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Abstract. The paper deals with mathematical modelling of population
genetics processes. The formulated model describes the random genetic
drift. The fluctuations of gene frequency in consecutive generations are
described in terms of a random walk. The position of a moving particle
is interpreted as the state of the population expressed as the frequency of
appearance of a specific gene. This leads to a continuous model on the mi-
croscopic level in the form of two first order differential equations (known as
the telegraph equations). Applying the modified Chapman–Enskog proce-
dure we show the transition from this system to a macroscopic model which
is a diffusion type equation. Finally, the error of approximation is estimated.

1. Introduction. This work is devoted to mathematical modelling of
processes in population genetics. Population genetics involves investigations
of gene distribution in populations and analysis of changes of specific genes
proportions in consecutive generations. Population genetics, as a scientific
discipline, has an importance for medicine due to the consequences of genes
dynamics for human being evolution [4], [5].

Basing on some geneticists’ papers [8], [6] and Wright–Moran’s mathe-
matical model [7], [13] I assume that fluctuations of gene frequency can be
treated as a “random walk” phenomenon. In this model, the position of a
randomly moving particle is equivalent to the state of the population ex-
pressed in terms of the frequency of appearance of the gene considered. The
state space is therefore the real interval [0, 1]. Further, I assume that there
exists a positive correlation between two consecutive steps of the random
walk. Under these assumptions the probability density of the population
being in a particular state is given by a system of first order differential
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equations, known as the telegraph equations. Then I show that the solu-
tion of that system can be approximated by the solution of an appropriate
diffusion type equation.

The formulated model describes the phenomenon of genetic drift, which
still intrigues the geneticists. I study mathematical connections between var-
ious descriptions of this phenomenon including the random walk description,
the telegraph equations description, and the description by an appropriate
diffusion equation.

2. Mathematical models in population genetics

2.1. Genetic basics. We confine ourselves to the case of the simplest pop-
ulation consisting of diploid individuals. In every diploid cell, both chromo-
somes and particular genes are coupled. A gene located at a specific position
of a chromosome has its counterpart (allele) in another homologous chro-
mosome. Thus, there is always a pair of genes responsible for any feature
or disease with Mendel’s type of heritage.

As is customary, I will mark dominant genes with capital letters, and
recessive ones with small letters. In the simplest case of only two alleles,
A and a, gametes can produce three different genotypes (pairs of genes):
AA, aa, Aa. The difference between Aa and aA configurations is of no
importance because we cannot distinguish between the genes in homologous
pairs. AA and aa are homozygotes while Aa is a heterozygote. A diploid
cell can give the gamete (a reproductive cell) only one allele from a pair.
The genotypes of progeny are created in a random way. The Mendelian
segregation law states that every parental gene is transmitted to an offspring
genotype with probability 1/2. For example, the possible genotypes formed
from the crossing Aa×Aa are AA, Aa and aa, with probabilities respectively:
1/4, 1/2, 1/4, but the crossing AA×aa results only in a hybrid offspring Aa.

The rule of random crossing assumes that all processes of parental pairs
formation are stochastically independent and equally probable. This is cer-
tainly valid only in very large populations and in the absence of any selec-
tion. The fundamental mechanism of evolution is based on the changes in
the frequency of genes.

The simplest mathematical approach to the problem is to treat the pro-
cess as a deterministic one [6]. This kind of description is acceptable for
very large populations and special mating conditions.

The Hardy–Weinberg law says that under such circumstances, random
mating results in unchanging probability distribution of genotypes and genes
in each consecutive generation [5]. This law is commonly used to calcu-
late the frequencies of appearance of recessive features carriers, for example
phenylketonuria, mucoviscidosis, albinism, inborn deafness, and others [4].
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In practice there are, however, additional important factors influencing
the genetic variety of a population. Apart from nonrandom mating (sib
mating for example) there are also: mutation, migration and selection.

2.2. Phenomenon of genetic drift. Genetic drift as a factor of evolution
is still a controversial issue among geneticists. It can be defined as a process
of gene frequency variation in a natural finite population due to the ran-
dom nature of transmitting alleles during reproduction and other accidental
random events that influence the allele frequency [8]. This process of ran-
dom fluctuations is repeated from generation to generation. The changes in
subsequent generations do not depend on the initial state (“lack of genetic
memory”).

Genetic drift can result in falling away of one of alleles and creation of
a homozygotic population. It can be the result of population finiteness;
it is then called a pure genetic drift. In such a population, in the case of
non-numerous offspring, it can happen that gene frequencies are not exactly
reproduced in future generations. This can be interpreted as a sampling
error. It is worth noticing that falling away of both alleles, a and A, is
equally probable. Actually, quite often those probabilities might not be
the same as a result of some selections. So, in our further consideration of
genetic drift the existence of selections is assumed.

According to some geneticists, genetic drift is one of the most important
mechanisms of evolution [8].

The basic model of genetic drift was formulated in terms of finite Markov
chains by Wright and Malecot [13]. This model, after modification by Moran
[7], can be described as a “random walk with an absorbing boundary”.
Investigations using Markov chains were carried out by Feller, Karlin, and
McGregor. An overview of the known results can be found in [7].

Kimura [8] and Ludwig [9] proposed a continuous stochastic process for
modelling the gene frequency changes in time. They assumed that the
changes of gene frequency exhibited the lack of memory and therefore could
be modelled by a Markov process. Their model has the form of diffusion
equations known as the Kolmogorov prospective and retrospective equa-
tions, but it is not strictly justified. Nevertheless, using diffusion approxi-
mation, a range of genetic problems have been solved ([8], [9]).

While analysing these results, it is of interest to show that the solution of
a diffusion equation can be a good approximation of the probability density
of finding the population in a given set of states. The state of the population
is defined as the ratio of the number of alleles A to the number of all alleles
(2N), so the state variable takes values in [0, 1].

3. Setting the problem. Following the above mentioned idea of Moran
to conceptualize variations of gene frequency in terms of random walk, I se-
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lected for further investigation the model of random walk proposed by Taylor
and Goldstein and the model of random walk with correlations investigated
by Banasiak and Mika [3] just in the aspect of diffusion approximation. Con-
trary to the model analysed by Banasiak and Mika, the model formulated
in the present paper takes into account the phenomenon of drift. In [3], the
diffusion equation did not describe a drift, as the drift coefficient (the coef-
ficient of the first derivative of the space variable x) was equal to 0. That
was a consequence of their prior assumption that the probability of taking
a specific direction by a moving particle does not depend on its previous
direction. In the case of genetic applications a substantial difference can be
seen between the probability that the number of alleles A will continue to
increase if it has been increasing earlier, and the probability that the num-
ber of alleles A will continue to decrease if it has been decreasing earlier.
This difference induces some kind of selection.

In the present work these probabilities are taken as different functions.
As a result, in the system of telegraph equations there appears an additional
term, and in the diffusion equation a nonzero drift coefficient. It can be
either positive or negative, which reflects the possibility of genetic drift in
both directions.

When describing variations of gene frequency in the language of random
walk, the position of a randomly walking particle is identified with the con-
centration of alleles A in the population. That concentration (frequency)
can range from 0, which corresponds to the homozygotic population aa,
to 1, which corresponds to the homozygotic population AA. Thus, in the
model considered, the state space is the real interval [0, 1], where 0 and 1
are absorbing states, because when a population becomes homozygotic, the
change of its state is possible only through mutation.

The main objective of the present work is to show that the solution of the
diffusion equation with drift, with an appropriately modified initial value,
complemented with initial layer equations, approximates the solution of a
singularly perturbed telegraph system with drift and that this system is an
adequate description of a random walk with correlations.

4. Correlated random walk with drift

4.1. Formulation of the model. We consider the problem of correlated
random walk. We assume that a particle moves along the interval [0,1]. The
location x of the randomly moving particle corresponds to the ratio of the
number X(t) of alleles A to the number 2N of all alleles in the population.
We consider the general case when there exists a positive correlation between
two consecutive steps of the random walk that approaches value 1 when the
time step approaches 0. This correlation reflects the tendency of particles
to move in a given direction with a finite velocity.
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We will define two probability density functions α(x, t) and β(x, t) cor-
responding to the particle movement to the right and left, respectively. De-
note by p+(x) the probability that a particle continues to move in the same
direction while moving to the right, q+(x) the probability that a particle
changes its direction while moving to the right, and p−(x), q−(x) similar
probabilities for the initial movement to the left.

The assumption that p−(x) = p+(x) and q−(x) = q+(x) leads to diffu-
sion approximation with zero drift coefficient ([2], [3]). This corresponds to
pure genetic drift without selections.

The probability that a particle “rests” at a given step is independent of
the earlier movement direction and equals 1 − σ(x), where σ(x) = p+(x) +
q+(x) = p−(x) + q−(x).

Assume that σ is a Lipschitz continuous function and

(4.1) 0 < σ0 ≤ σ(x) ≤ σ1 < ∞, ∀x ∈ [0, 1].

Under the above assumptions we have the following system of difference
equations for the functions α(x, t) and β(x, t):

α(x, t+ θ) = [1− p+(x)− q+(x)]α(x, t) + p+(x− δ)α(x − δ, t)(4.2)

+ q−(x− δ)β(x − δ, t),

β(x, t+ θ) = [1− p−(x)− q−(x)]β(x, t) + p−(x+ δ)β(x + δ, t)(4.3)

+ q+(x+ δ)α(x + δ, t).

Assuming the presence of positive correlations we expect that as θ → 0,
the probabilities p+(x) and p−(x) approach σ(x) and the probabilities q+(x)
and q−(x) of direction reversal approach 0. Thus, it is reasonable to take
those probabilities in the form

p+(x) = σ(x)− λ+(x)θ +O(θ2),

p−(x) = σ(x)− λ−(x)θ +O(θ2),
(4.4)

q+(x) = λ+(x)θ +O(θ2), q−(x) = λ−(x)θ +O(θ2),(4.5)

where λ+(x) and λ−(x) are the rates of direction reversal. These are related
to the strength of correlations in the system. These equations characterize
the nature of the correlated process. We assume that λ+(x) and λ−(x) are
Lipschitz continuous functions satisfying

(4.6)
0 < λ+

0 ≤ λ+(x) ≤ λ+
1 < ∞,

0 < λ−
0 ≤ λ−(x) ≤ λ−

1 < ∞, ∀x ∈ [0, 1].

Expanding the functions α and β in Taylor series, using (4.4) and (4.5) and
letting δ, θ → 0 in such a way that γ = limδ→0, θ→0 δ/θ remains finite, we
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obtain the system of equations

∂tα(x, t) = − γ∂x[σ(x)α(x, t)] − λ+(x)α(x, t) + λ−(x)β(x, t),(4.7)

∂tβ(x, t) = γ∂x[σ(x)β(x, t)] − λ−(x)β(x, t) + λ+(x)α(x, t).(4.8)

For further transformations we assume that the functions λ+(x) and
λ−(x) have the form

(4.9) λ+(x) = λ(x)− ϕ(x), λ−(x) = λ(x) + ϕ(x),

where 0 < λ0 ≤ λ(x) ≤ λ1 < ∞, and the function ϕ is bounded.
We introduce two new functions:

(4.10) v(x, t) = α(x, t) + β(x, t), w(x, t) = α(x, t) − β(x, t),

where v is the density and w the net flux of particles to the right.
Finally we get the following system of equations (already referred to as

the telegraph system):

(4.11)
∂tv + γ∂x(σw) = 0,

∂tw + γ∂x(σv) + 2λw − 2ϕv = 0,

with initial conditions

(4.12) v(x, 0) = v
◦

(x), w(x, 0) = w
◦

(x).

4.2. Existence and uniqueness of solution of the telegraph equations for

the correlated random walk. The system (4.11) is considered on the interval
[0, 1] with Dirichlet’s homogeneous boundary conditions

(4.13) v(0, t) = v(1, t) = 0, t > 0.

The conditions correspond to the absorbing border and hence are appropri-
ate for the model considered as shown in [14]. The solution must satisfy the
initial conditions (4.12).

Let us rewrite (4.11) as the following evolution system in the Hilbert
space W 0,2

σ :

(4.14) ∂t

[
v
w

]
= γS

[
v
w

]
+ 2λC

[
v
w

]
+ 2ϕB

[
v
w

]
,

where

(4.15) S =

[
0 −∂xσ

−∂xσ 0

]
, C =

[
0 0
0 −1

]
, B =

[
0 0
1 0

]
,

and W 0,2
σ = L2([0, 1]) × L2([0, 1]) with the norm

‖(v,w)‖2σ =

1\
0

|v(x)|2σ(x) dx +

1\
0

|w(x)|2σ(x) dx.

This norm is equivalent to the standard norm in L2([0, 1]2) by (4.1).



Random genetic drift 87

It will be shown that the operator S is maximal dissipative and hence
it generates a semigroup of contractions. Since the operators 2λC and 2ϕB
are bounded, the operator K = γS+2λC+2ϕB also generates a semigroup.
Hence the Cauchy problem related to (4.14) is solvable.

Further, some concepts and theorems from the theory of semigroups of
bounded linear operators [12] are used.

Lemma 4.1. The operator S defined on D(S) = W 1,2
0,σ ([0, 1])×W 1,2

0,σ ([0, 1])
is dissipative.

P r o o f. We have

Re

(
S

[
v
w

]
,

[
v
w

])
=

1\
0

[
−∂xσw
−∂xσv

]T [
v
w

]
σ dx

= −
1\
0

(∂x(σw)vσ + ∂x(σv)wσ) dx

=

1\
0

(∂x(σw)vσ + ∂x(vσ)wσ) dx

= −Re

([
v
w

]
, S

[
v
w

])
.

So, we obtain the equality Re z = −Re z. Therefore Re z = 0 and the
dissipativity of S follows.

Lemma 4.2. R(I − S) = X.

P r o o f. Since S is dissipative we have

‖(λI − S)u‖ ≥ λ‖u‖ ∀u ∈ D(S) and λ > 0.

This implies that the range R(λI−S) is closed. Indeed, take a sequence fn ∈
R(λI − S) such that fn → f . Then there is un such that fn = (λI − S)un.
Since ‖fn‖ = ‖(λI − S)un‖ ≥ λ‖un‖, we have un → u, u ∈ D(λI − S) and
(λI − S)u = f . This means that f ∈ X. So, it follows that R(λI − S) is
closed for all λ > 0, in particular for λ = 1.

It is now sufficient to show that R(I − S) is dense, e.g. by showing that

∀
[
f
g

]
∈ C∞

0 × C∞
0 ∃

[
v
w

]
: (I − S)

[
v
w

]
=

[
f
g

]
.

We have

v + ∂x(σw) = f, w + ∂x(σv) = g, w = g − ∂x(σv),

v + ∂x(σg) − ∂x(σ∂x(σv)) = f,

v − ∂x(σ∂x(σv)) = f − ∂x(σg).
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So, we get

(4.16) Au = h in C∞
0 ,

where

(4.17) h = f − ∂x(σg), A = I − ∂xσ∂xσ.

Take φ ∈ C∞
0 . Multiplying (4.16) by φσ and integrating by parts we get

(4.18) (Au, φ) = (h, φ),

where

(Au, φ) = −
1\
0

∂x(σ∂x(σu))φσ dx+

1\
0

uφσ dx(4.19)

=

1\
0

∂x(σu)∂x(σφ)σ dx− ∂x(σu)σφσ|10 +
1\
0

uφσ dx.

Now ∂x(σu)σφσ|10 vanishes because φ ∈ C∞
0 . Therefore we have

(4.20) (Au, φ) =

1\
0

∂x(σu)∂x(σφ)σ dx+

1\
0

uφσ dx.

Now, we show the uniqueness of the solution of the above problem in
the space W 1,2

0,σ , which is the closure of C∞
0 under the norm W 1,2

,σ .
Let a(u, φ) = (Au, φ). From Hölder’s inequality and boundedness of σ, it

follows that a(u, φ) is a bounded bilinear form with respect to u, φ, and (h, φ)
is a linear functional. Moreover, a(·, ·) is a coercive form, i.e. Re(Au, u) ≥
c‖u‖2

W 1,2

0,σ

, which follows from the properties of σ. So, the assumptions of

the Lax–Milgram theorem are satisfied. Therefore the problem considered
has a unique solution. This implies that R(I − S) is dense in X.

Remark 4.1. From Lemmas 4.1 and 4.2 it follows that the operator S
is m-dissipative and hence it is maximal dissipative.

Lemma 4.3. D(S) = X.

P r o o f. The operator S is m-dissipative and W 1,2
0,σ is a reflexive space.

Therefore the domain of S is dense in X.

Lemma 4.4. S is the generator of a C0-semigroup of contractions.

P r o o f. This follows immediately from the Lumer–Phillips theorem.
The assumptions of that theorem are satisfied by Lemmas 4.1–4.3.

Theorem 4.1. For each pair (v
◦

, w
◦

) ∈ W 1,2
0,σ ([0, 1]) × W 1,2

,σ ([0, 1]) the

Cauchy problem for (4.14) has a unique classical solution on [0,∞).

P r o o f. The operator K = S + 2λC + 2ϕB is the generator of a semi-
group denoted by {GK(t)}t≥0. This results from the fact that S generates a
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semigroup of contractions and the operators 2λC and 2ϕB are bounded (by
the form of the matrices C and B and the assumptions on ϕ). Therefore
the Cauchy problem for (4.14) has a unique solution.

Now, we show that the semigroup {GK (t)}t≥0 is bounded, i.e. that there
is a constant M > 0 such that ‖GK(t)‖ ≤ M, t ≥ 0.

We introduce the notation A = 2λC + 2ϕB. The operator A is then of
the form

(4.21) A =

[
0 0
2ϕ −2λ

]
.

For abbreviation we set S = γS. Equation (4.14) can be rewritten as follows:

(4.22) ∂t

[
v
w

]
= S

[
v
w

]
+A

[
v
w

]
.

Consider the problem (4.22) for the following functions:

(4.23) v̂ = ve−D(x), ŵ = we−D(x),

where D is a function of x.

Substituting (4.23) into (4.22) we obtain, after some transformations,

(4.24) ∂t

[
v̂
ŵ

]
= S

[
v̂
ŵ

]
+A

[
v̂
ŵ

]
,

where

(4.25) A =

[
0 −γD′σ

−γD′σ + 2
√
λϕ −2λ

]

and D′ is the first derivative of D.

By Lemma 4.4, S is the generator of a C0-semigroup of contractions.
Since γ is a constant, it is easy to see that S is also the generator of a
C0-semigroup of contractions. We will show that there exists D such that
A is the generator of a C0-semigroup of contractions.

Lemma 4.5. There exists D such that the operator A defined on D(A) =
W 1,2

0,σ ([0, 1]) ×W 1,2
0,σ ([0, 1]) is dissipative.

P r o o f. We have

Re

(
A

[
v̂
ŵ

]
,

[
v̂
ŵ

])
=

1\
0

[
−γD′σŵ

(−γD′σ + 2ϕ)v̂ − 2λŵ

]T [
v̂
ŵ

]
σ dx

=

1\
0

(−2γD′σŵv̂σ + 2ϕv̂ŵσ − 2λŵŵσ) dx ≤ 0.
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The above inequality holds if −2γD′σ2 + 2ϕσ = 0, thus if D′(x) =
ϕ(x)/(γσ(x)). Therefore, A is dissipative for

(4.26) D(x) =

x\
0

ϕ(s)

γσ(s)
ds+

ϕ(0)

γσ(0)
.

Further, the operator A is considered with the D given by (4.26).

Lemma 4.6. R(I −A) = X.

P r o o f. Since A is dissipative we have ‖(λI − A)u‖ ≥ λ‖u‖. From this
inequality it follows that R(λI−A) is closed for each λ > 0, and in particular
for λ = 1. It is sufficient to show that R(I − A) is dense, e.g. by showing
the existence and uniqueness of solution of the problem

(4.27)

[
1 γD′σ

γD′σ − 2ϕ 1 + 2λ

] [
v̂
ŵ

]
=

[
f
g

]
in C∞

0 .

The above problem has a unique solution if and only if det(I −A) 6= 0. But

det(I −A) = 1 + 2λ− γD′σ(γD′σ − 2ϕ) = 1 + 2λ+ ϕ2 > 0 ∀x.
Lemma 4.7. A is the generator of a C0-semigroup of contractions.

P r o o f. From Lemmas 4.5 and 4.6 it follows that A is m-dissipative,

and hence it is maximal dissipative. Moreover, D(A) = X, as in the case
of S. Thus, by the Lumer–Phillips theorem, for D given by (4.26), A is the
generator of a C0-semigroup of contractions.

Theorem 4.2. The semigroup {GK(t)}t≥0 is bounded , so there exists a

constant M > 0 such that

‖GK(t)‖ ≤ M, t ≥ 0.

P r o o f. By Lemma 4.4, S is the generator of a C0-semigroup of con-
tractions, thus S is the generator of a semigroup of contractions. From
Lemma 4.7 it follows that so is A. Using these facts and the Trotter formula
([12]), we will show that K = S+A is also the generator of a C0-semigroup
of contractions. We have

(4.28) ‖(GS(t)GA(t))
n‖ ≤ ‖GS(t)‖n‖GA(t)‖n ≤ 1.

It is easy to check that the assumptions of the Trotter formula are satisfied,
i.e. that there exists µ > 0 such that R(µI − (S + A)) is dense in X.
Therefore K = S + A is the generator of a semigroup of contractions, thus
‖GK(t)‖ ≤ 1, and hence

‖GK(t)‖ ≤ M,

where M is a positive constant. This follows from the fact that eD(x) is
bounded for D given by (4.26) and x ∈ [0, 1].
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5. Analysis of the singularly perturbed evolution equation. In
the case of weak correlations, i.e. large λ, one can expect that the corre-
lated process of random walk is similar to an uncorrelated one described by
diffusion equations.

Applying the theory of singularly perturbed systems we will show that
the solution of the diffusion equation with drift approximates the solution
of the system of correlated random walk with drift and we will estimate the
approximation error.

In the spirit of that theory we now perform an appropriate scaling of
the coefficients in (4.14) by introducing a small positive parameter ε > 0,
independent of x.

Various scalings are possible. For the scaling

(5.1) γ = γ̂/ε, λ = λ̂/ε2, ϕ = ϕ̂/ε,

equation (4.14) takes the form

(5.2) ∂t

[
v
w

]
=

γ̂

ε
S

[
v
w

]
+

2λ̂

ε2
C

[
v
w

]
+

2ϕ̂

ε
B

[
v
w

]
,

whereas for the scaling

(5.3) λ = λ̂/ε, ϕ = ϕ̂/ε,

it takes the form

(5.4) ∂t

[
v
w

]
= γ̂S

[
v
w

]
+

2λ̂

ε
C

[
v
w

]
+

2ϕ̂

ε
B

[
v
w

]
.

In both cases γ̂, λ̂ and ϕ̂ are independent.
Further we will use the scaling (5.1) and equation (5.2). There is no need

to analyse both scalings separately since the substitution t′ = εt transforms
(5.4) into (5.2). Thus the scaling (5.3) also leads to a diffusion equation
with the only difference that the equation involves the parameter ε and the
diffusion coefficient is of order 1/λ.

5.1. Analysis of a singularly perturbed telegraph system. Now, consider
the singularly perturbed problem (5.2):

(5.5)

∂tv +
γ̂

ε
∂x(σw) = 0,

∂tw +
γ̂

ε
∂x(σv) +

2λ̂

ε2
w − 2ϕ̂

ε
v = 0,

with initial conditions

v(0, x) = v
◦

, w(0, x) = w
◦

.

By the results already obtained we know that the above system has a unique
solution.
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In order to obtain “diffusion approximation” we apply a mathematical
version of the Chapman–Enskog method proposed by Banasiak and Mika
([2], [3]).

That method relies on representing the functions v and w in the following
form:

v(t) = v(t) + ṽ(τ),(5.6)

w(t) = w(t) + w̃(τ),(5.7)

where τ = t/ε2. This representation is needed for the description of the
initial layer phenomena.

The function w depends on t only through its dependence on v, i.e.
there is a function W such that w(t) = W (v(t)). This is the essence of
Chapman–Enskog’s procedure.

The functions w, ṽ, w̃ are expanded into asymptotic series in ε:

w(t) = w0(t) + εw1(t) +O(ε2)(5.8)

= W0(v(t)) + εW1(v(t)) +O(ε2),

ṽ(τ) = ṽ0(τ) + εṽ1(τ) +O(ε2),(5.9)

w̃(τ) = w̃0(τ) + εw̃1(τ) +O(ε2),(5.10)

The clue of the method is that the function v remains unexpanded and it is
treated as a function of order O(1) at all levels of approximation, and the
function w depends on t only through its dependence on v.

The Chapman–Enskog procedure consists in inserting the expanded func-
tions (5.8)–(5.10) into (5.5) and comparing the coefficients of the same pow-
ers of ε.

Substituting (5.8) into (5.5) and neglecting terms of order O(ε), we ob-
tain

(5.11) ∂tv = −1

ε
γ̂∂x(σw0)− γ̂∂x(σw1).

Setting W ′
j := dWj/dv for j = 0, 1, . . . we have

(5.12) W ′
0∂tv + εW ′

1∂tv + . . .+
1

ε
γ̂∂x(σv)

+2λ̂

(
1

ε2
W0(v) +

1

ε
W1(v)− . . .

)
− 2ϕ̂

ε
v = 0.

Substituting the expansion (5.11) of ∂tv into (5.12) and comparing coeffi-
cients of the same powers of ε we get

W0 ≡ 0,(5.13)

W1 = − γ̂

2λ̂
∂x(σv) +

1

λ̂
ϕ̂v,(5.14)

W2 ≡ 0.(5.15)
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Thus we obtain the following equation for v(1), the first order approximation
of v:

(5.16) ∂tv
(1) =

γ̂2

2
∂x

(
σ

λ̂
∂x(σv

(1))

)
− γ̂∂x

(
σ

λ̂
ϕ̂v(1)

)
.

It is a diffusion type equation, but neither a prospective Kolmogorov equa-
tion nor a strictly retrospective one.

Now, using the fact that γ̂2/λ̂ = γ2/λ and ϕ̂/λ̂ = ϕ/λ we rewrite the
diffusion equation with original coefficients. We get

(5.17) ∂tv
(1) =

γ2

2
∂x

(
σ

λ
∂x(σv

(1))

)
− γ∂x

(
σ

λ
ϕv(1)

)
.

To obtain the equations of the initial layer for (5.16) we substitute (5.9)
and (5.10) into (5.5) and compare the coefficients of the same powers of ε.
We get

∂τ w̃0 = − 2λ̂w̃0,(5.18)

∂τ ṽ0 = 0,(5.19)

∂τ w̃1 = − 2λ̂w̃1,(5.20)

∂τ ṽ1 = − γ̂∂x(σw̃0).(5.21)

Since we are looking for solutions which represent the initial layer, they
must decay exponentially at infinity. Thus we obtain

ṽ0(τ) ≡ 0,(5.22)

w̃0(τ) = w̃0(0)e
−2λ̂τ ,(5.23)

ṽ1(τ) = γ̂∂x

(
σ

2λ̂
e−2λ̂τ w̃0(0)

)
,(5.24)

w̃1(τ) = w̃1(0)e
−2λ̂τ .(5.25)

To establish initial values for (5.16), (5.18)–(5.21) take

v
◦

= v(1)(0) + εṽ1(0),(5.26)

w
◦

= w̃0(0) + ε(w1(0) + w̃1(0)).(5.27)

Equation (5.26) defines a solution v(1)(0). From (5.23)–(5.25) and (5.27) we
get

w̃0(0) = w
◦

,(5.28)

ṽ1(0) = γ̂∂x

(
σ

2λ̂
w
◦

)
,(5.29)

w̃1(0) = − w1(0) =
γ̂

2λ̂
∂x(σv

(1)(0)) − 1

λ̂
ϕ̂v(1)(0).(5.30)
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And for v(1)(0) we have

v(1)(0) = v
◦ − εṽ1(0),(5.31)

v(1)(0) = v
◦ − εγ̂∂x

(
σ

2λ̂
w
◦

)
.(5.32)

The function v(1) must satisfy the same boundary conditions as v, thus

(5.33) v(1)(0, t) = v(1)(1, t) = 0.

5.2. Estimation of the approximation error. The approximation error is
defined as follows:

y(t) = v(t)− v(1)(t)− εṽ1

(
t

ε2

)
,(5.34)

z(t) = w(t)− w̃0

(
t

ε2

)
− ε

(
w1 + w̃1

(
t

ε2

))
.(5.35)

To determine it, we substitute (formally) v and w defined by (5.34) and
(5.35) into equation (5.5). After algebraic transformations we obtain

∂ty +
γ̂

ε
∂x(σz) = − γ̂∂xσw̃1,(5.36)

∂tz +
γ̂

ε
∂x(σy) +

2λ̂

ε2
z − 2

ε
ϕ̂y = − ε∂tw1 − γ̂∂xσṽ1 + 2ϕ̂ ṽ1.(5.37)

The initial values for the above system are

y(0) = 0,(5.38)

z(0) = 0,(5.39)

whereas the boundary values for y are

(5.40) y(t)
∣∣
x=0
x=1

= −εṽ1(τ)
∣∣
x=0
x=1

= −εγ̂∂x

(
σ

2λ̂
e−2λ̂τw

◦

)∣∣∣∣x=0
x=1

.

This follows from (5.34), (5.25), (5.33) and the absorbing boundary condi-
tions for v.

Analysing (5.40) shows that the boundary conditions can be written as
follows:

y(t, 0) = εQ0(t/ε2) = εe−2λ̂(0)t/ε2q0(t/ε2),(5.41)

y(t, 1) = εQ1(t/ε2) = εe−2λ̂(1)t/ε2q1(t/ε2),

where q0, q1 are polynomials with respect to τ = t/ε2 with coefficients

depending on w
◦

, λ̂, σ, γ and their derivatives at x = 0 and x = 1 respectively.

We will show that under appropriate assumptions concerning the initial
values the approximation error is of the order of O(ε2).
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Lemma 5.1. If σw
◦

∂x(λ̂)
∣∣
x=0
x=1

= 0 and ∂xσw
◦
∣∣
x=0
x=1

= 0, then

(5.42) y(t)
∣∣
x=0
x=1

= 0.

P r o o f. From (5.40) we have

y(t)
∣∣
x=0
x=1

= − εγ̂∂x

(
σ

2λ̂
e−2λ̂τw

◦

)∣∣∣∣x=0
x=1

=

[
− εγ̂

(
∂x(σw

◦

)2λ̂ − 2σw
◦

∂xλ̂

4λ̂4
− σw

◦

2λ̂
2τ(∂xλ̂)

)
e−2λ̂τ

]∣∣∣∣x=0
x=1

= 0,

since ∂x(σw
◦

) = 0 and σw
◦

∂xλ̂ = 0.

Further we will use the following facts:

Proposition 5.1 ([1]). The operator D defined by

(5.43) Dv =
γ2

2
∂x

(
σ

λ
∂x(σv)

)
− γ∂x

(
σ

λ
ϕv

)

with domain

(5.44) D(D) = W 2,2
,σ ([0, 1]) ∩W 1,2

0,σ ([0, 1])

is the generator of an analytic semigroup {GD(t)} in L2([0, 1]).

Proposition 5.2 ([12]). Let X be a reflexive space and let G(t) be a C0-

semigroup generated by an operator A. Then the adjoint semigroup G(t)∗ is

the C0-semigroup generated by A∗.

Proposition 5.3 ([12]). If an operator A is bounded on X, then A∗ is

bounded on X∗ and ‖GA(t)‖ = ‖GA∗(t)‖.

Proposition 5.4 ([1], [11]). D(D1/2) = W 1,2
0 ([0, 1]), and for k = 3, 4,

D(Dk/2) =

{
u ∈ W k,2([0, 1]) : v

∣∣
x=0
x=1

= 0,

∂x

(
σ

λ
∂x(σv)

)∣∣∣∣x=0
x=1

= 0, γ∂x

(
σ

λ
ϕv

)∣∣∣∣x=0
x=1

= 0

}
.

Theorem 5.1. The semigroup generated by the operator defined in (5.43)
satisfies the condition

(5.45) ‖GD(t)‖ ≤ Me−ωt

for some M , ω ≥ 0.
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P r o o f. Consider the operator D∗ adjoint to D, i.e. (Dv, u)W 1,2

0,σ

=

(v,D∗u)W 1,2

0,σ

. Then

D∗u =
γ2

2
∂x

(
σ

λ
∂x(σu)

)
+

γϕ

λ
∂x(σu),(5.46)

u(t, 0) = u(t, 1) = 0.(5.47)

We will show that D∗ is the generator of a semigroup of negative type.
There exists a constant M such that ‖etD∗‖ ≤ Me−µ0t, where −µ0 =

sup{Reµ : µ ∈ σ(D∗)} ([1]).
From the maximum principle it follows that Reµ < 0 for µ ∈ σ(D∗). It

can be shown that the spectrum of the operator D∗ determined by (5.46) and
(5.47) is discrete. By the substitution u = φeξ, where ξ = − 1

γ

Tx
0
ϕ(s) ds −

1
γ
ϕ(0), the eigenvalue problem D∗u = µu can be reduced to the problem

D̂∗φ = µφ, where D̂∗ is a self-adjoint operator. The domain of the latter
consists of functions of compact support. Hence D̂∗ has a discrete spectrum
([10]). This implies that −µ0 = sup{Reµ : µ ∈ σ(D∗)} < 0. Therefore D∗

generates a semigroup of negative type.
Propositions 5.2 and 5.3 yield that if ‖etD∗‖ ≤ Me−µ0t, then ‖etD‖ ≤

Me−µ0t, hence D is the generator of a semigroup of negative type.

Theorem 5.2. Suppose that

(i) λ̂ ∈ C3([0, 1]), σ ∈ C4([0, 1]), 0 < λ0 ≤ λ(x) ≤ λ1 < ∞, 0 < σ0 ≤
σ(x) ≤ σ1 < ∞,

(ii) v
◦ ∈ W 3,2([0, 1]), v

◦
∣∣
x=0
x=1

= 0,

∂x

(
σ

λ
∂x(σv)

)∣∣∣∣x=0
x=1

= 0, γ∂x

(
σ

λ
ϕv

)∣∣∣∣x=0
x=1

= 0,

(iii) w
◦ ∈ W 3,2([0, 1]), ∂x(σw

◦

)
∣∣
x=0
x=1

= 0, σw
◦

∂x(2λ̂)
∣∣
x=0
x=1

= 0,

(iv) ϕ ∈ C2([0, 1]), ϕ ≤ ϕ1 < ∞.

Then there exists a constant C such that the approximation error defined by

(5.34)–(5.35) satisfies the condition

(5.48) ‖{y(t), z(t)}‖L2 ≤ Cε2,

uniformly for t ∈ [0,∞).

P r o o f. Consider the problem (5.36)–(5.40). From assumption (iii) and
Lemma 5.1 it follows that y(t)

∣∣
x=0
x=1

= 0.

Due to the assumptions on the coefficients and initial conditions the error
function {y, z} defined by (5.34) and (5.35) is differentiable with respect to
t and x. Thus, we can substitute it into the system (5.36)–(5.37). Hence
{y, z} is a solution of the initial-boundary value problem (5.36)–(5.40).
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Using (5.14) and (5.15) the term ∂tw1 can be rewritten as follows:

∂tw1 = D
(
− γ̂

2λ̂
∂x(σv

(1))

)
+D

(
1

λ̂
ϕ̂v(1)

)
(5.49)

= D γ̂

2λ̂
∂x

[
σ

(
−GD(t)v

◦

+ εγ̂GD(t)∂x

(
σ

2λ̂
w
◦

))]

+D 1

λ̂
ϕ̂

[
GD(t)v

◦ − ε

(
γ̂GD(t)∂x

(
σ

2λ̂
w
◦

))]

= F 1(t) + εF 2(t),

because v
◦ − εγ̂∂x

(
σ

2λ̂
w
◦
)
∈ D(D) by (ii) and (iii). Using Proposition 5.4 and

assumptions (ii), (iii), ‖F 2(t)‖L2 can be estimated as

‖F 2(t)‖L2 ≤
∥∥∥∥
γ̂

2λ̂
∂xσ

(
DGD(t)γ̂∂x

(
σ

2λ̂
w
◦

))∥∥∥∥
L2

(5.50)

+

∥∥∥∥
1

λ̂
ϕ̂

(
DGD(t)γ̂∂x

(
σ

2λ̂
w
◦

))∥∥∥∥
L2

and

(5.51)

∥∥∥∥
γ̂

2λ̂
∂xσ

(
DGD(t)γ̂∂x

(
σ

2λ̂
w
◦

))∥∥∥∥
L2

≤
∥∥∥∥
γ̂

2λ̂
D3/2GD(t)σγ̂∂x

(
σ

2λ̂
w
◦

)∥∥∥∥
L2

≤ γ̂

2λ̂1

∥∥∥∥D
1/2GD(t)

(
Dσγ̂∂x

(
σ

2λ̂
w
◦

))∥∥∥∥
L2

≤ C‖D1/2GD(t)‖ · ‖w◦ ‖W 3,2 ,

where C is a constant.

To estimate ‖D1/2GD(t)‖ we use the following fact:

Proposition 5.5 ([12]). If −A is the generator of an analytic semigroup

GA(t) and 0 belongs to the resolvent set ̺(A) then for each α ≥ 0 there

exists β ≥ 0 such that

‖AαGA(t)‖ ≤ Mαt
−αe−βt.

Hence we have

‖D1/2GD(t)‖ = ‖(D − δI + δI)1/2GD(t)‖(5.52)

≤ M
1√
t
e−βt + δ1/2‖GD(t)‖.
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Using (5.52), (5.51) and (5.45) we obtain

(5.53)

∥∥∥∥
γ̂

2λ̂
∂xσ

(
DGD(t)γ̂∂x

(
σ

2λ̂
w
◦

))∥∥∥∥
L2

≤ C

(
1 +

1√
t

)
e−ωt,

for some constants C and ω > 0.

Similarly we can estimate
∥∥ 1

λ̂
ϕ̂(DGD(t)γ̂∂x

(
σ

2λ̂
w
◦
))∥∥

L2
, which finally im-

plies that

(5.54) ‖F 2(t)‖L2 ≤ C(1 + 1/
√
t)e−ωt,

where C and ω > 0 are new constants.
To obtain the desired estimates we consider the following two problems:

• problem P1:

(5.55)

∂ty1 +
γ̂

ε
∂x(σz1) = −γ̂∂xσw̃1,

∂tz1 +
γ̂

ε
∂x(σy1) +

2λ̂

ε2
z1 −

2

ε
ϕ̂y1 = −ε2F 2(t)− γ̂∂xṽ1 + 2ϕ̂ṽ1,

z1(0, x) = 0, y1(0, x) = 0, y1(t, 0) = y1(t, 1) = 0;

• problem P2:

(5.56)

∂ty2 +
γ̂

ε
∂x(σz2) = 0,

∂tz2 +
γ̂

ε
∂x(σy2) +

2λ̂

ε2
z2 −

2

ε
ϕ̂y2 = −εF 1(t),

z2(0, x) = 0, y2(0, x) = 0, y2(t, 0) = y2(t, 1) = 0.

We will show that ‖{y1, z1}‖L2 ≤ Cε2 and ‖{y2, z2}‖L2 ≤ Cε2.

Consider problem P1. A mild solution {y1, z1} can be written as
[
y1
z1

]
= GKε

(t)

[
y1(0)
z1(0)

]
(5.57)

+

t\
0

GKε
(t− s)

[ −γ̂∂xσw̃1(s/ε
2)

−ε2F 2(s)− γ̂∂xṽ1(s/ε
2) + 2ϕ̂ ṽ1(s/ε

2)

]
ds.

Here {GKε
(t)}t≥0 is the semigroup generated by the operator

Kε =
γ̂

ε
S +

2λ̂

ε2
C +

2

ε
ϕ̂B.

This is a problem similar to that of Theorem 4.1. By Theorem 4.2 and
the form of the operator Kε, it follows that the semigroup {GKε

(t)}t≥0 is
bounded. Thus we have ‖GKε

(t)‖ ≤ M , t ≥ 0, for some M > 0.
Notice that all functions on the right-hand side of problem P1 are of

the form e−2λ̂(t/ε2)p(t/ε2), where p is a polynomial with respect to t/ε2,
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whose coefficients depend on the coefficients of the system (5.56). Using the
condition (5.45) and inequality (5.54) we come to the following estimate:

(5.58)

∥∥∥∥
[
y1
z1

]∥∥∥∥
L2

≤ ε2C1

t/ε2\
0

e−2λ̂0s
′

P (s′) ds′ ≤ Cε2,

where C is a constant depending on the coefficients and initial values but
independent of t and ε and P is a polynomial.

To estimate
∥∥[ y2

z2

]∥∥
L2

we introduce an additional function h defined as
the solution of the problem

(5.59)
∂th+

2λ̂

ε2
h = − εF 1,

h(0) = 0.

Solving the above problem we obtain

(5.60) h(t, x) = −ε

t\
0

e−2λ̂(x)(t−s)/ε2F 1(s, x) ds.

Define z∗2 = z2 − h. From this definition problem P2 is equivalent to the
following one:

∂ty2 +
γ̂

ε
∂x(σz

∗
2 ) = −γ̂∂x

(
σ

t\
0

e−2λ̂(t−s)/ε2F 1(s) ds
)
,(5.61)

∂tz
∗
2 +

γ̂

ε
∂x(σy2) +

2λ̂

ε2
z∗2 − 2

ε
ϕ̂y2 = 0,(5.62)

z∗2(0, x) = 0, y2(0, x) = 0,(5.63)

y2(t, 0) = y2(t, 1) = 0.(5.64)

Denote this last problem by P∗
2 .

From assumption (ii) and Proposition 5.4 it follows that v
◦ ∈ D(D3/2).

Hence similarly to (5.54), the following estimate also holds:

(5.65) ‖∂xF 1(t, ·)‖L2 ≤ C

(
1 +

1√
t

)
e−ωt.

Let us consider a mild solution of P∗
2 . It can be written in the form

[
y2
z∗2

]
= GKε

(t)

[
y2(0)
z∗2(0)

]
(5.66)

+

t\
0

GKε
(t− s)


−γ̂∂x

(
σ

t\
0

e−2λ̂(t−s)/ε2F 1(s) ds

)

0


 ds.
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Thus using (5.63) we have the following estimate of the L2 norm of {y2, z∗2}:

(5.67)

∥∥∥∥
[
y2
z∗2

]∥∥∥∥
L2

≤
t\
0

‖GKε
(t− s)‖

∥∥∥∥−γ̂∂x

(
σ

s\
0

e−2λ̂(s−s′)/ε2F 1(s
′) ds′

)∥∥∥∥
L2

ds.

By the properties of the semigroup {GKε
(t)}t≥0 and the estimate (5.65) we

obtain

(5.68)

∥∥∥∥
[
y2
z∗2

]∥∥∥∥
L2

≤ C

t\
0

s\
0

e−2λ̂(s−s′)/ε2
(
1+

s− s′

ε2

)
e−ωs′

(
1+

1√
s′

)
ds′ ds,

where C denotes some constant. Hence we obtain

(5.69)

∥∥∥∥
[
y2
z∗2

]∥∥∥∥
L2

≤ C

∞\
0

e−ωs′
(
1 +

1√
s′

)
ds′

∞\
0

e−2λ̂s/ε2
(
1 +

s

ε2

)
ds.

Finally we arrive at

(5.70)

∥∥∥∥
[
y2
z∗2

]∥∥∥∥
L2

≤ C1ε
2

for some constant C1.
From (5.60), it follows that there exists a constant C2 such that

(5.71) ‖h(t)‖L2 ≤ C2ε
3.

From (5.58), (5.70) and (5.71) it follows that the mild solution {y1 + y2,
z1 + z2} of the problem (5.36)–(5.40) satisfies

(5.72) ‖{y1 + y2, z1 + z2}‖L2 ≤ C3ε
2.

for some constant C3.
Since the problem (5.36)–(5.40) has a classical solution {y, z}, it equals

the mild solution ([14]). Thus, we obtain (5.48).

6. Summary and conclusions. It has been shown how the random
walk system with correlations can be modified to improve the model. Start-
ing from the description of genetic drift in terms of random walk we derived
the equations of the continuous model having the form of two first order
partial differential equations. Then we demonstrated that the long time be-
haviour of solutions can be aproximated by the appriopriate solutions of an
equation of diffusion type. The final diffusion equation involves a nonzero
drift coefficient.

It is worth noticing that the parameter ε is introduced in such a way
that the strength of correlation is λ = λ̂/ε2. Therefore the approximation
error is of order λ−1.
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