
APPLICATIONES MATHEMATICAE
27,2 (2000), pp. 219–223

B. GLANC and A. JAKUBOWICZ (Szczecin)

APPLICATION OF THE WEYL CURVATURE TENSOR
TO DESCRIPTION OF THE GENERALIZED

REISSNER–NORDSTRØM SPACE-TIME

Abstract. The Weyl curvature tensor for the generalized Reissner–Nord-
strøm space-time is determined and theorems related to the Penrose conjec-
ture are proved.

1. Introduction. It is known that in standard cosmological models the
Weyl curvature tensor vanishes in the neighbourhood of Big Bang (compare
[3]). On the other hand the Weyl tensor tends to infinity in the neighbour-
hood of typical singularities in Black Holes.

Accordingly, R. Penrose has proposed the following conjecture on Weyl
curvature ([2], Chapter 2):

(1) the Weyl curvature tensor vanishes for initial-type (P) singularities.
(2) the Weyl curvature tensor tends to infinity for final-type (F) singu-

larities (e.g. Black Holes).

In the present paper we determine the Weyl curvature tensor for the gen-
eralized Reissner–Nordstrøm (briefly R–N) space-time and prove theorems
analogous to the Penrose conjecture above.

There is a classical fact, conjectured by Albert Einstein, that the presence
of matter causes the curvature of space-time. However, even an empty space-
time can have non-zero Weyl curvature. Such a situation occurs for example
near Black Holes and in regions where gravitation waves radiate.

2. The Weyl curvature tensor of the generalized R–N space-
time. The metric tensor of the family of generalized R–N space-times has
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the following form (see [1]):

(2.1) diag(−Ea+1, Ea−1, r2, r2 sin2 Θ).

This means that we have a 3-dimensional family depending on the parame-
ters r0, K and a. The scalar curvature of this space-time has the form (see
[1])

(2.2) T = Ta(r) =
ar2E′′ − 2Ea + 2

r2Ea

(
=

ar2E′′ + 2
r2Ea

− 2
r2

)
,

where

(2.3) E = E(r) = 1− r0

r
+

Kr2
0

r2
.

Observe that for a = 0 this space-time reduces to the ordinary R–N space-
time with scalar curvature T ≡ 0.

In [1] for the metric tensor (2.1) the following limits for the scalar cur-
vature T = Ta(r) in (2.2) were determined:

(2.4) lim
a→0+

lim
ε→0+

r 6=r0/2

T = 0, lim
a→0+

lim
ε→0+

r=r0/2

T = +∞.

The limits can be represented in the following form:

(2.5) δ(r) =
{

0 for r 6= r0/2,
+∞ for r = r0/2,

where δ(r) denotes the special Schwartz distribution, namely the Dirac delta
at r0/2.

The following result is an immediate consequence of the results and di-
agrams of [1].

Theorem 1. The limit space-time with scalar curvature tensor defined
by (2.4) (or by (2.5)) behaves, for points r 6= r0/2, like an ordinary R–N
space-time with zero scalar curvature T ≡ 0. Moreover , the scalar curvature
has a singularity T0 = +∞ at the point r = r0/2.

The Weyl curvature tensor has the following form:

Chijk = Rhijk −
1

n− 2
[gijRhk − gikRhj + ghkRij − ghjRik](2.6)

+
R

(n− 1)(n− 2)
(gijRhk − gikRhj).

In the case of the family of generalized R–N space-times the Weyl curvature
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tensor has, by (2.6), six independent coordinates of the form

(2.7)

C2121 =
sEa

6r2
[2E + 2Ea cot2 Θ − 2Ea csc2 Θ − 2rE′ + (a + 1)r2E′′],

C3131 =
sE

12
[−2E − 2Ea cot2 Θ + 2Ea csc2 Θ + 2rE′ − (a + 1)r2E′′],

C3232 =
1

12E
[−2E − 2Ea cot2 Θ + 2Ea csc2 Θ

+ 2rE′ − (a + 1)r2E′′],

C4141 =
sE sin2 Θ

12
[2Ea − 2E + 2rE′ − (a + 1)r2E′′],

C4242 =
sin2 Θ

12E
[2Ea − 2E + 2rE′ − (a + 1)r2E′′],

C4343 =
r2 sin2 Θ

6Ea
[−2Ea + 2E − 2rE′ + (a + 1)r2E′′].

The 4-dimensional space-time that we consider has a signature (−,+,+,+)
(see (2.1)) so the s above has to be taken s = −1.

Since csc2 Θ − cot2 Θ = 1, (2.7) yields

−6r2

Ea
C2121 = +

12
E

C3131 = −12EC3232 = +
12

E sin2 Θ
C4141

= − 12E

sin2 Θ
C4242 = − 6Ea

r2 sin2 Θ
C4343

= +
12
E

C = −12EC = +
12

E sin2 Θ
C

= − 12E

sin2 Θ
C = − 6Ea

r2 sin2 Θ
C,

where

(2.8) C = C(r) = 2E − 2Ea − 2rE′ + (a + 1)r2E′′.

The formula (2.8) gives the following equation:

2E − 2Ea − 2rE′ + (a + 1)r2E′′ = 0.

If we substitute in (2.9) E defined by (2.3) we obtain the equation (2.9)
depending on the radius r.

For a = 0 we have from (2.9) the following equation:

(2.10) 2E − 2− 2rE′ + r2E′′ = 0.

The solution of this equation is

r = r∗(r0,K) = 2Kr0,
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and in particular, for K = (1 + ε)/4, we have

r = r∗(r0, (1 + ε)/4) = (1 + ε)r0/2.

In the limit case ε = 0 one has

r = r∗(r0, 1/4) = r0/2.

The value C in (2.8) for a = 0 at the point r = r0/2 is

C = 12(4K − 1).

In particular for K = (1+ ε)/4 one obtains C = 12ε and for ε = 0 this gives
C = 0.

Hence we get the following theorems.

Theorem 2. The Weyl curvature C for the space-time defined in The-
orem 1 has, at any point r 6= r0/2, the non-zero value C = 12ε for ε > 0
close to zero.

Theorem 3. The Weyl curvature C for the space-time defined in Theo-
rem 1 has the value C = 0 at the singular point r = r0/2.

Now we want to determine points r for which the tensor C of the Weyl
curvature takes, for a ∈ (0, 1) close to zero and arbitrarily small ε > 0,
arbitrarily small values.

We do it by means of the following equation (see (2.10)):

(2.11) 2E − 2− 2rE′ + r2E′′ = η

where η 6= 0 is close to zero.
By (2.3) the equation (2.11) has the form

ηr2 + 6rr0 − 12Kr2
0 = 0,

and its positive solution is

r =
−3 +

√
3(3 + 4Kη)
η

r0.

In particular, for K = (1 + ε)/4 and ε = 0 we have K = 1/4 and

(2.12) r =
−3 +

√
9 + 3η

η
r0.

Theorem 4. The Weyl curvature C takes arbitrarily small values η >
0 in the small neighbourhood of the point r = (−3 +

√
9 + 3η)/η of the

generalized R–N space-time for a ∈ (0, 1) (a 6= 0, a 6= 1) and arbitrarily
small ε > 0.

Remark. The scalar curvature T of this space-time is given in diagram
(9) of [1]. For arbitrarily small ε it takes arbitrarily large values.
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The formula (2.12) can be written in the form r = wr0, where

(2.13) w =
−3 +

√
9 + 3η

η
, η 6= 0, η ≥ −3,

is a function of the independent variable η = C (i.e. the Weyl curvature).
Its value depends, in turn (by virtue of (2.11)), on the radius r.

It follows from the form of the function w that if η increases in the
interval (0,+∞) then the radius r decreases in the interval r0/2 > r > 0.

It follows from (2.13) that for a very small neighbourhood of the radius
r = (1/2 − α)r0 (where α is close to zero) the value of the Weyl curvature
C = η is also very small and it varies according to the formula

(2.14) η =
6α

(1/2− α)2
.

The observation above can be summarized in the following.

Theorem 5. For a ∈ (0, 1) (a 6= 0, a 6= 1) and arbitrarily small ε > 0
the generalized R–N space time has an increasing Weyl curvature C (C = η)
in the interval 0 < η < +∞. The radius r decreases from r0/2 to 0.

Corollary. The value of the Weyl curvature C = η in a very small
neighbourhood of the point r0/2 (i.e. for (1/2− α)r0 where α is arbitrarily
small) is also very small.

We would like to thank Dr. S. Ewert-Krzemieniewski for calculating the
Weyl curvature using the software MathTensorTM.
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