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ON AN OPTIMAL CONTROL PROBLEM

FOR A QUASILINEAR PARABOLIC EQUATION

Abstract. An optimal control problem governed by a quasilinear parabolic
equation with additional constraints is investigated. The optimal control
problem is converted to an optimization problem which is solved using a
penalty function technique. The existence and uniqueness theorems are
investigated. The derivation of formulae for the gradient of the modified
function is explained by solving the adjoint problem.

1. Introduction. Optimal control problems for partial differential
equations are currently of much interest. An extensive literature in this
area is devoted to parabolic equations [1, 11, 12, 14, 15]. These problems
describe the processes of hydro- and gasdynamics, heat physics, filtration,
plasma physics and others [8, 9].

This paper presents an optimal control problem governed by a quasi-
linear parabolic equation with additional constraints. The optimal control
problem is converted to an optimization problem which is solved using a
penalty function technique. The existence and uniqueness theorems are
investigated. The derivation of formulae for the gradient of the modified
function is explained by solving the adjoint problem.

2. The optimal control problem. Let D be a bounded domain of
the N -dimensional Euclidean space EN , let l, T be given positive numbers,
and let Ω = {(x, t) : x ∈ D, t ∈ (0, T )}. Let V = {v : v = (v1, . . . , vN ) ∈
EN , ‖v‖EN

≤ R}, where R > 0 is a given number. We consider the heat
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exchange process described by the equation

(1)
∂u

∂t
−

∂

∂x

(

λ(u, v)
∂u

∂x

)

+B(u, v)
∂u

∂x
= f(x, t, u, v), (x, t) ∈ Ω,

with initial and boundary conditions

u(x, 0) = φ(x), x ∈ D,(2)

λ(u, v)
∂u

∂x

∣

∣

∣

∣

x=0

= g0(t), λ(u, v)
∂u

∂x

∣

∣

∣

∣

x=l

= g1(t), 0 ≤ t ≤ T,(3)

where φ(x) ∈ L2(D), g0(t), g1(t) ∈ L2(0, T ).
The function f(x, t, u, v) ∈ L2(Ω) for every (u, v) ∈ [r1, r2] × EN is

measurable in (x, t) ∈ Ω and for all (x, t) ∈ Ω it is continuous in (u, v) ∈
[r1, r2]×EN . Furthermore, this function has a continuous derivative in u for
each (x, t) ∈ Ω, and for (u, v) ∈ [r1, r2]×EN , the derivative ∂f(x, t, u, v)/∂u
is bounded. Moreover, the functions λ(u, v), B(u, v) are continuous on
[r1, r2]×EN , have continuous derivatives in u and for all (u, v) ∈ [r1, r2]×EN ,
the derivatives ∂λ(u, v)/∂u, ∂B(u, v)/∂u are bounded, where r1, r2 are given
numbers.

On the set V , under the conditions (1)–(3) and the additional restrictions

(4) ν0 ≤ λ(u, v) ≤ µ0, ν0 ≤ B(u, v) ≤ µ0, r1 ≤ u(x, t) ≤ r2

it is required to minimize the function [14]

(5) fα(u, v) =

T\
0

{β0[u(0, t)− f0(t)]
2 + β1[u(l, t)− f1(t)]

2} dt+ α‖v− ω‖2EN

where f0(t), f1(t) ∈ L2(0, T ) are given functions, α ≥ 0, ν0, µ0 > 0, β0 ≥ 0,
β1 ≥ 0, β0 + β1 6= 0, are given numbers, and ω = (ω1, . . . , ωN ) ∈ EN is a
given vector.

Definition 1. The problem of finding a function u = u(x, t) ∈ V 1,0
2 (Ω)

from conditions (1)–(4) for a given v ∈ V is called the reduced problem.

Definition 2. A solution of the reduced problem (1)–(4) corresponding
to v ∈ V is a function u(x, t) ∈ V 1,0

2 (Ω) that satisfies the integral identity

(6)

l\
0

T\
0

[

u
∂η

∂t
− λ(u, v)

∂u

∂x

∂η

∂x
−B(u, v)

∂u

∂x
η + ηf(x, t, u, v)

]

dx dt

= −

l\
0

φ(x)η(x, 0) dx −

T\
0

η(0, t)g0(t) dt+

T\
0

η(l, t)g1(t) dt

for all η = η(x, t) ∈ W 1,1
2 (Ω) with η(x, T ) = 0.

A solution of the reduced problem (1)–(4) explicitly depends on the
control v, therefore we shall also use the notation u = u(x, t; v).
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From the assumptions and the results of [6] it follows that for every
v ∈ V a solution of the problem (1)–(4) exists, it is unique and |ux| ≤ C0

for all (x, t) ∈ Ω and v ∈ V , where C0 is a certain constant.
The inequality constrained problem (1) through (5) is converted to a

problem without inequality constraints by adding a penalty function [3,
16] to the objective (5) {OCP}, yielding the following function Φ(v) =
Φα,k(v,Ak):

(7) Φ(v) = fα(u(v), v) + Pk(u(v), v)

where

Z(u, v) = [max{ν0 − λ(u, v); 0}]2 + [max{λ(u, v) − µ0; 0}]
2,

Y (u, v) = [max{ν0 −B(u, v); 0}]2 + [max{B(u, v)− µ0; 0}]
2,

Q1(u) = [max{r1 − u(x, t; v); 0}]2 , Q2(u) = [max{u(x, t; v) − r2; 0}]
2,

Pk(v) = Ak

l\
0

T\
0

[Z(u, v) + Y (u, v) +Q1(u) +Q2(u)] dx dt

and Ak, k = 1, 2, . . . , are positive numbers with limk→∞Ak = ∞.

3. Well-posedness of the problem. Optimal control problems for
solutions of differential equations do not always have a solution [13]. In this
section, we will prove the existence and uniqueness of solution of problem
(1)–(5).

Lemma 3.1. Under the above assumptions for every solution of the re-

duced problem (1)–(5) the following estimate is valid :

(8) ‖δu‖V 1,0

2
(Ω) ≤ C

[∥

∥

∥

∥

δλ
∂u

∂x

∥

∥

∥

∥

2

L2(Ω)

+

∥

∥

∥

∥

δB
∂u

∂x

∥

∥

∥

∥

2

L2(Ω)

+ ‖δf‖2L2(Ω)

]1/2

where C ≥ 0 is a constant not depending on δv.

P r o o f. Set δu(x, t) = u(x, t; v + δv) − u(x, t; v), u = u(x, t; v), u′ =
u(x, t; v + δv). From (6) it follows that

(9)

l\
0

T\
0

[

−δu
∂η

∂t
+λ′ ∂δu

∂x

∂η

∂x
+

∂λ(u+θ1δu, v+δv)

∂u

∂u

∂x

∂η

∂x
δu+δλ

∂u

∂x

∂η

∂x

]

dx dt

+

l\
0

T\
0

[

B′∂δu

∂x
η +

∂B(u+ θ2δu, v + δv)

∂u

∂u

∂x
ηδu + δB

∂u

∂x
η

]

dx dt

−

l\
0

T\
0

[

∂f(x, t, u+ θ3δu, v + δv)

∂u
δuη + δfη

]

dx dt = 0

for all η = η(x, t) ∈ W 1,1
2 (Ω) with η(x, T ) = 0. Here θ1, θ2, θ3 ∈ (0, 1) are

some numbers and
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δf = f(x, t, u, v + δv)− f(x, t, u, v),

λ′ = λ(u+ δu, v + δv), δλ = λ(u, v + δv)− λ(u, v)

B′ = B(u+ δu, v + δv), δB = B(u, v + δv)−B(u, v).

Let ηh(x, t) = h−1
Tt
t−h

η(x, τ) dτ , 0 < h < τ , where η(x, t) = δu(x, t) for
(x, t) ∈ Ωt1 , zero for t > t1 (t1 ≤ T − h), and Ωt1 = D × (0, t1]. In identity
(9) put η(x, t) instead of ηh(x, t). Following the method of [7, pp. 166–168]
we obtain

(10)
1

2

\
D

δu2(x, t1) dx

+
\

Ωt1

[

λ′

(

∂δu

∂x

)2

+
∂λ(u+ θ1δu, v + δv)

∂u

∂u

∂x

∂δu

∂x
δu+ δλ

∂u

∂x

∂δu

∂x

]

dx dt

+
\

Ωt1

[

B′ ∂u

∂x
δu+

∂B(u+ θ2δu, v + δv)

∂u

∂u

∂x
(δu)2 + δB

∂u

∂x
δu

]

dx dt

−
\

Ωt1

[

∂f(x, t, u+ θ3δu, v + δv)

∂u
(δu)2 + δfδu

]

dx dt = 0.

Hence, from the above assumptions and applying the Cauchy–Bunyakov-
skĭı inequality, we have

(11)
1

2

\
D

δu2(x, t1) dx+ ν0
\

Ωt1

(

∂δu

∂x

)2

dx dt

≤ (C3 +C4)
\

Ωt1

δu2 dx dt

+ (C1 + C2)
( \

Ωt1

δu2 dx dt
)1/2

( \
Ωt1

(

∂δu

∂x

)2

dx dt

)1/2

+

( \
Ωt1

(

δB
∂u

∂x

)2

dx dt

)1/2
( \

Ωt1

δu2 dx dt
)1/2

+
( \

Ωt1

(δf)2 dx dt
)1/2( \

Ωt1

δu2 dx dt
)1/2

+

( \
Ωt1

(

δλ
∂u

∂x

)2

dx dt

)1/2( \
Ωt1

(

∂δu

∂x

)2

dx dt

)1/2

where C1, C2, C3 and C4 are positive constants not depending on δv.



Optimal control problem 243

Take ε1 = 2C1/ν0, ε2 = 2C2/ν0 and apply the Cauchy inequality with ε
(|ab| ≤ ε

2 |a|
2 + 1

2ε |b|
2) to the second and third summands on the right hand

side of (11); multiplying both sides by two we obtain

(12) ‖δu(x, t1)‖
2
L2(D) + ν0

∥

∥

∥

∥

∂δu

∂x

∥

∥

∥

∥

2

L2(Ωt1
)

≤ 2

(

C2
2

ν0
+C3 + C4 +

C2
1

ν0

)

‖δu‖2L2(Ωt1
)

+ 2

( \
Ωt1

(

δB
∂u

∂x

)2

dx dt

)1/2
( \

Ωt1

δu2 dx dt
)1/2

+ 2
( \

Ωt1

δf2 dx dt
)1/2( \

Ωt1

δu2 dx dt
)1/2

+ 2

( \
Ωt1

(

δλ
∂u

∂x

)2

dx dt

)1/2( \
Ωt1

(

∂δu

∂x

)2

dx dt

)1/2

Applying Cauchy’s inequality with ε to the last three summands on the
right side of (12) and taking ε = ν0/2 we obtain

(13) ‖δu(x, t1)‖
2
L2(D) +

ν0
2

∥

∥

∥

∥

∂δu

∂x

∥

∥

∥

∥

2

L2(Ωt1
)

≤ 2

(

C2
1 + C2 + ν20

ν0
+C3 + C4

)

‖δu‖2L2(Ωt1
)

+
2

ν0

∥

∥

∥

∥

δλ
∂u

∂x

∥

∥

∥

∥

2

L2(Ωt1
)

+
2

ν0

∥

∥

∥

∥

δB
∂u

∂x

∥

∥

∥

∥

2

L2(Ωt1
)

+
2

ν0
‖δf‖2L2(Ωt1

).

Now we set

y(t1) = ‖δu(x, t1)‖
2
L2(Ω),

M =

∥

∥

∥

∥

δλ
∂u

∂x

∥

∥

∥

∥

2

L2(Ωt1
)

+

∥

∥

∥

∥

δB
∂u

∂x

∥

∥

∥

∥

2

L2(Ωt1
)

+ ‖δf‖2L2(Ωt1
).

Then inequality (13) yields the two inequalities

y(t1) ≤ C5

t1\
0

y(t) dt+
2M

ν0
,(14)

∥

∥

∥

∥

∂δu

∂x

∥

∥

∥

∥

2

L2(Ωt1
)

≤
2C5

ν0
‖δu‖2L2(Ωt1

) +
4M

ν20
,(15)

where C5 = (2C2
2 + 2C2

1 )/ν0 + 2C3 + 2C4 + 2ν0 is a positive constant not
depending on δv.
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From the known estimate [6, pp. 166–167] it follows that

(16) y(t1) ≤ C6M

where C6 is a positive constant not depending on δv. Consequently,

(17) max
0≤t≤t1

‖δu(x, t)‖L2(D) ≤ C6M
1/2.

Similarly we obtain

(18)

∥

∥

∥

∥

∂δu

∂x

∥

∥

∥

∥

L2(Ωt1
)

≤ C7M
1/2

where C7 is a positive constant not depending on δv.

If we combine the estimates for δu and ∂δu/∂x, then we obtain

‖δu‖V 1,0

2
(Ωt1

) = max
0≤t≤t1

‖δu(x, t)‖L2(D) +

∥

∥

∥

∥

∂δu

∂x

∥

∥

∥

∥

L2(Ωt1
)

(19)

≤ C8M
1/2

where C8 is a positive costant not depending on δv. Lemma 3.1 is proved.

Corollary 3.1. Under the above assumptions the right side of esti-

mate (8) converges to zero as ‖δv‖EN
→ 0, therefore ‖δu‖V 1,0

2
(Ω) → 0 as

‖δv‖EN
→ 0.

Hence from the trace theorem [10] we get

(20) ‖δu(0, t)‖L2(0,T ) → 0, ‖δu(l, t)‖L2(0,T ) → 0 as ‖δv‖EN
→ 0.

Now we consider the function J0(u, v) of the form

J0(u, v) = β0

T\
0

[u(0, t)− f0(t)]
2dt+ β1

T\
0

[u(l, t)− f1(t)]
2 dt.

Lemma 3.2. The function J0(u, v) is continuous on V.

P r o o f. Let δv = (δv1, . . . , δvN ) be an increment of control on an ele-
ment v ∈ V such that v + δv ∈ V . For the increment of J0(u, v) we have

δJ0(u, v) = 2β0

T\
0

[u(0, t) − f0(t)]δu(0, t) dt(21)

+ 2β1

T\
0

[u(l, t)− f1(t)]δu(l, t) dt

+ β0

T\
0

[δu(0, t)]2 dt+ β1

T\
0

[δu(l, t)]2 dt.
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Applying the Cauchy–Bunyakovskĭı inequality, we obtain

|δJ0(u, v)| ≤ 2β0‖u(0, t) − f0(t)‖L2(0,T )‖δu(0, t)‖L2(0,T )(22)

+ 2β1‖u(l, t) − f1(t)‖L2(0,T )‖δu(l, t)‖L2(0,T )

+ β0‖δu(0, t)‖
2
L2(0,T ) + β1‖δu(l, t)‖

2
L2(0,T ).

An application of Corollary 3.1 completes the proof.

Theorem 3.1. For any α ≥ 0 problem (1)–(5) has at least one solution.

P r o o f. The set V is closed and bounded in EN . Since J0(u, v) is
continuous on V by Lemma 3.2, so is

Jα(u, v) = J0(u, v) + α‖v − ω‖2EN
.

Then from the Weierstrass theorem [5] it follows that problem (1)–(5) has
at least one solution.

Theorem 3.2. For α > 0 and almost all ω ∈ EN problem (1)–(5) has a

unique solution.

P r o o f. The functions J0(u, v) and Jα(u, v), α > 0, are continuous on V .
Moreover, since EN is a uniformly convex space, a theorem of [4] yields the
existence of a dense subset K of EN such that for any ω ∈ K and α > 0
problem (1)–(5) has a unique solution. Consequently, for almost all ω ∈ EN

and ω > 0 problem (1)–(5) has a unique solution.

4. Adjoint problem and gradient formulae

4.1. The adjoint problem. We illustrate the adjoint problem for the
system (1)–(3). The Lagrangian function L(x, t, u, v,Θ) for the optimal
control problem is defined as

(23) L(x, t, u, v,Θ)

= β0

T\
0

[u(0, t) − f0(t)]
2 dt+ β1

T\
0

[u(l, t) − f1(t)]
2 dt

+ α‖v − ω‖2EN
+Ak

l\
0

T\
0

[Z(u, v) + Y (u, v) +Q1(u) +Q2(u)] dx dt

+

l\
0

T\
0

Θ

[

∂u

∂t
−

∂

∂x

(

λ(u, v)
∂u

∂x

)

+B(u, v)
∂u

∂x
− f(x, t, u, v)

]

dx dt.
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The first variation of the Lagrangian is

(24) δL(x, t, u, v,Θ)

= 2β0

T\
0

[u(0, t) − f0(t)]δu(0, t) dt + 2β1

T\
0

[u(l, t) − f1(t)]δu(l, t) dt

+ β0

T\
0

[δu(0, t)]2 dt+ β1

T\
0

[δu(l, t)]2 dt+ 2α〈v − ω, δv〉EN
+ α‖δv‖2EN

+Ak

l\
0

T\
0

[

∂Z(u, v)

∂u
+

∂Y (u, v)

∂v
+

∂Q1(u)

∂u
+

∂Q2(u)

∂u

]

δu(x, t) dx dt

+

l\
0

T\
0

Θ

[

∂δu

∂t
−

∂

∂x

(

λ′ ∂δu

∂x

)

−
∂

∂x

(

∂λ

∂u

∂u

∂x
δu

)

−
∂

∂x

(

λ′′ ∂u

∂x

)

+B(u, v)
∂δu

∂x
+

∂B

∂u

∂u

∂x
δu + {f(x, t, u+ δu, v + δv) − f(x, t, u, v)}

]

dx dt

where λ′ = λ(u+ δu, v + δv), λ′′ = λ(u+ δu, v).

Integrating (24) by parts we obtain

(25) δL(x, t, u, v,Θ)

= 2β0

T\
0

[u(0, t)− f0(t)]δu(0, t) dt + 2β1

T\
0

[u(l, t)− f1(t)]δu(l, t) dt

+ β0

T\
0

[δu(0, t)]2 dt+ β1

T\
0

[δu(l, t)]2 dt+ 2α〈v − ω, δv〉EN
+ α‖δv‖2EN

+Ak

l\
0

T\
0

[

∂Z(u, v)

∂u
+

∂Y (u, v)

∂v
+

∂Q1(u)

∂u
+

∂Q2(u)

∂u

]

δu(x, t) dx dt

+

l\
0

T\
0

[

−
∂Θ

∂t
−

∂

∂x

(

λ′ ∂Θ

∂x

)

+
∂λ

∂u

∂u

∂x

∂Θ

∂x

+

(

∂B

∂u

∂u

∂x
Θ +

∂(BΘ)

∂x

)]

δu(x, t) dx dt

+

l\
0

T\
0

∂f

∂u
Θδu(x, t) dx dt +

l\
0

(Θδu)|t=T dx+

T\
0

(

λ′ ∂Θ

∂x
δu

)∣

∣

∣

∣

x=l

dt

+

T\
0

(

λ′ ∂Θ

∂x
δu

)
∣

∣

∣

∣

x=0

dt+

T\
0

(BΘδu)|x=l dt+

T\
0

(BΘδu)|x=0 dt.
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Setting the variation in the Lagrangian equal to zero (the first order neces-
sary condition for minimizing L(x, t, u, v,Θ)) implies, since (25) must hold
for any δu(x, t) [11], that we obtain the adjoint problem:

Θt + (λ(u, v)Θx)x − λu(u, v)Θxux − [BuuxΘ + (BΘ)x]− fuΘ(26)

= Ak[Zu(u, v) + Yu(u, v) +Q2
u +Q1

u], (x, t) ∈ Ω,

Θ(x, T ) = 0, x ∈ D,(27)

(λΘx +BΘ)|x=0 = 2β0[u(0, t) − f0(t)],

(λΘx +BΘ)|x=l = −2β1[u(l, t)− f1(t)], t ∈ [0, T ],(28)

where u = u(x, t) is the solution of problem (1)–(3) corresponding to v ∈ V.

Definition 3. A solution of the adjoint problem (26)–(28) correspond-
ing to v ∈ V is a function Θ(x, t) ∈ V 1,0

2 (Ω) such that the following integral
identity is satisfied:

(29)

l\
0

T\
0

[Θγt + λ(u, v)Θxγx + λu(u, v)Θxuxγ] dx dt

+

l\
0

T\
0

[BuuxΘ + (BΘ)x + fu(x, t, u, v)Θ]γ(x, t) dx dt

= −Ak

l\
0

T\
0

[Zu(u, v) + Yu(u, v) +Q2
u +Q1

u]γ(x, t) dx dt

for all γ = γ(x, t) ∈ W 1,1
2 (Ω) with γ(x, 0) = 0.

From the above assumptions and the results of [7] it follows that for
every v ∈ V a solution of the adjoint problem (26)–(28) exists, it is unique
and |Θx| ≤ C9 for almost all (x, t) ∈ Ω and all v ∈ V, where C9 is a certain
constant.

4.2. Gradient formulae for Φ(v). Sufficient differentiability conditions
for Φ(v) and its gradient formulae will be obtained by defining the Hamil-
tonian function [2] H(u,Θ, v) as

H(u,Θ, v) ≡ −

l\
0

T\
0

[λ(u, v)Θxux +B(u, v)uxΘ − f(x, t, u, v)Θ(30)

+Ak{Z(u, v) + Y (u, v)}] dx dt − α‖v − ω‖2EN
.

Theorem 4.1. Assume that :

(i) The functions λ(u, v), B(u, v), f(x, t, u, v) satisfy the Lipschitz con-

dition for v.
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(ii) The first derivatives of λ(u, v), B(u, v), f(x, t, u, v) with respect to

v are continuous functions and for any v ∈ V such that ‖v‖EN
≤ R, the

functions λv(u, v), Bv(u, v), fv(x, t, u, v) belong to L∞(Ω).

(iii) The operators

l\
0

T\
0

λv(u, v) dx dt,

l\
0

T\
0

Bv(u, v) dx dt and

l\
0

T\
0

fv(x, t, u, v) dx dt

are bounded in EN .

Then the function Φ(v) is differentiable and its gradient is

(31)
∂Φ(v)

∂v
= −

∂H

∂v
≡

(

−
∂H

∂v1
, . . . ,−

∂H

∂vN

)

.

P r o o f. Suppose that v ≡ (v1, . . . , vN ), δv ≡ (δv1, . . . , δvN ), δv ∈ EN ,
v + δv ∈ V and set δu ≡ u(x, t; v + δv) − u(x, t; v). The increment of Φ(v)
can be expressed as

(32) δΦ(v) = Φ(v + δv) − Φ(v)

= 2β0

T\
0

[u(0, t) − f0(t)]δu(0, t) dt + 2β1

T\
0

[u(l, t)− f1(t)]δu(l, t) dt

+Ak

l\
0

T\
0

[Zu(u, v) + Yu(u, v) +Q1
u(u) +Q2

u(u)]δu(x, t) dx dt

+Ak

l\
0

T\
0

[Z(u, v + δv)− Z(u, v) + Y (u, v + δv)− Y (u, v)] dx dt

+ 2α〈v − ω, δv〉EN
+R1(δv)

where

(33) R1(δv) = β0

T\
0

[δu(0, t)]2 dt+ β1

T\
0

[δu(l, t)]2 dt+ α‖δv‖2EN
.

Using the estimate (8), we get the inequality |R1(δv)| ≤ C10‖δv‖EN
where

C10 is a constant not depending on δv.

If we put γ = δu(x, t) in (29) and η = Θ(x, t) in (9) and subtract the
resulting relations, we obtain

(34) 2β0

T\
0

[u(0, t) − f0(t)]δu(0, t) dt + 2β1

T\
0

[u(l, t)− f1(t)]δu(l, t) dt

+Ak

l\
0

T\
0

[Zu(u, v) + Yu(u, v) +Q1
u(u) +Q2

u(u)]δu(x, t) dx dt
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=

l\
0

T\
0

[δλuxΘx + δBuxΘ − δfΘ] dx dt+R2(δv)

where

(35) R2(δv)

=

l\
0

T\
0

{

λ′ ∂δu

∂x

∂Θ

∂x
+

[

∂λ(u+ θ1δu, v + δv)

∂u
−

∂λ(u, v)

∂u

]

∂u

∂x

∂Θ

∂x
δu

}

dx dt

+

l\
0

T\
0

{

B′Θ
∂δu

∂x
+

[

∂B(u+ θ2δu, v + δv)

∂u
−

∂B(u, v)

∂u

]

Θ
∂u

∂x
δu

}

dx dt

+

l\
0

T\
0

[

∂f(x, t, u+ θ3δu, v + δv)

∂u
−

∂f(x, t, u, v)

∂u

]

δu(x, t)Θ(x, t) dx dt

and θi ∈ (0, 1), i = 1, 2, 3.

By assumption (i), R2(δv) is estimated as |R2(δv)| ≤ C11‖δv‖EN
, where

C11 is a constant independent of δv. Using the above assumptions, we can
estimate

Z(u, v + δv) − Z(u, v) = 〈Zv(u, v), δv〉EN
+O(‖δv‖EN

),

Y (u, v + δv) − Y (u, v) = 〈Yv(u, v), δv〉EN
+O(‖δv‖EN

),

λ(u, v + δv) − λ(u, v) = 〈λv(u, v), δv〉EN
+O(‖δv‖EN

),

B(u, v + δv) −B(u, v) = 〈Bv(u, v), δv〉EN
+O(‖δv‖EN

),

f(x, t, u, v + δv) − f(x, t, u, v) = 〈fv(x, t, u, v), δv〉EN
+O(‖δv‖EN

).

By substituting the last five expansions in (32) and (34), we obtain

δΦ(v) =

l\
0

T\
0

〈λv(u, v)uxΘx − {Bv(u, v)ux − fv(x, t, u, v)}Θ(36)

+Ak{Zv(u, v) + Yv(u, v)}, δv〉EN
dx dt

+ 2α〈v − ω, δv〉EN
+R3(δv)

where R3(δv) = R1(δv) +R2(δv) +O(‖δv‖EN
).

From the formula for R3(δv), we have

(37) |R3(δv)| ≤ C12‖δv‖EN

where C12 is a constant independent of δv.

From (36), (37), using the function H(u,Θ, v) we have

(38) δΦ(v) =

〈

−
∂H(u,Θ, v)

∂v
, δv

〉

EN

+O(‖δv‖EN
),
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which shows the differentiability of Φ(v) and also gives the gradient formulae
for Φ(v). Theorem 4.1 is proved.
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