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NEW OSCILLATION CRITERIA

FOR FIRST ORDER NONLINEAR DELAY

DIFFERENTIAL EQUATIONS

BY

XIANHUA TANG AND JIANHUA SHEN (CHANGSHA)

Abstract. New oscillation criteria are obtained for all solutions of a class of first order
nonlinear delay differential equations. Our results extend and improve the results recently
obtained by Li and Kuang [7]. Some examples are given to demonstrate the advantage of
our results over those in [7].

1. Introduction and preliminaries. Oscillation theory of delay differ-
ential equations has drawn much attention in recent years. This is evidenced
by extensive references in the recent books of Ladde et al. [4], Győri and
Ladas [3] and Erbe et al. [2]. In a recent paper [7], Li and Kuang obtained a
sharp sufficient condition for the oscillation of a nonlinear delay differential
equation of the form

(1.1) x′(t) + p(t)f(x(τ(t))) = 0, t ≥ t0 > 0,

where

p, τ ∈ C([t0,∞), [0,∞)), τ(t) < t, lim
t→∞

τ(t) = ∞,(1.2)

f ∈ C(R,R) and uf(u) > 0 for u 6= 0.(1.3)

The main result in [7] is the following:

Theorem A. Assume that (1.2) and (1.3) hold and that for some ε > 0,
M ≥ 0 and r > 0,

(1.4) |f(u)− u| ≤M |u|1+r for |u| < ε.

Suppose that

(1.5)

t\
δ(t)

p(s) ds ≥ e−1, t ≥ t0,
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and

(1.6)

∞\
t0

p(t)
[

exp
(

t\
δ(t)

p(s) ds− e−1
)

− 1
]

dt = ∞,

where δ(t) = max{τ(s) : t0 ≤ s ≤ t}. Then every solution of (1.1) oscillates.

Theorem A is an extension of a result in [5] for linear delay differential
equations to the nonlinear delay differential equation (1.1). For further
research on the oscillation of linear delay differential equations, see the recent
papers by Li [6], Tang and Shen [8], and Elbert and Stavroulakis [1].

In this paper, we establish an improvement of Theorem A in the following
sense: (a) the nonlinear restriction (1.4) can be relaxed; (b) the oscillation
criteria (1.5) or (1.6) can be weakened. The methods employed allow us to
consider a more general first order nonlinear delay differential equation of
the form

(1.7) x′(t) + f(t, x(τ(t))) = 0, t ≥ t0 > 0,

where

τ ∈ C([t0,∞), [0,∞)), τ(t) < t, lim
t→∞

τ(t) = ∞,(1.8)

f ∈ C([t0,∞)× R,R), uf(t, u) ≥ 0, t ≥ t0.(1.9)

In connection with the nonlinear function f(t, u) in (1.7) we suppose
that the following assumption (H) holds:

(H) There are a piecewise continuous function p : [t0,∞) → R
+ = [0,∞),

a function g ∈ C(R,R+) and a number ε0 > 0 such that

(i) g is nondecreasing on R
+;

(ii) g(−u) = g(u), limu→0 g(u) = 0;

(iii)
T∞
0
g(e−u) du <∞;

(iv) |f(t, u)− p(t)u|/|u| ≤ p(t)g(u) for t ≥ t0 and 0 < |u| < ε0;

(v) for each ψ ∈ C([t0,∞),R) with limt→∞ ψ(t) > 0,

∞\
t0

f(t, ψ(τ(t))) dt = ∞,

∞\
t0

f(t,−ψ(τ(t))) dt = −∞.

Remark 1.1. It is easily seen that when f(t, u) = p(t)f(u) condition
(1.4) implies conditions (i)–(iv) for g(u) = |u|r, r > 0. Also, noting that
limt→∞ ψ(t) > 0 in condition (v), we see that conditions (1.3) and (1.5)
imply (v). On the other hand, for f(t, u) = p(t)f(u), where

(1.10) f(u) =

{

u[1 + (1 + ln2 |u|)−1], u 6= 0,
0, u = 0,
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and

(1.11) g(u) =







1, |u| > 1,
(1 + ln2 |u|)−1, 0 < |u| ≤ 1,
0, u = 0,

and p ∈ C([t0,∞),R+) with
T∞
t0
p(t) dt = ∞, it is easily seen that condition

(H) holds, but (1.4) does not hold. In Section 4, we will apply our main
results to (1.7) when f(t, x) = p(t)f(u) and f(u) and g(u) are given by
(1.10) and (1.11) respectively.

Remark 1.2. Here, we also remark that in some sense condition (v) is
necessary for the oscillation of all solutions of (1.7). To see this, we give the
following

Proposition 1.1. Assume that (1.8) holds, f ∈ C([t0,∞) × R,R) with

f(t, u) ≥ 0 for t ≥ t0 and u ≥ 0, and f is nondecreasing in u. Suppose that

there exists a constant α > 0 such that
∞\
t0

f(s, α) ds <∞.

Then (1.7) has an eventually positive solution.

P r o o f. Let t1 > t0 be such that
∞\
t1

f(s, α) ds ≤ α/2.

Define a function y(t) as follows:

y(t) =























α

2
+

∞\
t

f(s, α) ds, t ≥ t1,

α

2
+

t− t0
t1 − t0

∞\
t1

f(s, α) ds, t0 ≤ t < t1.

Clearly, y(t) is continuous on [t0,∞) and

α/2 ≤ y(t) ≤ α for t ≥ t0.

Let T ≥ t1 be such that τ(t) ≥ t0 for t ≥ T . Then for t ≥ T ,

y(t) =
α

2
+

∞\
t

f(s, α) ds ≥
α

2
+

∞\
t

f(s, y(τ(s))) ds.

Set b = T −mint≥T {τ(t)}. Define a sequence {xn} of functions as follows:

x0(t) =

{

y(t), t ≥ T ,
y(T ), T − b ≤ t < T ,
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xn(t) =



















α

2
+

∞\
t

f(s, xn−1(τ(s))) ds, t ≥ T ,

α

2
+
t− T + b

b

[

xn(T )−
α

2

]

, T − b ≤ t < T .

By induction, we have

α/2 ≤ xn(t) ≤ xn−1(t) ≤ α, t ≥ T − b, n = 1, 2, . . .

Then for t ≥ T − b, x(t) = limn→∞ xn(t) exists, and

x(t) =
α

2
+

∞\
t

f(s, x(τ(s))) ds, t ≥ T.

It is easy to see that x(t) is an eventually positive solution of (1.7). The
proof is complete.

We note that the function f(t, u) = p(t)ur, where p(t) ≥ 0, r ≥ 1, and

∞\
t0

p(t) dt <∞,

satisfies all the conditions in Proposition 1.1.

Let δ(t) = max{τ(s) : t0 ≤ s ≤ t} and δ−1(t) = min{s ≥ t0 : δ(s) = t}.
Clearly, δ and δ−1 are nondecreasing and satisfy:

(A) δ(t) < t and δ−1(t) > t;

(B) δ(δ−1(t)) = t and δ−1(δ(t)) ≤ t.

Let δ−k(t) be defined on [t0,∞) by

(1.12) δ−(k+1)(t) = δ−1(δ−k(t)), k = 1, 2, . . .

Throughout this paper, we use the sequence {pk} of functions defined as
follows:

p1(t) =

δ−1(t)\
t

p(s) ds, t ≥ t0,

pk+1(t) =

δ−1(t)\
t

p(s)pk(s) ds, t ≥ t0, k = 1, 2, . . .

Our main results are the following:

Theorem 1.1. Assume that (1.8), (1.9) and (H) hold , and that

t\
τ(t)

p(s) ds ≥ e−1, t ≥ t0,(1.13)



OSCILLATION CRITERIA 25

∞\
t0

p(t)
[

exp
(

t\
τ(t)

p(s) ds− e−1
)

− 1
]

dt = ∞.(1.14)

Then every solution of (1.7) oscillates.

Remark 1.3. It is clear that Theorem 1.1 extends and improves Theo-
rem A. The following results yield a further improvement on the oscillation
criteria (1.13) and (1.14).

Theorem 1.2. Assume that (1.8), (1.9) and (H) hold , and that

(1.15) lim inf
t→∞

t\
τ(t)

p(s) ds > 0.

Suppose that there exists a positive integer n such that

(1.16)

∞\
t0

p(t) ln(enpn(t)) dt = ∞.

Then every solution of (1.7) oscillates.

Corollary 1.1. Assume that (1.8), (1.9), (1.15) and (H) hold , and that

(1.17)

∞\
t0

p(t) ln
(

e

δ−1(t)\
t

p(s) ds
)

dt = ∞.

Then every solution of (1.7) oscillates.

We note that if

lim sup
t→∞

t\
τ(t)

p(s) ds > 2,

then by Lemma 2.3 in Section 2 every solution of (1.7) oscillates. Thus, we
will assume throughout this paper that

lim sup
t→∞

t\
τ(t)

p(s) ds ≤ 2.

This implies that for some ε > 0,

t\
τ(t)

p(s) ds ≤ 2 + ε for large t.

Thus we have

lim inf
t→∞

pk(t) ≤ (2 + ε)k−1 lim inf
t→∞

δ−1(t)\
t

p(s) ds ≤ (2 + ε)k−1 lim inf
t→∞

t\
τ(t)

p(s) ds.
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As a result, by Theorem 1.2 we have

Corollary 1.2. Assume that (1.8), (1.9) and (H) hold , and that there

exists a positive integer n such that

(1.18) lim inf
t→∞

pn(t) > 1/en.

Then every solution of (1.7) oscillates.

The proofs of the above theorems and also some lemmas to be used in
these proofs will be given in the next two sections. Some examples which
illustrate the above remarks and the advantage of our results over those in
[7] will be given in Section 4.

As is customary, a solution is called oscillatory if it has arbitrarily large
zeros. Otherwise it is called nonoscillatory.

2. Some lemmas

Lemma 2.1. Assume that (1.8), (1.9) and (H) hold. Then every nonoscil-

latory solution of (1.7) converges to zero monotonically as t→ ∞.

P r o o f. Suppose that x(t) is a nonoscillatory solution of (1.7). We shall
assume that x(t) is eventually positive. The case where x(t) is eventually
negative is similar and is omitted. Choose a t1 ≥ t0 such that x(t) > 0
for t ≥ t1. From (1.7)–(1.9), it follows that there exists t2 > t1 such that
τ(t) ≥ t1 and x′(t) ≤ 0 for t ≥ t2. Hence limt→∞ x(t) = α ≥ 0 exists. If
α > 0, then by (1.7) we have

x(t)− x(t0) = −

t\
t0

f(s, x(τ(s))) ds.

It follows from assumption (H)(v) that limt→∞ x(t) = −∞, which contra-
dicts x(t) being eventually positive. The proof is complete.

Lemma 2.2. Assume that (1.8), (1.9) and (H) hold. If x(t) is a nonoscil-

latory solution of (1.7), then there exist A > 0 and T > t0 such that

(2.1) |x(t)| ≤ A exp

(

−
1

2

t\
T

p(s) ds

)

, t ≥ T.

Lemma 2.3. Assume that (1.8), (1.9) and (H) hold. If (1.7) has a non-

oscillatory solution, then eventually

(2.2)

t\
τ(t)

p(s) ds ≤ 2 and pk(t) ≤ 2k, k = 1, 2, . . .

Lemma 2.4. Assume that (1.8), (1.9), (1.15) and (H) hold. If x(t) is a

nonoscillatory solution of (1.7), then x(τ(t))/x(t), which is well defined for

large t, is bounded.
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Proofs of Lemmas 2.2–2.4. Suppose that x(t) is a nonoscillatory solution
of (1.7) which will be assumed to be eventually positive (if x(t) is eventually
negative the proof is similar). By Lemma 2.1, there exists t1 ≥ t0 such that

(2.3) ε0 > x(τ(t)) ≥ x(t) > 0, t ≥ t1,

and limt→∞ x(t) = 0. By assumption (H), there exists t2 > t1 such that

(2.4) f(t, x(τ(t))) ≥ 1
2
p(t)x(τ(t)), t ≥ t2,

and it follows from (1,7) that

(2.5) x′(t) + 1
2
p(t)x(τ(t)) ≤ 0, t ≥ t2.

The rest of the proof is similar to that of Lemmas 2–4 in [7] respectively,
and thus is omitted.

3. Proofs of theorems

Proof of Theorem 1.1. Assume that (1.7) has a nonoscillatory solution
x(t) which will be assumed to be eventually positive (if x(t) is eventually
negative the proof is similar). By Lemma 2.1, there exists t1 ≥ t0 such that

(3.1) 0 < x(t) ≤ x(δ(t)) ≤ x(τ(t)) < ε0, t ≥ t1,

where ε0 is given by assumption (H). From (3.1) and (H), we have

(3.2) f(t, x(τ(t))) ≥ p(t)[1− g(x(τ(t)))]x(τ(t)), t ≥ t1.

Set

ω(t) =
x(τ(t))

x(t)
for t ≥ t1.

Then ω(t) ≥ 1 for t ≥ t1. From (1.7) and (3.2), we have

(3.3)
x′(t)

x(t)
+ p(t)ω(t)[1 − g(x(τ(t)))] ≤ 0, t ≥ t1.

Let t2 > t1 be such that τ(t) ≥ t1 for t ≥ t2. Integrating both sides of (3.3)
from τ(t) to t, we obtain

(3.4) ω(t) ≥ exp
(

t\
τ(t)

p(s)ω(s)[1− g(x(τ(s)))] ds
)

, t ≥ t2.

By (1.13), for t ≥ t2 we have

(3.5)

t\
δ(t)

p(s) ds =

t\
τ(t∗)

p(s) ds ≥

t∗\
τ(t∗)

p(s) ds ≥ e−1,
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where t∗ ∈ [t0, t] with τ(t
∗) = δ(t). From (1.13) and (3.4), we find that for

t ≥ t2,

ω(t) ≥ exp

t\
τ(t)

p(s)ω(s)[1− g(x(τ(s)))] ds

= exp
(

t\
τ(t)

p(s)[ω(s)− 1] ds + e−1
)

exp
(

t\
τ(t)

p(s) ds− e−1
)

× exp
(

−

t\
τ(t)

p(s)ω(s)g(x(τ(s))) ds
)

≥
(

e

t\
δ(t)

p(s)[ω(s)− 1] ds + 1
)

exp
(

t\
τ(t)

p(s) ds− e−1
)

× exp
(

−

t\
τ(t)

p(s)ω(s)g(x(τ(s))) ds
)

.

Let ν(t) = ω(t)− 1 for t ≥ t1. Then ν(t) ≥ 0 for t ≥ t1, and so for t ≥ t2,

ν(t)− e

t\
δ(t)

p(s)ν(s) ds ≥
(

e

t\
δ(t)

p(s)ν(s) ds+ 1
)

×
[

exp
(

t\
τ(t)

p(s) ds− e−1
)

exp
(

−

t\
τ(t)

p(s)ω(s)g(x(τ(s))) ds
)

− 1
]

,

that is, for t ≥ t2,

(3.6) p(t)ν(t)− ep(t)

t\
δ(t)

p(s)ν(s) ds

≥ p(t)
(

e

t\
δ(t)

p(s)ν(s) ds+ 1
)

×
[

exp
(

t\
τ(t)

p(s) ds− e−1
)

exp
(

−

t\
τ(t)

p(s)ω(s)g(x(τ(s))) ds
)

− 1
]

.

By Lemmas 2.2–2.4, there exist T > t2, A > 0 and M > 0 such that for
t ≥ T ,

x(τ(t)) ≤ A exp
(

−
1

2

τ(t)\
T

p(s) ds
)

,(3.7)
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t\
τ(t)

p(s) ds ≤ 2,(3.8)

ω(t) ≤M.(3.9)

Let

α(t) =
1

2

t\
T

p(s) ds, t ≥ T.

Clearly, (1.13) implies that α(t) → ∞ as t→ ∞. For t ≥ t2, set

D(t) = p(t)
(

e

t\
δ(t)

p(s)ν(s) ds+ 1
)

exp
(

t\
τ(t)

p(s) ds− e−1
)

(3.10)

×
[

1− exp
(

−

t\
τ(t)

p(s)ω(s)g(x(τ(s))) ds
)]

.

One can easily see that

(3.11) 0 ≤ 1− e−c ≤ c for c ≥ 0.

It follows from (3.10) that for t ≥ t2,

D(t) ≤ p(t)
(

e

t\
δ(t)

p(s)ν(s) ds+ 1
)

exp
(

e

t\
τ(t)

p(s) ds− e−1
)

(3.12)

×

t\
τ(t)

p(s)ω(s)g(x(τ(s))) ds.

Let T ∗ > T be such that τ(τ(t)) ≥ T for t ≥ T ∗ and α(T ∗) > 2 + lnA. Set
M1 = e2eM [2e(M − 1) + 1] and A1 = eA. Noting that

e

t\
δ(t)

p(s)ν(s) ds+ 1 ≤ 2e(M − 1) + 1 for t ≥ T,

from (3.7)–(3.9), (3.12) and assumption (H), we obtain for N > T ∗,

N\
T ∗

D(t) dt ≤M1

N\
T ∗

p(t)

t\
τ(t)

p(s)g

(

A exp

(

−
1

2

τ(s)\
T

p(µ)dµ

))

ds dt

=M1

N\
T ∗

p(t)

t\
τ(t)

p(s)

× g

(

A exp

(

−
1

2

s\
T

p(µ)dµ+
1

2

s\
τ(s)

p(µ)dµ

))

ds dt
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≤M1

N\
T ∗

p(t)

t\
τ(t)

p(s)g(A1e
−α(s)) ds dt

= 2M1

N\
T ∗

p(t)

α(t)\
α(τ(t))

g(A1e
−u) du dt

= 2M1

N\
T ∗

p(t)

α(t)\
α(t)−β(t)

g(A1e
−u) du dt

(

β(t) =
1

2

t\
τ(t)

p(s) ds

)

≤ 4M1

α(N)\
α(T ∗)

v\
v−1

g(A1e
−u) du dv

≤ 4M1

α(N)\
α(T ∗)−1

g(A1e
−u) du = 4M1

α(N)−lnA1\
α(T ∗)−ln(eA1)

g(e−u) du

≤ 4M1

α(N)\
0

g(e−u) du ≤ 4M1

∞\
0

g(e−u) du <∞.

Thus

(3.13)

∞\
T ∗

D(t) dt <∞.

Substituting (3.10) into (3.6), for t ≥ t2 we obtain

(3.14) p(t)ν(t)− ep(t)

t\
δ(t)

p(s)ν(s) ds

≥ p(t)
(

e

t\
δ(t)

p(s)ν(s) ds + 1
)[

exp
(

t\
τ(t)

p(s) ds − e−1
)

− 1
]

−D(t)

≥ p(t)
[

exp
(

t\
τ(t)

p(s) ds− e−1
)

− 1
]

−D(t).

Integrating both sides of (3.14) from T ∗ to N > δ−1(T ∗), we have

(3.15)

N\
T ∗

p(t)ν(t) dt− e

N\
T ∗

p(t)

t\
δ(t)

p(s)ν(s) ds dt

≥

N\
T ∗

p(t)
[

exp
(

t\
τ(t)

p(s) ds − e−1
)

− 1
]

dt−

N\
T ∗

D(t) dt.
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By interchanging the order of integrations and by (3.5), we have

e

N\
T ∗

p(t)

t\
δ(t)

p(s)ν(s) ds dt ≥ e

δ(N)\
T ∗

p(t)ν(t)

δ−1(t)\
t

p(s) ds dt(3.16)

≥

δ(N)\
T ∗

p(t)ν(t) dt.

From this and (3.15), it follows that

(3.17)

N\
δ(N)

p(t)ν(t) dt

≥

N\
T ∗

p(t)
[

exp
(

t\
τ(t)

p(s) ds − e−1
)

− 1
]

dt−

N\
T ∗

D(t) dt.

By (3.8) and (3.9),

N\
δ(N)

p(t)ν(t) dt ≤ (M − 1)

N\
δ(N)

p(t) dt ≤ (M − 1)

N\
τ(N)

p(t) dt ≤ 2(M − 1),

and so by (3.17),

2(M − 1) ≥

N\
T ∗

p(t)
[

exp
(

t\
τ(t)

p(s) ds − e−1
)

− 1
]

dt−

N\
T ∗

D(t) dt.

This implies that

2(M − 1) ≥

∞\
T ∗

p(t)
[

exp
(

t\
τ(t)

p(s) ds − e−1
)

− 1
]

dt−

∞\
T ∗

D(t) dt,

which together with (3.13) yields

(3.18)

∞\
T ∗

p(t)
[

exp
(

t\
τ(t)

p(s) ds− e−1
)

− 1
]

dt <∞.

This contradicts (1.14) and so the proof is complete.

Proof of Theorem 1.2. Assume that (1.7) has a nonoscillatory solution
x(t) which will be assumed to be eventually positive (if x(t) is eventually
negative the proof is similar). By Lemma 2.1 and assumption (H), there
exists t∗0 ≥ t0 such that

(3.19) 0 < x(t) ≤ x(δ(t)) ≤ x(τ(t)) ≤ ε0, g(x(τ(t))) < 1, t ≥ t∗0,
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where ε0 is given by assumption (H). (3.19) and (H) yield that for t ≥ t∗0,

(3.20) f(x(τ(t))) ≥ p(t)[1− g(x(τ(t)))]x(τ(t)) ≥ p(t)[1− g(x(τ(t)))]x(δ(t)),

and it follows from (1.7) that

(3.21)
x′(t)

x(t)
+ p(t)

x(δ(t))

x(t)
[1− g(x(τ(t)))] ≤ 0, t ≥ t∗0.

By Lemmas 2.2–2.4, there exist T > t∗0, A > 0 and M > 0 such that for
t ≥ T ,

x(τ(t)) ≤ A exp

(

−
1

2

τ(t)\
T

p(s) ds

)

,(3.22)

t\
δ(t)

p(s) ds ≤

t\
τ(t)

p(s) ds ≤ 2, pk(t) ≤ 2k, k = 1, 2, . . . ,(3.23)

x(δ(t))

x(t)
≤
x(τ(t))

x(t)
≤M.(3.24)

Let tk = δ−k(T ), k = 1, 2, . . . Clearly tk → ∞ as k → ∞. Set λ(t) =

−x′(t)/x(t), t ≥ T . Then x(δ(t))/x(t) = exp
Tt
δ(t)

λ(s) ds, t ≥ t1, and from

(3.21) we have

(3.25) λ(t) ≥ p(t) exp

t\
δ(t)

λ(s) ds − p(t)g(x(τ(t)))
x(δ(t))

x(t)
, t ≥ t1.

It follows from (3.22)–(3.25) that for t ≥ t1,

λ(t) ≥ p(t) exp

t\
δ(t)

λ(s) ds−Mp(t)g

(

A exp

(

−
1

2

τ(t)\
T

p(s) ds

))

(3.26)

≥ p(t) exp

t\
δ(t)

λ(s) ds−Mp(t)g

(

A1 exp

(

−
1

2

t\
T

p(s) ds

))

where A1 = eA. By the inequality ec ≥ ec for c ≥ 0, we have

λ(t) ≥ ep(t)

t\
δ(t)

λ(s) ds(3.27)

−Mp(t)g

(

A1 exp

(

−
1

2

t\
T

p(s) ds

))

, t ≥ t1.
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Set

(3.28) α(t) =
1

2

t\
T

p(s) ds, t ≥ T ;

and

(3.29)















λ0(t) = λ(t), t ≥ T,

λk(t) = p(t)

t\
δ(t)

λk−1(s) ds, t ≥ tk, k = 1, . . . , n;

and

(3.30)























G0(t) = 0, t ≥ T,

Gk(t) = ep(t)

t\
δ(t)

Gk−1(s) ds

+Mp(t)g(A1 exp(−α(t))), t ≥ tk, k = 1, . . . , n.

Clearly, (1.15) implies that α(t) is nondecreasing on [T,∞) and α(t) → ∞
as t→ ∞. By iteration we deduce from (3.27) that

(3.31) λ(t) ≥ ekλk(t)−Gk(t), t ≥ tk, k = 1, . . . , n− 1,

and so by (3.26),

λ(t) ≥ p(t) exp
(

en−1
t\

δ(t)

λn−1(s) ds
)

(3.32)

× exp
(

−

t\
δ(t)

Gn−1(s) ds
)

−G1(t), t ≥ tn.

From (3.30), one can easily obtain

(3.33) Gk+1(t)−Gk(t)

= ep(t)

t\
δ(t)

[Gk(s)−Gk−1(s)] ds, t ≥ tk+1, k = 1, . . . , n− 1.

By (3.23), (3.28) and (3.30), for t ≥ t2 we have

t\
δ(t)

G1(s) ds =M

t\
δ(t)

p(s)g(A1e
−α(s)) ds(3.34)

= 2M

α(t)\
α(δ(t))

g(A1e
−u) du ≤ 2M

α(t)\
α(t)−1

g(A1e
−u) du.
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Thus, from (3.33), we get

G2(t)−G1(t) = ep(t)

t\
δ(t)

G1(s) ds

≤ 2eMp(t)

α(t)\
α(t)−1

g(A1e
−u) du, t ≥ t2,

G3(t)−G2(t) = ep(t)

t\
δ(t)

[G2(s)−G1(s)] ds

≤ 2e2Mp(t)

t\
δ(t)

p(s)

α(s)\
α(s)−1

g(A1e
−u) du ds

= 4e2Mp(t)

α(t)\
α(δ(t))

v\
v−1

g(A1e
−u) du dv

≤ 4e2Mp(t)

α(t)\
α(t)−1

v\
v−1

g(A1e
−u) du dv

≤ 4e2Mp(t)

α(t)\
α(t)−2

g(A1e
−u) du, t ≥ t3.

By induction, one can prove in general that for k = 2, . . . , n− 1,

Gk(t)−Gk−1(t)

≤ (2e)k−1(k − 2)!Mp(t)

α(t)\
α(t)−(k−1)

g(A1e
−u) du, t ≥ tk,

and so

Gn−1(t) =
n−1
∑

k=1

[Gk(t)−Gk−1(t)](3.35)

≤ G1(t) +Mp(t)

n−1
∑

k=2

(2e)k−1

× (k − 2)!

α(t)\
α(t)−(k−1)

g(A1e
−u) du, t ≥ tn−1.

By (3.23), (3.24) and (3.29), we obtain
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(3.36)







































































λ1(t) = p(t)

t\
δ(t)

λ(s) ds = p(t) ln
x(δ(t))

x(t)

≤ p(t) lnM, t ≥ t1,

λ2(t) = p(t)

t\
δ(t)

λ1(s) ds ≤ (lnM)p(t)

t\
δ(t)

p(s) ds

≤ 2(lnM)p(t), t ≥ t2,

. . .

λn−1(t) ≤ 2n−2(lnM)p(t), t ≥ tn−1.

Set

D(t) = p(t) exp
(

en−1
t\

δ(t)

λn−1(s) ds
)

×
[

1− exp
(

−

t\
δ(t)

Gn−1(s) ds
)]

+G1(t), t ≥ tn.

From (3.11), (3.23), (3.34), (3.35) and (3.36) we have

D(t) ≤ p(t) exp
(

en−1
t\

δ(t)

λn−1(s) ds
)

t\
δ(t)

Gn−1(s) ds+G1(t)(3.37)

≤ G1(t) + p(t) exp
(

2n−2en−1 lnM

t\
δ(t)

p(s) ds
)

×

t\
δ(t)

(

G1(s) +Mp(s)

×
n−1
∑

k=2

(2e)k−1(k − 2)!

α(s)\
α(s)−(k−1)

g(A1e
−u) du

)

ds

≤ G1(t) + 2Mp(t) exp[(2e)n−1 lnM ]

α(t)\
α(t)−1

g(A1e
−u) du

+Mp(t) exp[(2e)n−1 lnM ]

×
n−1
∑

k=2

(2e)k−1(k − 2)!

t\
δ(t)

p(s)

α(s)\
α(s)−(k−1)

g(A1e
−u) du ds
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≤ G1(t) +M1p(t)

n−1
∑

k=1

(2e)k−1(k − 1)!

α(t)\
α(t)−k

g(A1e
−u) du, t ≥ tn,

where M1 = 2M exp[(2e)n−1 lnM ].

Let T ∗ > tn be such that α(T ∗) > n+ lnA1. It follows from (3.37) and
(H) that

∞\
T ∗

D(t) dt ≤

∞\
T ∗

G1(t) dt(3.38)

+M1

n−1
∑

k=1

(2e)k−1(k − 1)!

∞\
T ∗

p(t)

α(t)\
α(t)−k

g(A1e
−u) du dt

≤ 2M

∞\
α(T ∗)

g(A1e
−u) du

+ 2M1

n−1
∑

k=1

(2e)k−1(k − 1)!

∞\
α(T ∗)

v\
v−k

g(A1e
−u) du dv

≤ 2M

∞\
α(T ∗)−lnA1

g(e−u) du

+ 2M1

n−1
∑

k=1

(2e)k−1k!

∞\
α(T ∗)−(k+1)

g(A1e
−u) du

≤ 2M

∞\
0

g(e−u) du+ 2M1

n−1
∑

k=1

(2e)k−1k!

∞\
0

g(e−u) du <∞.

Since

p(t) exp
(

en−1
t\

δ(t)

λn−1(s) ds
)

exp
(

−

t\
δ(t)

Gn−1(s) ds
)

−G1(t)

= p(t) exp
(

en−1
t\

δ(t)

λn−1(s) ds
)

−D(t), t ≥ tn,

it follows from (3.32) that

(3.39) λ(t) ≥ p(t) exp
(

en−1
t\

δ(t)

λn−1(s) ds
)

−D(t), t ≥ tn.
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One can easily show that γex ≥ x+ ln(eγ) for γ > 0, and so for t ≥ tn,

pn(t)λ(t) ≥ p(t)e1−n[en−1pn(t)] exp
(

en−1
t\

δ(t)

λn−1(s) ds
)

− pn(t)D(t)

≥ p(t)

t\
δ(t)

λn−1(s) ds + e1−np(t) ln(enpn(t))− pn(t)D(t),

that is, for t ≥ tn,

(3.40) pn(t)λ(t)− p(t)

t\
δ(t)

λn−1(s) ds ≥ e1−np(t) ln(enpn(t))− pn(t)D(t).

For N > δ−n(T ∗), we have

(3.41)

N\
T ∗

λ(t)pn(t) dt−

N\
T ∗

p(t)

t\
δ(t)

λn−1(s) ds dt

≥ e1−n
N\
T ∗

p(t) ln(enpn(t)) dt−

N\
T ∗

pn(t)D(t) dt.

Let

δ1(t) = δ(t), δk+1(t) = δ(δk(t)), k = 1, . . . , n.

Then by interchanging the order of integration, we have

N\
T ∗

p(t)

t\
δ(t)

λn−1(s) ds dt ≥

δ(N)\
T ∗

λn−1(t)

δ−1(t)\
t

p(s) ds dt

=

δ(N)\
T ∗

p(t)p1(t)

t\
δ(t)

λn−2(s) ds dt

≥

δ2(N)\
T ∗

λn−2(t)

δ−1(t)\
t

p(s)p1(s) ds dt

=

δ2(N)\
T ∗

p(t)p2(t)

t\
δ(t)

λn−3(s) ds dt

. . .

≥

δn(N)\
T ∗

λ(t)pn(t) dt.
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From this and (3.41) we obtain

(3.42)

N\
δn(N)

λ(t)pn(t) dt ≥ e1−n
N\
T ∗

p(t) ln(enpn(t)) dt−

N\
T ∗

pn(t)D(t) dt,

which together with (3.23) yields

2n
N\

δn(N)

λ(t) dt ≥ e1−n
N\
T ∗

p(t) ln(enpn(t)) dt− 2n
N\
T ∗

D(t) dt,

or

(3.43) ln
x(δn(N))

x(N)
≥ 2−ne1−n

N\
T ∗

p(t) ln(enpn(t)) dt−

N\
T ∗

D(t) dt.

In view of (1.16) and (3.38), we have

(3.44) lim
N→∞

x(δn(N))

x(N)
= ∞.

On the other hand, (3.24) implies that

x(δn(N))

x(N)
=
x(δ1(N))

x(N)
·
x(δ2(N))

x(δ1(N))
. . .

x(δn(N))

x(δn−1(N))
≤Mn.

This contradicts (3.44) and completes the proof.

4. Examples

Example 4.1. Consider the delay differential equation

(4.1) x′(t) + p(t)f(x(τ(t))) = 0, t ≥ 3,

where

p(t) =
1

et ln 2
+

1

t ln t
, τ(t) =

t

2
,

and f(u) and g(u) are defined by (1.10) and (1.11).

As pointed out in Section 1, assumption (H) holds but (1.4) does not.
We check that the conditions (1.13) and (1.14) in Theorem 1.1 hold. In fact,
for t ≥ 3,

t\
t/2

p(s) ds =

t\
t/2

(

1

es ln 2
+

1

s ln s

)

ds = e−1 − ln

(

1−
ln 2

ln t

)

≥ e−1,

and

lim
t→∞

t\
t/2

p(s) ds = e−1,
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and
∞\
3

p(t)
(

t\
t/2

p(s) ds− e−1
)

dt ≥ −
1

e ln 2

∞\
3

1

t
ln

(

1−
ln 2

ln t

)

dt = ∞,

because
∞\
3

1

t ln t
dt = ∞ and lim

t→∞
(ln t) ln

(

1−
ln 2

ln t

)

= − ln 2.

By Theorem 1.1 every solution of (4.1) oscillates.

Example 4.2. Consider the delay differential eqaution

(4.2) x′(t) + f(t, x(τ(t))) = 0, t ≥ 0,

where τ(t) = t− 1 and f(t, u) = [exp 3(sin t− 1) + |u|]1/3u.

Let p(t) = exp(sin t − 1) and g(u) = e2|u|1/3. It is easy to see that
assumption (H) holds. Clearly

lim inf
t→∞

t\
t−1

p(s) ds < e−1.

By Jensen’s inequality,

∞\
0

p(t) ln
(

e

t+1\
t

p(s) ds
)

dt ≥

∞\
0

p(t)

t+1\
t

sin s ds dt

=
2 sin 2−1

e

∞\
0

exp(sin t) sin

(

t+
1

2

)

dt.

On the other hand, it is easy to see that
Tt
0
exp(sin s) cos s ds is bounded andT2π

0
exp(sin t) sin t dt > 0. Thus

∞\
0

p(t) ln
(

e

t+1\
t

p(s) ds
)

dt = ∞.

By Corollary 1.1, every solution of (4.2) oscillates.

Example 4.3. Consider the delay differential equation

(4.3) x′(t) + p(t)f(x(τ(t))) = 0, t ≥ t0

where p(t) and τ(t) satisfy (1.2) and

(4.4) f(u) = eu − 1.

By setting

(4.5) y(t) = K exp(x(t)),
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where K is a constant, (4.3) is reduced to the nonautonomous delay-logistic
equation

(4.6) y′(t) = p(t)y(t)

[

1−
y(τ(t))

K

]

.

In [9], Zhang and Gopalsamy showed that every solution of (4.6) oscillates
about K if

(4.7) lim inf
t→∞

t\
τ(t)

p(s) ds > e−1.

It is easy to prove that (4.7) is equivalent to

(4.8) lim inf
t→∞

δ−1(t)\
t

p(s) ds > e−1.

Clearly, y(t) oscillates about K if and only if x(t) oscillates. As pointed out
in [7], conditions (1.5) and (1.6), weaker than (4.7), also can guarantee that
y(t) is oscillatory about K. Obviously f(u) given by (4.4) satisfies (1.3)
and (1.4) and so also satisfies conditions (i)–(iv) in (H) as pointed out in
Remark 1.1. Thus, the above-mentioned results may be improved by using
Theorem 1.2 (or Corollary 1.2). To see this, we let

(4.9) p(t) =
1

2e
(1 + cos t), τ(t) = t− π, t ≥ 0.

Then, for t ≥ π,

t\
t−π

1

2e
(1 + cos s) ds =

1

2e
(π + 2 sin t),

lim inf
t→∞

t\
t−π

1

2e
(1 + cos s) ds =

1

2e
(π − 2) < e−1.

This shows that (1.5) and (4.7) do not hold. But from the example in [8]
we know that

lim inf
t→∞

p4(t) =
1

16e4
[π4 − 4π2 − 2

√

(π3 − 6π)2 + 4(π2 − 4)2 ]

>
22

16e4
>

1

e4
.

Thus, by Corollary 1.2 every solution of (4.3) oscillates, and so every solution
of (4.6) oscillates about K when p(t) and τ(t) satisfy (4.9). On the other
hand, one can easily see that condition (4.7) or (4.8) implies (1.13), (1.14),
(1.17) and (1.18).
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