant females with density N(b, t). These densities satisfy the
system of equations

(1.14)

(
∂

∂t
+

∂

∂a

)
M(a, t) = −µm(a)M(a, t),
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(1.15)

(
∂

∂t
+

∂

∂b

)
N(b, t) = −µf(b)N(b, t)−

al\
0

φ(u, b, t) du

+exp
(
−

0\
−g

µf(b+ τ) dτ
) al\

0

φ(u, b− g, t− g) du.

From (1.8) and (1.12) we obtain the boundary conditions at a = 0 and b = 0:

(1.16)

M(0, t+ g) =

al−g\
0

bl−g\
0

βm(u, v)φ(u, v, t)

× exp
(
−

g\
0

(µm(s− g) + µf(v + s)) ds
)
du dv,

N(0, t+ g) =

al−g\
0

bl−g\
0

βf(u, v)φ(u, v, t)

× exp
(
−

g\
0

(µf(s− g) + µf(v + s)) ds
)
du dv.

This model is also supplemented by the initial conditions (1.13).

In what follows the biological parameters µm, µf , βm, βf , k and φ are
nonnegative functions of their arguments. The parameters βm, βf and k are
bounded functions with the following bounds:

(1.17)

sup
a∈(0,al), b∈(0,bl)

2k(a, b)βm(a) ≤ K,

sup
a∈(0,al), b∈(0,bl)

2k(a, b)βf (b) ≤ K,

sup
a∈(0,al), b∈(0,bl)

2k(a, b) ≤ K.

In addition we assume that

(1.18)

µm ∈ L1(−g, a) for a ∈ (−g, al), lim
a→a

−

l

a\
−g

µm(s) ds = +∞,

µf ∈ L1(−g, b) for b ∈ (−g, bl), lim
b→b

−

l

b\
−g

µf(s) ds = +∞.

These assumptions assure that we can consider the evolution problem for
a ∈ (−g, al) and b ∈ (−g, bl).

2. Existence of solutions. The model described in the previous
section will be considered as an evolution problem in the Banach space
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L1(0, al)×L1(0, bl). Since the equations considered are differential equations
with delay it is natural to investigate the whole problem on successive strips
(intervals) in time t ∈ (ig, (i+1)g]. Assume that the solution already exists
up to time t = ig, i.e. we know M(a, t) and N(b, t) for a ∈ (0, al), b ∈ (0, bl)
and t ≤ ig. From equations (1.16) we can calculate M(0, t) and N(0, t) for
t ∈ (ig, (i+1)g]. Then we can solve equation (1.14) for t ∈ (ig, (i+1)g) and
a ≤ al. This solution is given by the expression

(2.1) M(a, t) = M(a0, t0) exp
(
−
√
2

a\
a0

µm(s) ds
)
,

where

a0 =

{
0 for a ≤ t− ig,

a− (t− ig) for a > t− ig,

t0 =

{
t− a for a < t− ig,

ig for a ≥ t− ig.

It is seen from the above formulas that in all cases the point (a0, t0) belongs
to the boundary on which the solution is known.

Remark. From equation (2.1) it is transparent that M(a, t) = 0 for
a ≥ al due to the assumed property of µm (cf. (1.18)).

Now we can proceed to the solution of equation (1.15). Using equation
(2.1) we can reduce (1.15) to

(2.2)

(
∂

∂t
+

∂

∂b

)
N(b, t) = −µf(b)N(b, t)− AN(b, t)

B +
Tbl
0
N(u, t) du

+ S(b, t),

where

A = A(b, t) = 2

al\
0

k(u, b)M(u, t) du,

B = B(t) =

al\
0

M(u, t) du,

S = S(b, t) =
2N(b− g, t− g)

Tal

0
k(u, b− g)M(u, t − g) duTal

0
M(u, t− g) du+

Tbl
0
N(u, t− g) du

× exp
(
−

0\
−g

µf(b+ τ) dτ
)

are known functions for b ∈ (0, bl) and t ≤ (i+ 1)g.

The following facts are straightforward.
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Lemma 1. If ‖M(·, t)‖ ≤ m and ‖N(·, t)‖ ≤ n for t ≤ ig, then

M(0, t + g) ≤ K
‖M(·, t)‖ · ‖N(·, t)‖
‖M(·, t)‖ + ‖N(·, t)‖ ≤ Kmin(‖M(·, t)‖, ‖N(·, t)‖)

≤ Kmin(m,n),

N(0, t + g) ≤ K
‖M(·, t)‖ · ‖N(·, t)‖
‖M(·, t)‖ + ‖N(·, t)‖ ≤ Kmin(‖M(·, t)‖, ‖N(·, t)‖)

≤ Kmin(m,n),

where K is the constant from estimates (1.17) and ‖·‖ denotes the L1 norm.

Lemma 2. If ‖M(·, t)‖ ≤ m for t ≤ ig, then

‖M(·, t)‖ ≤ m(1 +Kg) for t ∈ (ig, (i + 1)g).

P r o o f. From (2.1) we have

‖M(·, t)‖ ≤
al\
0

M(a0, t0) du ≤
al\
0

M(u, ig) du +

t\
ig

M(0, s) ds

≤ m+mgK = m(1 +Kg).

Iterating the estimate of Lemma 2 we obtain

Corollary. We have

‖M(·, t)‖ ≤ M0(1 +Kg)i for t ∈ ((i− 1)g, ig],

where M0 = supt∈[−g,0] ‖M̂ (·, t)‖.

Lemma 3. If ‖M(·, t)‖ ≤ m and ‖N(·, t)‖ ≤ n for t ≤ ig, then the

following estimates hold for t ∈ (ig, (i + 1)g]:

sup
b∈(0,bl)

|A(b, t)| ≤ K(1 +Kg)m, |B(t)| ≤ (1 +Kg)m,

‖S(·, t)‖ ≤ K
‖M(·, t)‖ · ‖N(·, t)‖
‖M(·, t)‖ + ‖N(·, t)‖ ≤ Kmin(‖M(·, t)‖, ‖N(·, t)‖)

≤ Kmin(m,n).

Theorem 1. Let ‖M(·, t)‖ ≤ m and ‖N(·, t)‖ ≤ n for t ≤ ig. Equation

(1.15) has a unique solution which exists in the whole strip t ∈ (ig, (i+1)g],
b ∈ [0, bl].
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P r o o f. We rewrite (1.15) as the integral equation

N(b, t) = N(b0, t0) exp
(
−

b\
b0

µf(s) ds
)

(2.3)

−
t\
ig

exp
(
−

b\
b∗

µf(σ) dσ
) A(b∗, s)N(b∗, s)

B(s) +
Tbl
0
N(u, s) du

ds

+

t\
ig

exp
(
−

b\
b∗

µf(σ) dσ
)
S(b∗, s) ds,

where

b∗ =

{
b− (t− s) for b > t− s,
0 for b < t− s,

and the point (b0, t0) is defined as follows:

b0 =

{
b− (t− ig) for b ≥ t− ig,
0 for b < t− ig,

t0 =

{
ig for b ≥ t− ig,
t− b for b < t− ig.

Define the operator T by saying that TN(b, t) is the right hand side
of (2.3). Using Lemmas 2 and 3 and the estimate

∥∥∥∥
A(·, s)N(·, s)

B(s) +
Tbl
0
N(u, s) du

∥∥∥∥ ≤ sup
b

|A(b, s)|
∥∥∥∥

N(·, s)
B(s) +

Tbl
0
N(u, s) du

∥∥∥∥

≤ sup
b

|A(b, s)| ≤ K(1 +Kg)m

we obtain

‖TN(·, t)‖ ≤ n(1 +Kg) +K(1 +Kg)mg +Kng.

This shows that T is bounded and maps all bounded functions N(b, t) for b ∈
[0, bl), t ∈ (ig, (i+1)g] into the sphere of radius n(1+2Kg)+Kg(1+Kg)m.
We now prove that for t > ig with t− ig sufficiently small the operator T is
a contraction. To this end, we consider two functions N1(b, t) and N2(b, t).

Using the fact that
Tbl
0
N(u, t) du = ‖N(·, t)‖ we can write

‖TN1 − TN2‖ ≤
t\
ig

∥∥∥∥
AN1

B + ‖N1‖
− AN2

B + ‖N2‖

∥∥∥∥ ds.

Let us estimate the norm under the integral sign:
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∥∥∥∥
AN1

B + ‖N1‖
− AN2

B + ‖N2‖

∥∥∥∥

=

∥∥∥∥
AN1

B + ‖N1‖
− AN2

B + ‖N1‖
+

AN2

B + ‖N1‖
− AN2

B + ‖N2‖

∥∥∥∥

≤
∥∥∥∥

A

B + ‖N1‖
(N1 −N2)

∥∥∥∥+

∥∥∥∥AN2

(
1

B + ‖N1‖
− 1

B + ‖N2‖

)∥∥∥∥

≤ K(1 +Kg)m

B0
‖N1 −N2‖

+K(1 +Kg)m

∥∥∥∥
1

B + ‖N1‖
N2

B + ‖N2‖
(‖N2‖ − ‖N1‖)

∥∥∥∥

≤ K(1 +Kg)m

B0
‖N1 −N2‖+

K(1 +Kg)m

B0
‖N1 −N2‖,

where
B0 = inf

s∈(ig,(i+1)g)
B(s).

Hence

‖TN1 − TN2‖ ≤ (t− ig)
2K(1 +Kg)m

B0
‖N1 −N2‖,

which shows that for t− ig sufficiently small the operator T is a contraction.
This proves that equation (2.3) has a local solution in (ig, t1], where t1
is the largest value of t for which T is a contraction. Observe, however,
that the contraction constant is independent of the norm of the solution (it
depends only on the solution of (1.14)). This shows that the solution can be
continued with the same time step onto the whole interval (ig, (i+1)g]. We
should only comment on the positivity of the constant B0. This constant is
nothing else than the infimum of the norm of M(a, t) in (ig, (i+1)g]. From

(2.1) it is straightforward that when the initial data M̂(a, t) are positive for

t = 0 and for some subinterval in (0, al), i.e. if ‖M̂(·, 0)‖ > 0, then ‖M(·, t)‖
is positive and bounded away from zero for any positive, finite time. This
observation proves that B0 > 0.

Remark. Formula (2.1) which gives the solution to equation (1.14)
and Theorem 1 which proves the existence of solution to equation (1.15)
deal with integral equations. In general, the solutions to equations (2.1)
and (2.3) cannot be differentiated with respect to their arguments, which is
necessary if we want to prove the existence of solutions to equations (1.14)
and (1.15). For this purpose we have to assume in addition that the initial
data are absolutely continuous functions of their arguments. Under these
assumptions it can be proved that solutions to equations (2.1) and (2.3) are
also absolutely continuous functions, hence differentiable almost everywhere.
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3. The existence of “permanent” solutions. In this section we
investigate the existence of stationary solutions to our model, i.e. solutions
which are constant in time (such solutions are usually called “permanent”).
To find stationary solutions we suppress the dependence on time in equations
(1.14) and (1.15). Then we obtain the following system:

(3.1)
d

da
m(a) = −µm(a)m(a),

(3.2)
d

db
n(b) = −µf(b)n(b)−

2n(b)
Tal

0
k(u, b)m(u) duTal

0
m(u) du+

Tbl
0
n(u) du

+
2n(b− g) exp

(
−
T0
−g

µf(b+ τ) dτ
)Tal

0
k(u, b− g)m(u) duTal

0
m(u) du +

Tbl
0
n(u) du

.

The system of equations (3.1)–(3.2) has to be supplemented by initial con-
ditions which are of the form

m(0) =

al−g\
0

bl−g\
0

2βm(u, v)k(u, v)
m(u)n(v)Tal

0
m(u) du +

Tbl
0
n(u) du

(3.3)

× exp
(
−

g\
0

(µm(s− g) + µf(v + s)) ds
)
du dv,

n(0) =

al−g\
0

bl−g\
0

2βf(u, v)k(u, v)
m(u)n(v)Tal

0
m(u) du+

Tbl
0
n(u) du

(3.4)

× exp
(
−

g\
0

(µf(s− g) + µf(v + s)) ds
)
du dv,

n(b) = 0 for b ∈ [−g, 0).(3.5)

We begin our analysis by solving a simplified version of the above initial
value problem. Namely, the initial conditions (3.3)–(3.4) will be replaced by

(3.6) m(0) = m0, n(0) = n0

(we retain condition (3.5)).

Equation (3.1) can then be solved explicitly to give

(3.7) m(a) = m0 exp
(
−

a\
0

µm(s) ds
)
.

To solve (3.2) we proceed as in the time dependent case, i.e. we find a
solution on consecutive intervals (ig, (i+1)g). Using (3.7), we can write the
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solution on (0, g) in the form

(3.8) n(b) = n0 exp

(
−

b\
0

µf(s) ds−
2m0

m0A+X

b\
0

A1(s) ds

)
,

where

A =

al\
0

exp
(
−

u\
0

µm(s) ds
)
du,

A1(b) =

al\
0

k(u, b) exp
(
−

u\
0

µm(s) ds
)
du,

X =

bl\
0

n(u) du.

Observe that A is a constant which depends only on the form of the
function µm(s). Also A1(s) is a known function. The constant X is of
course unknown and depends on the solution. In this sense (3.8) is an
integral equation which has to be solved. But since X is a constant we can
consider the solution (3.8) as a function of X. We shall show further that
n(b) can be found as a known function of X on the whole interval (0, bl).
Integrating this function we obtain an algebraic equation in X. It can be
shown that this algebraic equation has a solution, which gives a value of X.

First, however, let us construct n(b) on (g, 2g). On this interval equa-
tion (3.2) has the form

(3.9)
d

db
n(b) = −µf(b)n(b)−

2m0n(b)A1(b)

m0A+X
+

2m0n(b− g)A2(b− g)

m0A+X
,

where

A2(s) = A1(s) exp
(
−

g\
0

µf(s+ τ) dτ
)
.

Solving (3.9) we obtain

n(b) = n0 exp

(
−

b\
0

µf(s) ds −
2m0

m0A+X

b\
0

A1(s) ds

)
(3.10)

+ n0

b\
g

exp

(
−

b\
s

µf(σ) dσ − 2m0

m0A+X

b\
s

A1(σ) dσ

)

× exp

(
−

s−g\
0

µf(σ) dσ − 2m0

m0A+X

s−g\
0

A1(σ) dσ

)

× 2m0

m0A+X
A2(s− g) ds.
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The above expression is a complicated but known function of X. It is clear
that this procedure can be iterated giving the solution to (3.2) on successive
intervals (ig, (i + 1)g). Hence the solution to (3.2) can be written on the
whole interval (0, bl) as

(3.11) n(b) = n0G(b,m0,X),

where G(b,m0,X) is a known function of its arguments. Integrating this
solution on (0, bl) we obtain a nonlinear algebraic equation

(3.12) X = F(X),

where F is a known function of X. We can now prove that equation (3.12)
has a solution. Inspecting formulas (3.8) and (3.10) we find that F(X) is
a continuous function of X. We also have F(0) > 0. In addition, F(X) is
a bounded function for all nonnegative X (for X → ∞, G(b,m0,X) ≤ 1).
Thus X − F(X) is negative for X = 0 and positive for sufficiently large X.
Since X − F(X) is continuous there exists X such that X = F(X). This
proves that equation (3.2) with conditions (3.5)–(3.6) has a solution.We do
not, however, know if this solution is unique.

To solve the original problem (3.1)–(3.5) we have to show that there
is a set of initial conditions (m0, n0) which satisfy (3.3) and (3.4). These
equations can be rewritten in the form

(3.13)

m0 =
m0n0Ym(m0,X)

m0A+ n0Y (m0,X)
,

n0 =
m0n0Yf(m0,X)

m0A+ n0Y (m0,X)
,

where

Y (m0,X) =

bl\
0

G(b,m0,X)db,

Ym(m0,X) =

al−g\
0

bl−g\
0

2βm(u, v)k(u, v)G(v,m0 ,X)

× exp
(
−

u\
0

µm(s) ds −
g\
0

(µm(s− g) + µf(v + s)) ds
)
du dv,

Yf(m0,X) =

al−g\
0

bl−g\
0

2βf(u, v)k(u, v)G(v,m0 ,X)

× exp
(
−

u\
0

µm(s) ds −
g\
0

(µf(s− g) + µf(v + s)) ds
)
du dv.
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From (3.13) we obtain

m0(m0A+ n0(Y (m0,X)− Ym(m0,X))) = 0,

n0(m0(A− Yf(m0,X)) + n0Y (m0,X)) = 0.

Because we are interested in nontrivial solutions, we have to solve the system

m0A+ n0(Y (m0,X) − Ym(m0,X)) = 0,

m0(A− Yf(m0,X)) + n0Y (m0,X) = 0.

Since

(3.14) n0 =
X

Y (m0,X)

we can rewrite the above equations in terms of new variables (m0,X):

m0AY (m0,X) +X(Y (m0,X) − Ym(m0,X)) = 0,

m0(A− Yf(m0,X)) +X = 0.

A nontrivial solution to this system exists only if

(3.15) AYm(m0,X) + Yf(m0,X)(Y (m0,X)− Ym(m0,X)) = 0.

Because the functions Y (m0,X), Ym(m0,X) and Yf(m0,X) are nonnegative,
equation (3.15) can be satisfied only if

(3.16) Y (m0,X) < Ym(m0,X).

Equation (3.15) in general has a whole family of solutions depending on
one parameter. On the other hand if (3.15) holds then system (3.13) also has
a one-parameter family of solutions. It is not straightforward that these two
families have a nonempty intersection. In addition, to obtain a nonnegative
solution to equations (3.13) we have to assume (3.16) and

(3.17) A < Yf(m0,X).

To summarize, a solution to the stationary problem (3.1)–(3.5) is con-
structed in the following way:

1. We solve equations (3.1) and (3.2) to find the function G(b,m0,X).
This enables us to find the functions Y (m0,X), Ym(m0,X) and Yf(m0,X).

2. We check conditions (3.16) and (3.17). If they hold we solve the
nonlinear equation (3.15) and find a one-parameter family of its solutions
X(m0).

3. We reduce system (3.13) to the nonlinear equation

(3.18) m0(A− Yf(m0,X(m0))) +X(m0) = 0.

Solution of this equation gives the desired initial value m0.
4. Knowing m0 and X we calculate n0 from (3.14). Solutions of equa-

tions (3.1) and (3.2) with these initial data solve our original problem.
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Let us observe that the strategy is not effective, for there may be no
solution to equation (3.15) or (3.18). It even seems that there is no effective
way to find solutions to these equations. Because these solutions depend
on the functions Y , Ym and Yf which on the other hand depend on the
biological parameters βm, βf , k, µm and µf it is clear that the requirement
that the solutions exist puts severe restrictions on these parameters which
cannot be made more explicit.
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Ricerca Scientifica of Italy.

References

[1] G. Buson i and S. Matucc i, Population dynamics with delay , Studi Urbinati I
(1997), 119–137 (paper presented at the meeting “La matematica nei problemi
dell’ambiente, della biologia e della medicina”, Urbino, 1996).

[2] K. P. Hadeler, Pair formation models with maturation period , J. Math. Biology 32
(1993), 1–15.

[3] L. Tegl ie l l i, Dinamica di popolazioni a due sessi , Ricerca di soluzioni per sistenti ,
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Università di Firenze
Viale G. B. Morgagni 67/A
50134 Firenze, Italy
E-mail: busoni@udini.math.unifi.it

Andrzej Palczewski
Department of Mathematics

Warsaw University
Banacha 2

02-097 Warszawa, Poland
E-mail: apalczew@mimuw.edu.pl

Received on 15.1.1999


