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QUASITILTED ALGEBRAS
HAVE PREPROJECTIVE COMPONENTS

BY

OLE E N G E (TRONDHEIM)

Abstract. We show that a quasitilted algebra has a preprojective component. This
is proved by giving an algorithmic criterion for the existence of preprojective components.

1. Introduction. This paper provides an extension of work by Coelho–
Happel [3]. They showed that if Λ is a quasitilted k-algebra with k an al-
gebraically closed field, then the Auslander–Reiten quiver of Λ contains a
preprojective component. As the main result we show here that this is true
in general. That is, let k be any field, and assume that Λ is a quasitilted
k-algebra. Then the Auslander–Reiten quiver of Λ contains a preprojective
component. Unlike Coelho–Happel we make no assumption in our proof
that our algebras are quasitilted but not tilted algebras. Hence we ob-
tain an independent proof of the fact that the Auslander–Reiten quiver of
a tilted algebra contains a preprojective component, which was proved by
Strauss [11].

Let R be a commutative Artin ring. All our algebras are R-algebras, and
finitely generated as R-modules. We assume that R acts centrally on any
bimodule. For an algebra Λ we denote by modΛ the category of finitely gen-
erated left Λ-modules, and by indΛ the full subcategory of modΛ consisting
of indecomposable modules. Let M be a Λ-module. We denote by pdΛM
the projective dimension of M , by idΛM the injective dimension of M , and
by gl.dimΛ the global dimension of Λ. The Auslander–Reiten quiver of Λ
is denoted by ΓΛ. The vertices of ΓΛ are in one-to-one correspondence with
the isomorphism classes of indecomposable finitely generated Λ-modules.
There is an arrow from an indecomposable module X to an indecomposable
module Y if and only if there is an irreducible morphism from X to Y . The
arrow has valuation (a, b) if there is a minimal right almost split morphism
aX ⊕ V → Y , where X is not a direct summand of V , and a minimal left
almost split morphism X → bY ⊕W , where Y is not a direct summand of
W . A connected component P of ΓΛ is called a preprojective component if P
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does not contain an oriented cycle, and each X ∈ P is of the form (TrD)iP
for some i ∈ N and an indecomposable projective module P .

The next section provides the necessary background for quasitilted alge-
bras. In Section 3 we generalize a result of Dräxler–de la Peña [5], giving an
algorithmic criterion for the existence of preprojective components. In Sec-
tion 4 we prove that each quasitilted algebra has a preprojective component.
The main idea of the proof is to investigate the conditions on a Λ-module
M , where Λ is quasitilted, such that the triangular matrix algebra

(
F 0
M Λ

)
is

quasitilted, where F ⊆ EndΛ(M)op is a division algebra. For general back-
ground on Artin algebras we refer to Auslander–Reiten–Smalø [1].

I thank Professor Sverre O. Smalø for his advice and helpful suggestions
during the preparation of this paper.

2. Preliminaries. In this section we recall some basic facts on qua-
sitilted algebras, and give some results which we need later. For basic refer-
ence on quasitilted algebras we refer to Happel–Reiten–Smalø [7].

A path from an indecomposable module X0 to an indecomposable module

Xt in modΛ is a sequence of morphisms X0
f0→ X1

f1→ . . .
ft−2−→ Xt−1

ft−1−→ Xt

in indΛ, where t ≥ 1 and each fi is nonzero and not an isomorphism. We
say that such a path has length t. If there is a path from an indecomposable
module M to an indecomposable module N , or N ' M , we denote this by
M  N and say that M is a predecessor of N , and that N is a successor
of M . We say that M lies on a cycle if there is a path from M to M , and
the number of morphisms in the path is called the length of the cycle. If the
length of the cycle is 1 or 2, we say the path is a short cycle. We say that a

path Z0
f0→ Z1

f1→ . . .
ft−1−→ Zt

ft→ Zt+1 of irreducible morphisms is sectional if
Zi 6' DTrZi+2 for 1 ≤ i ≤ t− 1. Let

(∗) M
f0→M1

f1→ . . .
ft−1−→Mt

ft→ N

be a path in indΛ. A path M → M0,1 → . . . → M0,n0 → M1 → M1,1 →
. . . → M1,n1

→ M2 → . . . → Mt → Mt,1 → . . . → N is called a refinement
of (∗), and it is called a refinement of irreducible morphisms if all the mor-
phisms in the refinement are irreducible. Further, a walk is a sequence of
indecomposable modules X0—X1—X2—. . .—Xt−1—Xt, where Xi—Xi+1

means that there is either a nonzero morphism Xi → Xi+1 or a nonzero
morphism Xi+1 → Xi for all 1 ≤ i ≤ t− 1. The number of morphisms in a
walk is called the length of the walk.

Let R be a commutative Artin ring. An algebra Λ is called a quasitilted
algebra if there exists a locally finite hereditary abelian R-category H and
a tilting object T ∈ H such that Λ = EndH(T )op. According to Happel–
Reiten–Smalø [7] the ordinary valued quiver of a quasitilted algebra Λ con-
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tains no oriented cycles and therefore the center of Λ is a field. Hence there is
no harm to consider just finite-dimensional algebras over a field k when deal-
ing with quasitilted algebras. In this paper we use the following homological
characterization of quasitilted algebras given in [7].

Theorem 1. The following are equivalent for an algebra Λ:

(1) Λ is quasitilted.
(2) Λ satisfies the following two conditions:

(a) gl.dimΛ ≤ 2.
(b) If X is a finitely generated indecomposable Λ-module, then either

pdΛX ≤ 1 or idΛX ≤ 1.

Let Λ be an Artin algebra. The following two subclasses of indΛ are of
interest to us. Let LΛ denote the subclass of indΛ given by LΛ = {X ∈
indΓ | pdΓ Y ≤ 1 for all Y with Y  X} and let RΛ denote the subclass
of indΛ given by RΛ = {X ∈ indΓ | idΓ Y ≤ 1 for all Y with X  Y }.
Using this we have the following characterization of quasitilted algebras [7,
Theorem II.1.14].

Theorem 2. The following are equivalent for an Artin algebra Λ:

(1) Λ is quasitilted.
(2) RΛ contains all injective modules in indΛ.
(3) LΛ contains all projective modules in indΛ.
(4) Any path in modΛ starting in an injective module and ending in a

projective module has a refinement of irreducible morphisms and any such
refinement is sectional.

The proof of the following result is essentially due to Happel–Reiten–
Smalø [8, Lemma 1.2].

Lemma 3. Let Λ be a quasitilted algebra and M
f0→ X1

f1→ . . .
ft−1−→ Xt

ft→ N
a path. If M belongs to RΛ or if N belongs to LΛ, then there exist an
indecomposable module Z and nonzero morphisms M → Z and Z → N . In
particular , an indecomposable Λ-module M belongs to a cycle if and only if
it belongs to a short cycle.

P r o o f. We only give the proof when M is in RΛ. The proof for the
case of N in LΛ is dual.

Assume that M belongs to RΛ. The proof is by induction on the length
of the path. If the length is 1 or 2, then there is nothing to show.

So assume that we have shown the assertion for all paths of length less

than t + 1, and let the path be M
f0→ X1

f1→ X2
f2→ . . .

ft−1−→ Xt
ft→ N , with

t ≥ 2. We can choose our path M
f0→ X1

f1→ X2
f2→ X3 so that l(X1) + l(X2),

the sum of the lengths of X1 and X2, is minimal among the paths with three
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morphisms connecting M to X3. We can also assume that all compositions
fifi−1 are 0, since otherwise we would have a shorter path. In particular,
f1f0 = 0 and f2f1 = 0. Thus Im f0 ⊆ Ker f1 = K. We show that K is
indecomposable.

Assume that K is decomposable, say K = K1 ⊕ K2, with K1 inde-
composable and K2 nonzero. We may also assume that p1f0 6= 0, where
p1 : K → K1 is the projection according to the given decomposition. We

have the exact sequence 0→ K → X1
f̂1→ Im f1 → 0, where f̂1 is the induced

morphism. Consider the pushout diagram

0 K X1 Im f1 0

0 K1 Y Im f1 0

//

p1

��

//

��

f̂1 //
�
�
�
�
�

�
�
�
�
�

//

// f // g // //

Since X1 is indecomposable and Im f1 6= 0, it follows that K1 cannot be

a summand of X1. Hence the sequence 0 → K1
f→ Y

g→ Im f1 → 0 does
not split. Since f : K1 → Y is a monomorphism, there is a decomposition
Y = Y1 ⊕ Y2, with Y1 indecomposable and such that q1fp1f0 : M → Y1 is
nonzero, where q1 : Y → Y1 is the projection onto Y1 according to the given
decomposition of Y , and where we have also denoted the induced morphism

M → K by f0. Now the sequence 0 → K1
f→ Y

g→ Im f1 → 0 does not
split, so g(Y1) 6= 0. Hence we have a path M → Y1 → X2 → X3 with
l(Y1) < l(X1). This contradicts the choice of the path M→ X1→ X2→ X3.
We conclude that K is indecomposable, and hence idΛK ≤ 1, since K is a
successor of M ∈ RΛ.

Since idΛK ≤ 1 we have an exact sequence

Ext1Λ(C,K)→ Ext1Λ(C,X1)→ Ext1Λ(C, Im f1)→ 0

for any C in modΛ. Consider the exact sequence 0→ Im f1
h→ X2

t→ C → 0,
with C = Coker f1. The exact sequence of Ext-groups above gives rise to a
commutative diagram

0 X1 W C 0

0 Im f1 X2 C 0

//

u

��

f ′ //

v

��

g′ //
�
�
�
�
�

�
�
�
�
�

//

// h // t // //

with exact rows. Let W =
⊕s

i=1Wi be a decomposition of W into a direct
sum of indecomposable modules. Let qi : Wi →W and pi : W →Wi denote
the corresponding inclusions and projections for i = 1, . . . , s. The sequence

0 → Im f1
h→ X2

t→ C → 0 does not split, since X2 is indecomposable and
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Im f1 6= 0 and C = Coker f1 6= 0. Hence the sequence 0 → X1
f ′→ W

g′→
C → 0 does not split. Since X1 is indecomposable, pif

′ : X1 →Wi is not an
isomorphism for any i. The diagram above gives rise to an exact sequence

(∗) 0→ X1

( f′

−f̂1
)

−→ W ⊕ Im f1
(v,h)−→ X2 → 0.

Since f1f0 = 0, the morphism f1 : X1 → X2 is not a monomorphism.
Hence f̂1 : X1 → Im f1 is a proper epimorphism, and thus not a split
monomorphism. Since f : X1 → W is also not a split monomorphism and
X1 is indecomposable, it follows that (∗) does not split. Since in addition X2

is indecomposable, the morphisms vqi : Wi → X2 are nonzero nonisomor-
phisms for any i. Since f ′ : X1 →W is a monomorphism and f0 : M → X1

is nonzero, there is some i with pif
′f0 : M → Wi nonzero. Further, since

v : W → X2 is an epimorphism and f2 : X2 → X3 is nonzero, there is some
j with f2vqj : Wj → X3 nonzero. If i = j, then we have a path M →Wi →
X3. If i 6= j, then consider the paths M → X1 → Wj → X3 and M →
Wi → X2 → X3. We have l(X1) + l(Wi) + l(Wj) + l(X2) < 2(l(X1) + l(X2))
by using the exact sequence 0 → X1 → W ⊕ Im f1 → X2 → 0. Hence we
have l(X1) + l(Wj) < l(X1) + l(X2) or l(Wi) + l(X2) < l(X1) + l(X2), which

contradicts our choice of the path M
f0→ X1

f1→ X2
f2→ X3.

Therefore we have a path M → Wi → X3 → . . . → Xt → N of length
less than t+ 1, and we are done by the induction hypothesis.

It was shown by Happel–Reiten–Smalø [7] that a nonsemisimple qua-

sitilted algebra Λ is always of the form Λ =
(
F 0
M A

)
where A is a quasitilted

algebra, M an A-module and F ⊆ EndA(M)op a division algebra. We now
recall some results which will be needed later.

Lemma 4. Let A be an Artin algebra, let M be a finitely generated
A-module with F ⊆ EndA(M)op a division algebra and let Λ =

(
F 0
M A

)
.

Then gl.dimΛ ≤ 2 if and only if gl.dimA ≤ 2 and pdAM ≤ 1.

P r o o f. See [1, Proposition III.2.7].

Lemma 5. Let A be an Artin algebra with gl.dimA ≤ 2, and let Λ =(
F 0
M A

)
for an A-module M and F ⊆ EndA(M)op a division algebra. Let

(V,X, f) be in modΛ. Then:

(i) If Ker f is not projective, then pdΛ(V,X, f) ≥ 2.

(ii) Assume that pdA Coker f ≤ 1. Then pdΛ(V,X, f) ≤ 1 if and only
if Ker f is projective.

(iii) idΛ(V,X, f) ≤ 1 if and only if idAX ≤ 1 and Ext1A(M,X) = 0.

P r o o f. See [7, Lemma III.2.1, 2.2].
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Proposition 6. Let A be an Artin algebra, and let Λ =
(
F 0
M A

)
for an

A-module M and F ⊆ EndA(M)op a division algebra. If Λ is quasitilted ,
then so is A.

P r o o f. See [7, Proposition III.2.3].

The proof of the next result is a slight modification of the proof given in
[7, Proposition III.2.4].

Proposition 7. Let A be an Artin algebra, and let Λ =
(
F 0
M A

)
for an

A-module M and F ⊆ EndA(M)op a division algebra. If Λ is quasitilted ,
then M is in addLA.

The next result is a generalization of a result by Coelho–Happel [3,
Lemma 1.4].

Lemma 8. Let A be an Artin algebra. Let M = M1⊕M2 be an A-module
with M1 6= 0 6= M2, and let F ⊆ EndA(M)op be a division algebra. Let Λ be
the triangular matrix algebra Λ=

(
F 0
M A

)
. Let X1 and X2 be two indecompos-

able nonisomorphic A-modules and let fi : Mi → Xi be nonzero morphisms
for i = 1, 2. Then the Λ-module

(
F,X1 ⊕X2,

(
f1 0
0 f2

))
is indecomposable.

P r o o f. Let f =
(
f1 0
0 f2

)
. If (F,X1 ⊕X2, f) is decomposable, then there

exists an i such that (0, Xi, 0) is isomorphic to a direct summand of (F,X1⊕
X2, f). We may assume that i = 1. Then there exists a commutative
diagram

0 M1 ⊕M2 0

X1 X1 ⊕X2 X1

��

//

f

��

//

��g // h //

with hg = idX1
. Writing g =

(
g1
g2

)
and h = (h1, h2), we obtain h1f1 =

0 = h2f2 and h1g1 + h2g2 = idX1
. Since X1 is indecomposable and X1 6'

X2, we see that h2g2 is nilpotent. Thus h1g1 = idX1 −h2g2 is invertible.
In particular, h1 is invertible, and therefore f1 = 0, a contradiction. We
conclude that (F,X1 ⊕X2, f) is indecomposable.

We have the following direct observation [3, Lemma 1.5].

Lemma 9. Let A be an Artin algebra. Let M be an A-module, and let
F ⊆ EndA(M)op be a division algebra. Let Λ =

(
F 0
M A

)
. Let X be an inde-

composable A-module and let f : M → X be a nonzero morphism. Then the
Λ-module (F,X, f) is indecomposable.

Let Λ be an algebra. Let M be a Λ-module, not necessarily indecom-
posable. Following Happel–Ringel [9] we say that M is nondirecting if there
exist indecomposable direct summands M1 and M2 of M and an indecom-
posable nonprojective module W such that M1  DTrW and W  M2.
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Otherwise we say that M is directing. A path M  DTrW  W  N is
called a hook path.

The next result is due to Enge–Slung̊ard–Smalø [6, Theorem 9].

Theorem 10. Let Λ be an algebra and let M be a decomposable Λ-module.
Let G ⊆ EndΛ(M)op be a local subalgebra of EndΛ(M)op. If the triangular
matrix algebra Γ =

(
G 0
M Λ

)
is quasitilted , then G is a division algebra, and M

is either directing or of the form M = M1 q P where M1 is indecomposable
nondirecting , P is hereditary projective and the only hook paths from M to
M are the ones both starting and ending in M1.

Next we consider subsets of preprojective components which we will need
later. Let Λ be an algebra, and let P be a preprojective component in the
Auslander–Reiten quiver of Λ. Let J be the direct sum of one copy of each
indecomposable injective module lying in P. Let P(J ) = {X ∈ P | I  X
for some indecomposable direct summand I of J}. Moreover, for N ∈ P, let
P(N ) = {X ∈ P | N  X}.

A walk between different DTr-orbits {(TrD)iX}i∈Z and {(TrD)iY }i∈Z
in P is a walk M—Z1—. . .—Zt = N of irreducible morphisms with M ∈
{(TrD)iX}i∈Z and N ∈ {(TrD)iY }i∈Z. The distance between two DTr-or-
bits {(TrD)iX}i∈Z and {(TrD)iY }i∈Z in P is the minimal length of walks
M—Z1—. . .—Zt = N with M ∈ {(TrD)iX}i∈Z and N ∈ {(TrD)iY }i∈Z.

Using this we obtain the following result.

Lemma 11. Let Λ be an algebra, and let P be a preprojective component
in the Auslander–Reiten quiver of Λ. Then:

(a) If P contains some injective module, then P \ P(J ) is finite.

(b) If P contains no injective module, then P \P(N ) is finite for any
N ∈ P.

P r o o f. We prove (a). The proof of (b) is similar.

It suffices to show that every DTr-orbit in P has an element in P(J ).
LetD be the set of DTr-orbits in P with no element inP(J ). Note that any
DTr-orbit in D is infinite. Assume that D is nonempty. Since P is connected
there is a walk between any DTr-orbit in D and any DTr-orbit not in D.
Take the minimal distance between DTr-orbits in D and DTr-orbits not in D.
Again, since P is connected, this minimal distance has to be one. Thus there
is a DTr-orbit {(TrD)iX}i∈Z ∈ D and a DTr-orbit {(TrD)iY }i∈Z 6∈ D with
M ∈ {(TrD)iX}i∈Z and N ∈ {(TrD)iY }i∈Z such that there is a walk M—
N . We may assume N ∈ P(J ), otherwise we consider (TrD)iN for some
i ≥ 1. Then we have an irreducible morphism M → N , and TrDM = 0,
since {(TrD)iM}i∈Z ∈ D. Hence M is injective, which gives the desired
contradiction.
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This gives the immediate result.

Lemma 12. Let A be an indecomposable quasitilted algebra, and let P be
an indecomposable projective A-module which is not contained in a prepro-
jective component of ΓA. Then no preprojective component of ΓA contains
an injective A-module.

P r o o f. Since A is indecomposable there exists an indecomposable pro-
jective A-module P ′ contained in a preprojective component P of ΓA and
such that there exists a nonzero morphism f : P ′→P with P not in a pre-
projective component. By the choice of P and P ′, we have f ∈ rad∞A (P ′, P ).
For all nonzero f : P ′→P and m ∈ N, there is a direct sum of modules of the
form (TrD)jXi ∈ P with j ≥ m such that f factors through

⊕
i(TrD)jXi.

Thus for each m there exist j ≥ m and i such that HomA((TrD)jXi, P ) 6= 0.
Assume P contains some injective modules. Let J be the direct sum of

one copy of each indecomposable injective module in P. By Lemma 11 the
subset P \ P(J ) is finite, where P(J ) = {X ∈ P | I  X for some
indecomposable direct summand I of J}. Hence there exists m ∈ N with
I  (TrD)jXi for j ≥ m. So we obtain a path I  (TrD)j−1Xi → E →
(TrD)jXi → P for some j, where I is an indecomposable direct summand
of J . By Theorem 2, A is not quasitilted, which is a contradiction.

3. Existence of preprojective components. In this section we give
necessary and sufficient conditions for the existence of preprojective com-
ponents in the Auslander–Reiten quiver of an Artin algebra. This result is
essentially proved by Dräxler–de la Peña [5]. Here we repeat the arguments
with the necessary modifications for the general case.

Recall that with any Artin algebra A we may associate a valued quiver
Q, that is, a quiver with at most one arrow from a vertex i to a vertex j, and
an ordered pair of positive integers assigned to each arrow. The vertices of
Q are the isomorphism classes [S] of simple A-modules. There is an arrow
from [Si] to [Sj ] if Ext1A(Si, Sj) 6= 0, and we assign to this arrow the pair
of integers (dimEndA(Sj) Ext1A(Si, Sj),dimEndA(Si)op Ext1A(Si, Sj)). Let A be
an Artin algebra such that Q has no oriented cycles. For a vertex c ∈ Q we
denote by Sc the corresponding simple A-module, and by Pc the projective
cover of Sc. We consider a partial order on the vertices of Q by defining
a 4 b if there is a path from a to b in Q. Note that this implies that there is a
path from Pb to Pa in modA. Given any A-module N , we define the support
algebra of N as the factor algebra of A modulo the ideal generated by all
idempotents that annihilate N . Let x be a vertex in Q. We denote by Ax

the support algebra of
⊕

a64x Sa. The indecomposable projective A-module

Px has radical radPx which is an Ax-module. Let radPx =
⊕nx

i=1Rx(i) be
its decomposition into indecomposable summands.



PREPROJECTIVE COMPONENTS 63

The next result is due to Happel–Ringel [9] and Skowroński–Wender-
lich [10].

Theorem 13. Let x be a vertex in Q. Then Px is directing in modA if
and only if radPx is directing in modA. Moreover , if x is a source, then
Px is directing in modA if and only if radPx is directing in modAx.

The next result gives an algorithmic criterion for the existence of pre-
projective components.

Theorem 14. Let A be an Artin algebra such that the valued quiver Q
of A has no oriented cycles. Then the Auslander–Reiten quiver ΓA of A has
a preprojective component if and only if for each vertex x ∈ Q one of the
following conditions is satisfied :

(1) There is a preprojective component P of ΓAx such that Rx(i) 6∈ P
for each i ∈ {1, . . . , nx}.

(2) For each i ∈ {1, . . . , nx} the set of predecessors {Y ∈ ΓAx | Y  
Rx(i)} of Rx(i) in modAx is finite and formed by directing modules. More-
over , if x is a source, then radPx is directing in modAx.

P r o o f. Assume first that P is a preprojective component of ΓA. Let x
be a vertex in Q. If the projective module Px belongs to P, condition (2)
holds for x. So assume Px 6∈ P. We show that P is formed by Ax-modules.
Let X ∈ P, and assume that HomA(Py, X) 6= 0 for a vertex y 4 x. Then
Px  Py  X in modA, thus Px ∈ P, which contradicts our assumption.
We conclude that P is a preprojective component of ΓAx and Rx(i) 6∈ P for
every 1 ≤ i ≤ nx. Thus condition (1) is satisfied for the vertex x.

In order to prove the converse we first assume that for all vertices x ∈ Q
condition (2) is satisfied. We then claim that for every x ∈ Q the following
holds:

(3) For each i ∈ {1, . . . , nx} the set of predecessors {X ∈ ΓA | X  
Rx(i)} of Rx(i) in modA is finite and formed by directing modules.

Indeed, letX be a predecessor of Rx(i) in ΓA and assume thatX is not an
Ax-module. Now there is a vertex y with y 4 x such that HomA(Py, X) 6= 0.
In modA we then get Py  X  Rx(i) Px  Py. By assumption radPy
is directing in modAy. Thus by Theorem 13 we see that y is not a source
in Q since Py is not directing in modA. Let z be a source which is a proper
predecessor of y in Q. We see that Py is a nondirecting predecessor of some
indecomposable direct summand of radPz. By assumption, condition (2)
is satisfied for a vertex z, so some of the modules M in the path Py  Py
are not Az-modules. Hence HomA(Pz,M) 6= 0, and Pz is not directing in
modA, a contradiction to Theorem 13.
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Following Bongartz [2] we can then construct inductively full subquivers
Cn of ΓA satisfying

(i) Cn is finite, connected, contains no oriented cycle and is closed under
predecessors,

(ii) TrDCn ∪ Cn ⊆ Cn+1.

Then
⋃
n∈N Cn forms the desired preprojective component. Let C1 = {S},

where S is a simple projective A-module. To get Cn+1 from Cn number
the modules M1, . . . ,Mt of Cn with TrDMi 6∈ Cn in such a way that i < j
provided that Mi  Mj . If t = 0, we let Cn+1 = Cn, and we have obtained
a finite preprojective component.

Otherwise, let D0 = Cn, and for each 0 ≤ i ≤ t− 1 let Di+1 be the full
subquiver of ΓA with vertices those in Di and all predecessors of TrDMi+1.
Consider the almost split sequence 0 → Mi+1 → X → TrDMi+1 → 0,
0≤ i≤ t− 1. We show that each indecomposable summand Y of X has only
finitely many predecessors and does not lie on a cycle. If Y is nonprojective
then DTrY belongs to Cn, hence Y belongs to Di and we are done. If Y is
projective, say Y = Py for a vertex y ∈ Q, then condition (3) states that for
each i ∈ {1, . . . , ny} the set of predecessors of Ry(i) in modA is finite and
formed by directing modules. By Theorem 13, Py is directing in modA and
we are done. Thus by letting Cn+1 = Dt the induction step is proven.

In order to complete the proof we assume that for some vertex x ∈ Q
condition (2) is not satisfied, hence there exists a nondirecting predecessor
of radPx. By hypothesis, condition (1) is satisfied for the vertex x, which we
may also assume to be a source. Thus we conclude that P is a preprojective
component of ΓA.

4. The main result. We now prove that if Λ is a quasitilted algebra,
then the Auslander–Reiten quiver of Λ contains a preprojective component.

We first provide a generalization of a result by Coelho–Happel [3, Lem-
ma 2.1].

Proposition 15. Let Λ be a quasitilted algebra, and M = M1⊕M2 a Λ-
module such that Γ =

(
F 0
M Λ

)
is a quasitilted algebra, where F ⊆ EndΛ(M)op

is a division algebra. Then either each indecomposable summand of M1 is
contained in RΛ or M2 is projective.

P r o o f. Assume that there exists an indecomposable direct summand
M ′1 of M1 with M ′1 6∈ RΛ and that M2 is not projective. Consider the
Γ -module Y = (F,M ′1, (π

′
1, 0)) where π′1 : M1 → M ′1 is the projection ac-

cording to a chosen decomposition of M . By Lemma 9, Y is indecomposable,
and since M2 is a direct summand of Ker(π′1, 0), we find by Lemma 5 that
pdΓ Y = 2. Thus there exists an indecomposable injective Γ -module I such
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that HomΓ (I,DTrY ) 6= 0. Therefore there exists a path I → DTrY → E →
Y where E is an indecomposable direct summand of the middle term in the
almost split sequence ending in Y . Since M ′1 6∈ RΛ, there is a path from M ′1
to an indecomposable Λ-module X with idΛX = 2. In particular, X ∈ LΛ.

By Lemma 3 there is a path M ′1
f→ N

g→ X. If gf 6= 0, then by Lemma 5 the
indecomposable Γ -module (F,X, (gfπ′1, 0)) has both projective and injec-
tive dimension equal to two, a contradiction. Thus gf = 0. We then obtain
the diagram

M1 ⊕M2 M1 ⊕M2 0

M ′1 N X

π′1
��

id //

(fπ′1,0)

��

//

��f // g //

which commutes. Since idΛX = 2 there exists an indecomposable projec-
tive Λ-module P and a nonzero Λ-morphism h : TrDX → P [1, Proposi-
tion IX.1.7]. Thus we obtain a path

Y → (F,N, (fπ′1, 0))
(0,g)−→ (0, X, 0)→ (0, Z, 0)→ (0,TrDX, 0)

(0,h)−→ (0, P, 0)

in indΓ . Since (0, P, 0) is an indecomposable projective Γ -module and pdΓ Y
= 2, we see that (0, P, 0) 6∈ LΓ , which contradicts Theorem 2.

We now have the main result.

Theorem 16. The Auslander–Reiten quiver of any quasitilted algebra
has a preprojective component.

P r o o f. The proof is by induction on the number n of isomorphism
classes of simple Λ-modules. Assume Λ is quasitilted with n=1 isomorphism
class of simple modules. Since the valued quiver of Λ contains no loops, the
Auslander–Reiten quiver of Λ consists of one point with no arrows, thus Λ
is a finite-dimensional k-division algebra.

Assume that all quasitilted algebras with less than n isomorphism classes
of simple modules have a preprojective component, and let Λ be a quasitilted
algebra with n ≥ 2 isomorphism classes of simple modules. Let Q be the
valued quiver of Λ. Let a be a vertex in Q. We want to prove that a satisfies
either condition (1) or (2) in Theorem 14. First we consider the case when
a is not a source in Q.

If a is not a source in Q, there exists a source ω and a path from ω to
a in Q. Let M = radΛ Pω. Then there exists a quasitilted algebra A such
that Λ =

(
F 0
M A

)
, where F ⊆ EndΛ(M)op is a division algebra. Also, Λa =

Aa. By induction the Auslander–Reiten quiver ΓA of A has a preprojective
component, so the vertex a satisfies one of the conditions of Theorem 14.

Thus we are left with the case where a = ω is a source. As noted before,
we can write Λ =

(
F 0
M A

)
for a quasitilted algebra A and an A-module M =
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radΛ Pω, where F ⊆ EndΛ(M)op is a division algebra. By induction ΓA has
a preprojective component. Let M1 be the direct sum of all indecomposable
direct summands of M that are contained in some preprojective component
of ΓA. Then M = M1 ⊕M2 for some direct summand M2 of M . If P is
a preprojective component of ΓA, then we may assume that P contains an
indecomposable direct summand of M1. Otherwise the vertex ω satisfies
condition (1) of Theorem 14, and P is a preprojective component of ΓΛ. So
from now on we assume that M1 6= 0 and that ω does not satisfy condition
(1) of Theorem 14. We show that ω satisfies condition (2) of Theorem 14.
The proof is divided into several steps. Our main aim is to show that M2

is hereditary projective. By doing this we also show that there is no path
from an indecomposable direct summand of M1 to an indecomposable direct
summand of M2. Then it is straightforward to show that M is directing is
modA, and hence that ω satisfies condition (2) of Theorem 14. In order to
show that M2 is hereditary projective we need two preliminary steps.

Step 1. We show that M2 is projective. Assume it is not, and let M ′2 be
its nonprojective indecomposable direct summand. Let A2 be the block of
A supporting M ′2. We consider two cases, according to whether or not all
projective A2-modules are contained in preprojective components of ΓA2

.

Step 1a. Assume that all projective A2-modules are contained in pre-
projective components of ΓA2 . Let P be an indecomposable projective A2-
module with HomA2(P,DTrA2 M

′
2) 6= 0. By assumption P is contained in

a preprojective component P of ΓA2
which also contains an indecompos-

able direct summand M ′1 of M1. We show that this contradicts Λ being
quasitilted.

If P contains no injective modules, then by Lemma 11, P \ P(M ′1 )
is finite, where P(M ′1 ) = {X ∈ P | M ′1  X}. Now for all nonzero
f : P → DTrM ′2 and m ∈ N, there is a direct sum of modules of the form
(TrD)jXi ∈ P with j ≥ m such that f factors through

⊕
i(TrD)jXi. Choose

f and m as above such that there is a path M ′1  (TrD)jXi  DTrM ′2  
M ′2. By Theorem 10, Λ is not quasitilted.

If P contains some indecomposable injective modules, let J be the di-
rect sum of one copy of each. By Lemma 11, P \ P(J ) is finite, where
P(J ) = {X ∈ P | I  X for some indecomposable direct summand I
of J}. Again, for all nonzero f : P → DTrM ′2 and m ∈ N, there is a di-
rect sum of modules of the form (TrD)jXi ∈ P with j ≥ m such that f
factors through

⊕
i(TrD)jXi. Choose f and m as above such that there

is a path I  (TrD)jXi  DTrM ′2  M ′2, where I is an indecompos-
able direct summand of J . If HomA2(M1, I) 6= 0, then we obtain a path
M1  I  (TrD)jXi  DTrM ′2  M ′2 in indA. By Theorem 10, Λ is
not quasitilted. If HomA2

(M1, I) = 0, then (0, I, 0) is an indecomposable
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injective Λ-module. We obtain a commutative diagram

(0,DTrAM
′
2, 0) W (0,M ′2, 0)

0 DTrΛ(0,M ′2, 0) E (0,M ′2, 0)
��

//

��

//
�
�
�
�
�

�
�
�
�
�

// // //

Thus we get a nonsectional path

(0, I, 0) (0, (TrDA)jXi, 0)→ (0,DTrAM
′
2, 0)

→ DTrΛ(0,M ′2, 0)→ E′ → (0,M ′2, 0)→ Pω

in indΛ. By Theorem 2, Λ is not quasitilted.

Step 1b. Assume that there exists an indecomposable projective A2-
module which is not contained in a preprojective component ofΓA2 . Since A2

is an indecomposable algebra there exists an indecomposable projective A2-
module P contained in a preprojective component P of ΓA2

, and a projective
A2-module P ′ which is not contained in a preprojective component of ΓA2

,
such that there exists a nonzero morphism f : P → P ′. By the choice of P
and P ′, we have f ∈ rad∞A2

(P, P ′). Thus for each r ≥ 1 there exists a chain

of irreducible morphisms P = X0
f0→ X1

f1→ . . .
fr→ Xr and a morphism gr :

Xr → P ′ such that grfr . . . f1f0 6= 0. By Lemma 12, P contains no injective
modules. Then choose r such that DTrXr is a successor of M ′1, where M ′1
is as in Step 1a. Since HomA(Xr, P

′) 6= 0, we have idA DTrXr = 2 [1,
Proposition IX.1.7]. Now M2 is not projective, hence by Proposition 15, M ′1
is in RA. The subclass RA is closed under successors, hence DTrXr ∈ RA,
contrary to idA DTrXr = 2. We conclude that M2 is projective.

Step 2. Now assume M2 6= 0. We show that in this case there exists an
indecomposable A-module X with idAX = 2 and HomA(M1, X) 6= 0.

From Step 1 we know that M2 is projective. Let M ′2 be an indecompos-
able direct summand of M2, and let A2 be the block of A supporting M ′2.
By induction ΓA2

contains a preprojective component P which contains an
indecomposable direct summand M ′1 of M1. Note that not all projective
A2-modules are contained in preprojective components of ΓA2

since M ′2 is
not in a preprojective component. Then, since A2 is an indecomposable alge-
bra there exist indecomposable projective A2-modules P and P ′ with P ∈ P
and P ′ 6∈ P such that HomA2

(P, P ′) 6= 0. Thus for each r ≥ 1 there exists a

chain of irreducible morphisms P = X0
f0→ X1

f1→ . . .
fr→ Xr and a morphism

gr : Xr → P ′ such that grfr . . . f1f0 6= 0.

Let S(M ′1→) = {Y ∈ P | M ′1  Y and all paths from M ′1 to Y are
sectional paths of irreducible maps}. We consider two cases, according to
whether or not there is a proper projective successor of S(M ′1→) in P.
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Step 2a. Assume that no proper successor of S(M ′1→) in P is projec-
tive. By Lemma 12, P contains no injective modules. Hence by assump-
tion we may choose the number r above so that DTrXr ∈ S(M ′1→). Since
HomA2(Xr, P

′) 6= 0, and hence HomA(Xr, P
′) 6= 0, we have idA DTrXr = 2.

Also, HomA(M1,DTrXr) 6= 0, since we have a sectional path of irreducible
morphisms in ΓA2

, and thus in ΓA, from M ′1 to DTrXr [1, Theorem VII.2.4].

Step 2b. Assume that there exists a proper successor P of S(M ′1→) in
P which is projective. Let S(→P ) consist of those predecessors Y of P with
Y ∈ P such that all paths from Y to P are sectional paths of irreducible
morphisms. Let DTr(S(→P )) = {DTrY | Y ∈ S(→P )}. Note that all
indecomposable modules in DTr(S(→P )) have injective A-dimension two,
and that there is a path in P from M ′1 to an indecomposable module in
DTr(S(→P )). Also note that DTr(S(→P )) is a separating subcategory in
the sense that each morphism from a predecessor of DTr(S(→P )) to a mod-
ule which is not such a predecessor factors through DTr(S(→P )). Let I
be an indecomposable injective A2-module such that there exists a nonzero
morphism g : M ′1→I. By Lemma 12, I is a not predecessor of DTr(S(→P )).
Therefore g factors through DTr(S(→P )). In particular, there is a module
X ∈ DTr(S(→P )) with HomA(M ′1, X) 6= 0 and idAX = 2.

Step 3. Now we can prove that M2 is a hereditary projective A-module.
Assume there exists an indecomposable A-module Y with pdA Y = 2, and
such that we have a nonzero morphism g : M2 → Y . By Step 2 we know that
there exists an A-module X with HomA(M1, X) 6= 0 and idAX = 2. Choose
0 6= f ∈ HomA(M1, X), and consider the Λ-module Z =

(
F,X ⊕ Y,

(
f 0
0 g

))
.

By Lemma 8, Z is indecomposable, and since idA(X ⊕ Y ) = 2 we have
idΛ Z = 2 by Lemma 5. Now, pdA Y = 2 implies that Ker g is nonprojective,
thus Ker

(
f 0
0 g

)
is nonprojective, therefore pdΛ Z = 2 by Lemma 5. But this

contradicts Λ being quasitilted. We conclude that HomA(M2, Y ) = 0 for all
Y ∈ indA with pdA Y = 2. Let X be a submodule of M2, and consider the
exact sequence 0 → X → M2 → M2/X → 0. Since M2/X has projective
dimension less than two, it follows that X is projective. We conclude that
M2 is a hereditary projective A-module.

Final Step. It remains to show that M is directing as an A-module. By
Step 3, M2 is directing and each indecomposable direct summand of M2 has
only finitely many predecessors. Indeed, let M ′2 be an indecomposable direct
summand of M2, and let X ∈ indA with HomA(X,M ′2) 6= 0. Let f : X →
M ′2, and let f=µπ be the canonical factorization through Im f . Then Im f is
a submodule of M2, hence projective, thus X is projective and a submodule
of M2. Also, we infer that there is no path from an indecomposable direct
summand of M1 to a summand of M2. If M is decomposable, then the
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conclusion follows from Theorem 10 since M2 is hereditary projective and
all indecomposable direct summands of M1 are directing since they lie in
preprojective components of ΓA. If M is indecomposable, then M = M1 is
contained in the preprojective component of ΓA, thus M is directing.

This shows that the extension vertex ω in Q satisfies condition (2) of
Theorem 14. Indeed, we have Λω = A, and we have shown that M =
radPω is directing in modA. Also, any indecomposable direct summand
of M2 has only finitely many predecessors, all of which are directing. The
indecomposable direct summands of M1 are all contained in preprojective
components of the Auslander–Reiten quiver of A, thus they have only finitely
many predecessors, and all predecessors are directing.

We conclude that each quasitilted algebra has a preprojective compo-
nent.
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