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APPLICATION OF THE WEYL CURVATURE TENSOR
TO DESCRIPTION OF THE GENERALIZED
REISSNER-NORDSTRO®M SPACE-TIME

Abstract. The Weyl curvature tensor for the generalized Reissner—Nord-
strgm space-time is determined and theorems related to the Penrose conjec-
ture are proved.

1. Introduction. It is known that in standard cosmological models the
Weyl curvature tensor vanishes in the neighbourhood of Big Bang (compare
[3]). On the other hand the Weyl tensor tends to infinity in the neighbour-
hood of typical singularities in Black Holes.

Accordingly, R. Penrose has proposed the following conjecture on Weyl
curvature ([2], Chapter 2):

(1) the Weyl curvature tensor vanishes for initial-type (P) singularities.

(2) the Weyl curvature tensor tends to infinity for final-type (F) singu-
larities (e.g. Black Holes).

In the present paper we determine the Weyl curvature tensor for the gen-
eralized Reissner—Nordstrgm (briefly R-N) space-time and prove theorems
analogous to the Penrose conjecture above.

There is a classical fact, conjectured by Albert Einstein, that the presence
of matter causes the curvature of space-time. However, even an empty space-
time can have non-zero Weyl curvature. Such a situation occurs for example
near Black Holes and in regions where gravitation waves radiate.

2. The Weyl curvature tensor of the generalized R—IN space-
time. The metric tensor of the family of generalized R-N space-times has
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the following form (see [1]):
(2.1) diag(—E*T B2~ 12 r?sin? ©).

This means that we have a 3-dimensional family depending on the parame-
ters ro, K and a. The scalar curvature of this space-time has the form (see

[11)

ar’E" —2E% + 2 ar’E" +2 2
@2 T=%0)= "5k <:E_>
where
70 Krg
2.3 EFE=F =1- — .
(2.3) (r) ” + r2

Observe that for a = 0 this space-time reduces to the ordinary R—-N space-
time with scalar curvature T = 0.

In [1] for the metric tensor (2.1) the following limits for the scalar cur-
vature T' = T, (r) in (2.2) were determined:

(2.4) lim lim 7 =0, lim lim 7 = +o0.
a—0t 5~>O+ a—0t 5—>O+
r#rg/2 r=rgo/2

The limits can be represented in the following form:

(2.5) 5(r) = {O for r # 1o /2,

+oo  for r=1y/2,

where §(r) denotes the special Schwartz distribution, namely the Dirac delta
at ro/2.

The following result is an immediate consequence of the results and di-
agrams of [1].

THEOREM 1. The limit space-time with scalar curvature tensor defined
by (2.4) (or by (2.5)) behaves, for points r # ro/2, like an ordinary R-N
space-time with zero scalar curvature T'= 0. Moreover, the scalar curvature
has a singularity Ty = 400 at the point r = rq/2.

The Weyl curvature tensor has the following form:

1
(2.6)  Chijk = Rnijk — m[ginhk — gikRuj + gniRij — gnjRik)

R
—  (gi;Rnk — ginRn;).
+(n_1)(n_2)(gg nk — GikLtn;)

In the case of the family of generalized R—N space-times the Weyl curvature
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tensor has, by (2.6), six independent coordinates of the form

Ea
Ci21 = 86 5 [2F + 2E“ cot?@ —2E%csc? @ — 2rE’ + (a + 1)T2E"],
r
B a 2 a 2 / 2
Cs131 = E[_2E_ 2E%cot* @ 4+ 2E%csc* © + 2rE" — (a + 1)r*E"],
1
C3930 = 2B [—2E — 2E% cot? © 4 2E% csc? O
(2.7) + 2B — (a+ 1)r2E"],
Esin’ @
Cnar = %[ﬂ?a —2E+2rE' — (a + 1)7“2E”},
.2
e
Caoa2 = 811112E [2Ea —2E +2rE" — (a 4 1)7'2E”],
r2sin? © u , -
Ca343 = GT[—QE +2E —2rE" + (a+ 1)r“E"].

The 4-dimensional space-time that we consider has a signature (—, +,+, +)
(see (2.1)) so the s above has to be taken s = —1.
Since csc? © — cot? © = 1, (2.7) yields

672 12 12
—502121 = +EC3131 = —12EC3939 = +m04141
12F 6E®
e Chp = ———
sin2@ % r2gin2@ B
12 12
=+—-C=-12EC =+—--C
FE Esin’©
_ 12E , GE"
 sin?@ r2sin?@
where
(2.8) C=C(r)=2E—-2E* - 2rE' + (a + 1)r*E".

The formula (2.8) gives the following equation:
2F —2E* —2rE' + (a+ 1)r*E" = 0.

If we substitute in (2.9) E defined by (2.3) we obtain the equation (2.9)
depending on the radius r.
For a = 0 we have from (2.9) the following equation:

(2.10) 2F -2 —2rE' +r*E" = 0.
The solution of this equation is

r=r*(ro, K) = 2Kry,
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and in particular, for K = (1 4 ¢)/4, we have
r=r"(ro,(1+¢)/4) = (1 +¢)ro/2.
In the limit case € = 0 one has
r=r"(ro,1/4) =1/2.
The value C' in (2.8) for a = 0 at the point r = ro/2 is
C = 124K —1).

In particular for K = (1+¢)/4 one obtains C = 12¢ and for € = 0 this gives
C=0.
Hence we get the following theorems.

THEOREM 2. The Weyl curvature C for the space-time defined in The-
orem 1 has, at any point r # ro/2, the non-zero value C = 12¢ for e > 0
close to zero.

THEOREM 3. The Weyl curvature C' for the space-time defined in Theo-
rem 1 has the value C' = 0 at the singular point r = rq/2.

Now we want to determine points r for which the tensor C' of the Weyl
curvature takes, for a € (0,1) close to zero and arbitrarily small ¢ > 0,
arbitrarily small values.

We do it by means of the following equation (see (2.10)):

(2.11) 2E —2 - 2rE' +r?E" =19

where 1 # 0 is close to zero.
By (2.3) the equation (2.11) has the form

177"2 + 6rrg — 12K7"3 =0,

and its positive solution is

—3+/3(3 + 4K7)
r= 1 To.

In particular, for K = (1 +¢)/4 and € = 0 we have K = 1/4 and

—3+.9F3
(2.12) po 2tV
77

THEOREM 4. The Weyl curvature C takes arbitrarily small values n >
0 in the small neighbourhood of the point v = (=3 + /94 3n)/n of the
generalized R—-N space-time for a € (0,1) (a # 0, a # 1) and arbitrarily
small € > 0.

REMARK. The scalar curvature T' of this space-time is given in diagram
(9) of [1]. For arbitrarily small ¢ it takes arbitrarily large values.
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The formula (2.12) can be written in the form r = wrg, where

(213) wZW? 777&07 772 _37
is a function of the independent variable n = C' (i.e. the Weyl curvature).
Its value depends, in turn (by virtue of (2.11)), on the radius r.

It follows from the form of the function w that if n increases in the
interval (0, 400) then the radius r decreases in the interval r¢/2 > r > 0.

It follows from (2.13) that for a very small neighbourhood of the radius
r = (1/2 — a)rg (where « is close to zero) the value of the Weyl curvature
C = 7 is also very small and it varies according to the formula

6a

(2.14) n= i2—a)
The observation above can be summarized in the following.

THEOREM 5. For a € (0,1) (a # 0, a # 1) and arbitrarily small € > 0
the generalized R—N space time has an increasing Weyl curvature C' (C = n)
in the interval 0 < 1 < +oo. The radius r decreases from rq/2 to 0.

COROLLARY. The value of the Weyl curvature C = n in a very small
neighbourhood of the point ro/2 (i.e. for (1/2 — a)rg where « is arbitrarily
small) is also very small.

We would like to thank Dr. S. Ewert-Krzemieniewski for calculating the

Weyl curvature using the software MathTensor ™.
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