# QUASITILTED ALGEBRAS <br> HAVE PREPROJECTIVE COMPONENTS 

BY
OLE ENGE (TRONDHEIM)


#### Abstract

We show that a quasitilted algebra has a preprojective component. This is proved by giving an algorithmic criterion for the existence of preprojective components.


1. Introduction. This paper provides an extension of work by CoelhoHappel [3]. They showed that if $\Lambda$ is a quasitilted $k$-algebra with $k$ an algebraically closed field, then the Auslander-Reiten quiver of $\Lambda$ contains a preprojective component. As the main result we show here that this is true in general. That is, let $k$ be any field, and assume that $\Lambda$ is a quasitilted $k$-algebra. Then the Auslander-Reiten quiver of $\Lambda$ contains a preprojective component. Unlike Coelho-Happel we make no assumption in our proof that our algebras are quasitilted but not tilted algebras. Hence we obtain an independent proof of the fact that the Auslander-Reiten quiver of a tilted algebra contains a preprojective component, which was proved by Strauss [11].

Let $R$ be a commutative Artin ring. All our algebras are $R$-algebras, and finitely generated as $R$-modules. We assume that $R$ acts centrally on any bimodule. For an algebra $\Lambda$ we denote by $\bmod \Lambda$ the category of finitely generated left $\Lambda$-modules, and by ind $\Lambda$ the full subcategory of $\bmod \Lambda$ consisting of indecomposable modules. Let $M$ be a $\Lambda$-module. We denote by $\operatorname{pd}_{\Lambda} M$ the projective dimension of $M$, by $\operatorname{id}_{\Lambda} M$ the injective dimension of $M$, and by gl. $\operatorname{dim} \Lambda$ the global dimension of $\Lambda$. The Auslander-Reiten quiver of $\Lambda$ is denoted by $\Gamma_{\Lambda}$. The vertices of $\Gamma_{\Lambda}$ are in one-to-one correspondence with the isomorphism classes of indecomposable finitely generated $\Lambda$-modules. There is an arrow from an indecomposable module $X$ to an indecomposable module $Y$ if and only if there is an irreducible morphism from $X$ to $Y$. The arrow has valuation $(a, b)$ if there is a minimal right almost split morphism $a X \oplus V \rightarrow Y$, where $X$ is not a direct summand of $V$, and a minimal left almost split morphism $X \rightarrow b Y \oplus W$, where $Y$ is not a direct summand of $W$. A connected component $\mathcal{P}$ of $\Gamma_{\Lambda}$ is called a preprojective component if $\mathcal{P}$

[^0]does not contain an oriented cycle, and each $X \in \mathcal{P}$ is of the form $(\operatorname{TrD})^{i} P$ for some $i \in \mathbb{N}$ and an indecomposable projective module $P$.

The next section provides the necessary background for quasitilted algebras. In Section 3 we generalize a result of Dräxler-de la Peña [5], giving an algorithmic criterion for the existence of preprojective components. In Section 4 we prove that each quasitilted algebra has a preprojective component. The main idea of the proof is to investigate the conditions on a $\Lambda$-module $M$, where $\Lambda$ is quasitilted, such that the triangular matrix algebra $\left(\begin{array}{cc}F & 0 \\ M & \Lambda\end{array}\right)$ is quasitilted, where $F \subseteq \operatorname{End}_{\Lambda}(M)^{\text {op }}$ is a division algebra. For general background on Artin algebras we refer to Auslander-Reiten-Smalø [1].

I thank Professor Sverre O. Smalø for his advice and helpful suggestions during the preparation of this paper.
2. Preliminaries. In this section we recall some basic facts on quasitilted algebras, and give some results which we need later. For basic reference on quasitilted algebras we refer to Happel-Reiten-Smalø [7].

A path from an indecomposable module $X_{0}$ to an indecomposable module $X_{t}$ in $\bmod \Lambda$ is a sequence of morphisms $X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{7}} \ldots \xrightarrow{f_{t-2}} X_{t-1} \xrightarrow{f_{t-1}} X_{t}$ in ind $\Lambda$, where $t \geq 1$ and each $f_{i}$ is nonzero and not an isomorphism. We say that such a path has length $t$. If there is a path from an indecomposable module $M$ to an indecomposable module $N$, or $N \simeq M$, we denote this by $M \rightsquigarrow N$ and say that $M$ is a predecessor of $N$, and that $N$ is a successor of $M$. We say that $M$ lies on a cycle if there is a path from $M$ to $M$, and the number of morphisms in the path is called the length of the cycle. If the length of the cycle is 1 or 2 , we say the path is a short cycle. We say that a path $Z_{0} \xrightarrow{f_{0}} Z_{1} \xrightarrow{f_{f}} \ldots \xrightarrow{f_{t-1}} Z_{t} \xrightarrow{f_{t}} Z_{t+1}$ of irreducible morphisms is sectional if $Z_{i} \not 千 \mathrm{D} \operatorname{Tr} Z_{i+2}$ for $1 \leq i \leq t-1$. Let

$$
\begin{equation*}
M \xrightarrow{f_{0}} M_{1} \xrightarrow{f_{1}} \ldots \xrightarrow{f_{t-1}} M_{t} \xrightarrow{f_{t}} N \tag{*}
\end{equation*}
$$

be a path in ind $\Lambda$. A path $M \rightarrow M_{0,1} \rightarrow \ldots \rightarrow M_{0, n_{0}} \rightarrow M_{1} \rightarrow M_{1,1} \rightarrow$ $\ldots \rightarrow M_{1, n_{1}} \rightarrow M_{2} \rightarrow \ldots \rightarrow M_{t} \rightarrow M_{t, 1} \rightarrow \ldots \rightarrow N$ is called a refinement of $(*)$, and it is called a refinement of irreducible morphisms if all the morphisms in the refinement are irreducible. Further, a walk is a sequence of indecomposable modules $X_{0}-X_{1}-X_{2}-\ldots-X_{t-1}-X_{t}$, where $X_{i}-X_{i+1}$ means that there is either a nonzero morphism $X_{i} \rightarrow X_{i+1}$ or a nonzero morphism $X_{i+1} \rightarrow X_{i}$ for all $1 \leq i \leq t-1$. The number of morphisms in a walk is called the length of the walk.

Let $R$ be a commutative Artin ring. An algebra $\Lambda$ is called a quasitilted algebra if there exists a locally finite hereditary abelian $R$-category $\mathcal{H}$ and a tilting object $T \in \mathcal{H}$ such that $\Lambda=\operatorname{End}_{\mathcal{H}}(T)^{\mathrm{op}}$. According to Happel-Reiten-Smalø [7] the ordinary valued quiver of a quasitilted algebra $\Lambda$ con-
tains no oriented cycles and therefore the center of $\Lambda$ is a field. Hence there is no harm to consider just finite-dimensional algebras over a field $k$ when dealing with quasitilted algebras. In this paper we use the following homological characterization of quasitilted algebras given in [7].

Theorem 1. The following are equivalent for an algebra $\Lambda$ :
(1) $\Lambda$ is quasitilted.
(2) $\Lambda$ satisfies the following two conditions:
(a) $\operatorname{gl} \cdot \operatorname{dim} \Lambda \leq 2$.
(b) If $X$ is a finitely generated indecomposable $\Lambda$-module, then either $\operatorname{pd}_{\Lambda} X \leq 1$ or $\operatorname{id}_{\Lambda} X \leq 1$.
Let $\Lambda$ be an Artin algebra. The following two subclasses of ind $\Lambda$ are of interest to us. Let $\mathcal{L}_{\Lambda}$ denote the subclass of ind $\Lambda$ given by $\mathcal{L}_{\Lambda}=\{X \in$ ind $\Gamma \mid \operatorname{pd}_{\Gamma} Y \leq 1$ for all $Y$ with $\left.Y \rightsquigarrow X\right\}$ and let $\mathcal{R}_{\Lambda}$ denote the subclass of ind $\Lambda$ given by $\mathcal{R}_{\Lambda}=\left\{X \in\right.$ ind $\Gamma \mid \operatorname{id}_{\Gamma} Y \leq 1$ for all $Y$ with $\left.X \rightsquigarrow Y\right\}$. Using this we have the following characterization of quasitilted algebras [7, Theorem II.1.14].

Theorem 2. The following are equivalent for an Artin algebra 1 :
(1) $\Lambda$ is quasitilted.
(2) $\mathcal{R}_{\Lambda}$ contains all injective modules in ind $\Lambda$.
(3) $\mathcal{L}_{\Lambda}$ contains all projective modules in ind $\Lambda$.
(4) Any path in $\bmod \Lambda$ starting in an injective module and ending in a projective module has a refinement of irreducible morphisms and any such refinement is sectional.

The proof of the following result is essentially due to Happel-ReitenSmalø [8, Lemma 1.2].

LEmmA 3. Let $\Lambda$ be a quasitilted algebra and $M \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{7}} \ldots \xrightarrow{f_{t-1}} X_{t} \xrightarrow{f_{t}} N$ a path. If $M$ belongs to $\mathcal{R}_{\Lambda}$ or if $N$ belongs to $\mathcal{L}_{\Lambda}$, then there exist an indecomposable module $Z$ and nonzero morphisms $M \rightarrow Z$ and $Z \rightarrow N$. In particular, an indecomposable $\Lambda$-module $M$ belongs to a cycle if and only if it belongs to a short cycle.

Proof. We only give the proof when $M$ is in $\mathcal{R}_{\Lambda}$. The proof for the case of $N$ in $\mathcal{L}_{\Lambda}$ is dual.

Assume that $M$ belongs to $\mathcal{R}_{\Lambda}$. The proof is by induction on the length of the path. If the length is 1 or 2 , then there is nothing to show.

So assume that we have shown the assertion for all paths of length less than $t+1$, and let the path be $M \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{7}} X_{2} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{t-1}} X_{t} \xrightarrow{f_{t}} N$, with $t \geq 2$. We can choose our path $M \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{7}} X_{2} \xrightarrow{f_{2}} X_{3}$ so that $l\left(X_{1}\right)+l\left(X_{2}\right)$, the sum of the lengths of $X_{1}$ and $X_{2}$, is minimal among the paths with three
morphisms connecting $M$ to $X_{3}$. We can also assume that all compositions $f_{i} f_{i-1}$ are 0 , since otherwise we would have a shorter path. In particular, $f_{1} f_{0}=0$ and $f_{2} f_{1}=0$. Thus $\operatorname{Im} f_{0} \subseteq \operatorname{Ker} f_{1}=K$. We show that $K$ is indecomposable.

Assume that $K$ is decomposable, say $K=K_{1} \oplus K_{2}$, with $K_{1}$ indecomposable and $K_{2}$ nonzero. We may also assume that $p_{1} f_{0} \neq 0$, where $p_{1}: K \rightarrow K_{1}$ is the projection according to the given decomposition. We have the exact sequence $0 \rightarrow K \rightarrow X_{1} \xrightarrow{\widehat{f}_{\rightarrow}} \operatorname{Im} f_{1} \rightarrow 0$, where $\widehat{f}_{1}$ is the induced morphism. Consider the pushout diagram


Since $X_{1}$ is indecomposable and $\operatorname{Im} f_{1} \neq 0$, it follows that $K_{1}$ cannot be a summand of $X_{1}$. Hence the sequence $0 \rightarrow K_{1} \xrightarrow{f} Y \xrightarrow{g} \operatorname{Im} f_{1} \rightarrow 0$ does not split. Since $f: K_{1} \rightarrow Y$ is a monomorphism, there is a decomposition $Y=Y_{1} \oplus Y_{2}$, with $Y_{1}$ indecomposable and such that $q_{1} f p_{1} f_{0}: M \rightarrow Y_{1}$ is nonzero, where $q_{1}: Y \rightarrow Y_{1}$ is the projection onto $Y_{1}$ according to the given decomposition of $Y$, and where we have also denoted the induced morphism $M \rightarrow K$ by $f_{0}$. Now the sequence $0 \rightarrow K_{1} \xrightarrow{f} Y \xrightarrow{g} \operatorname{Im} f_{1} \rightarrow 0$ does not split, so $g\left(Y_{1}\right) \neq 0$. Hence we have a path $M \rightarrow Y_{1} \rightarrow X_{2} \rightarrow X_{3}$ with $l\left(Y_{1}\right)<l\left(X_{1}\right)$. This contradicts the choice of the path $M \rightarrow X_{1} \rightarrow X_{2} \rightarrow X_{3}$. We conclude that $K$ is indecomposable, and hence $\mathrm{id}_{\Lambda} K \leq 1$, since $K$ is a successor of $M \in \mathcal{R}_{\Lambda}$.

Since $\operatorname{id}_{\Lambda} K \leq 1$ we have an exact sequence

$$
\operatorname{Ext}_{\Lambda}^{1}(C, K) \rightarrow \operatorname{Ext}_{\Lambda}^{1}\left(C, X_{1}\right) \rightarrow \operatorname{Ext}_{\Lambda}^{1}\left(C, \operatorname{Im} f_{1}\right) \rightarrow 0
$$

for any $C$ in $\bmod \Lambda$. Consider the exact sequence $0 \rightarrow \operatorname{Im} f_{1} \xrightarrow{h} X_{2} \xrightarrow{t} C \rightarrow 0$, with $C=\operatorname{Coker} f_{1}$. The exact sequence of Ext-groups above gives rise to a commutative diagram

with exact rows. Let $W=\bigoplus_{i=1}^{s} W_{i}$ be a decomposition of $W$ into a direct sum of indecomposable modules. Let $q_{i}: W_{i} \rightarrow W$ and $p_{i}: W \rightarrow W_{i}$ denote the corresponding inclusions and projections for $i=1, \ldots, s$. The sequence $0 \rightarrow \operatorname{Im} f_{1} \xrightarrow{h} X_{2} \xrightarrow{t} C \rightarrow 0$ does not split, since $X_{2}$ is indecomposable and
$\operatorname{Im} f_{1} \neq 0$ and $C=\operatorname{Coker} f_{1} \neq 0$. Hence the sequence $0 \rightarrow X_{1} \xrightarrow{f^{\prime}} W \xrightarrow{g^{\prime}}$ $C \rightarrow 0$ does not split. Since $X_{1}$ is indecomposable, $p_{i} f^{\prime}: X_{1} \rightarrow W_{i}$ is not an isomorphism for any $i$. The diagram above gives rise to an exact sequence

$$
\begin{equation*}
0 \rightarrow X_{1} \xrightarrow{\binom{f_{f}^{\prime}}{-f_{1}}} W \oplus \operatorname{Im} f_{1} \xrightarrow{(v, h)} X_{2} \rightarrow 0 . \tag{*}
\end{equation*}
$$

Since $f_{1} f_{0}=0$, the morphism $f_{1}: X_{1} \rightarrow X_{2}$ is not a monomorphism. Hence $\widehat{f_{1}}: X_{1} \rightarrow \operatorname{Im} f_{1}$ is a proper epimorphism, and thus not a split monomorphism. Since $f: X_{1} \rightarrow W$ is also not a split monomorphism and $X_{1}$ is indecomposable, it follows that ( $*$ ) does not split. Since in addition $X_{2}$ is indecomposable, the morphisms $v q_{i}: W_{i} \rightarrow X_{2}$ are nonzero nonisomorphisms for any $i$. Since $f^{\prime}: X_{1} \rightarrow W$ is a monomorphism and $f_{0}: M \rightarrow X_{1}$ is nonzero, there is some $i$ with $p_{i} f^{\prime} f_{0}: M \rightarrow W_{i}$ nonzero. Further, since $v: W \rightarrow X_{2}$ is an epimorphism and $f_{2}: X_{2} \rightarrow X_{3}$ is nonzero, there is some $j$ with $f_{2} v q_{j}: W_{j} \rightarrow X_{3}$ nonzero. If $i=j$, then we have a path $M \rightarrow W_{i} \rightarrow$ $X_{3}$. If $i \neq j$, then consider the paths $M \rightarrow X_{1} \rightarrow W_{j} \rightarrow X_{3}$ and $M \rightarrow$ $W_{i} \rightarrow X_{2} \rightarrow X_{3}$. We have $l\left(X_{1}\right)+l\left(W_{i}\right)+l\left(W_{j}\right)+l\left(X_{2}\right)<2\left(l\left(X_{1}\right)+l\left(X_{2}\right)\right)$ by using the exact sequence $0 \rightarrow X_{1} \rightarrow W \oplus \operatorname{Im} f_{1} \rightarrow X_{2} \rightarrow 0$. Hence we have $l\left(X_{1}\right)+l\left(W_{j}\right)<l\left(X_{1}\right)+l\left(X_{2}\right)$ or $l\left(W_{i}\right)+l\left(X_{2}\right)<l\left(X_{1}\right)+l\left(X_{2}\right)$, which contradicts our choice of the path $M \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} X_{2} \xrightarrow{f_{2}} X_{3}$.

Therefore we have a path $M \rightarrow W_{i} \rightarrow X_{3} \rightarrow \ldots \rightarrow X_{t} \rightarrow N$ of length less than $t+1$, and we are done by the induction hypothesis.

It was shown by Happel-Reiten-Smalø [7] that a nonsemisimple quasitilted algebra $\Lambda$ is always of the form $\Lambda=\left(\begin{array}{cc}F & 0 \\ M & A\end{array}\right)$ where $A$ is a quasitilted algebra, $M$ an $A$-module and $F \subseteq \operatorname{End}_{A}(M)^{\mathrm{op}}$ a division algebra. We now recall some results which will be needed later.

Lemma 4. Let $A$ be an Artin algebra, let $M$ be a finitely generated $A$-module with $F \subseteq \operatorname{End}_{A}(M)^{\text {op }}$ a division algebra and let $\Lambda=\left(\begin{array}{cc}F & 0 \\ M & A\end{array}\right)$. Then $\operatorname{gl} \cdot \operatorname{dim} \Lambda \leq 2$ if and only if $\operatorname{gl} \cdot \operatorname{dim} A \leq 2$ and $\operatorname{pd}_{A} M \leq 1$.

Proof. See [1, Proposition III.2.7].
Lemma 5. Let $A$ be an Artin algebra with gl.dim $A \leq 2$, and let $\Lambda=$ $\left(\begin{array}{cc}F & 0 \\ M & A\end{array}\right)$ for an $A$-module $M$ and $F \subseteq \operatorname{End}_{A}(M)^{\mathrm{op}}$ a division algebra. Let ( $V, X, f$ ) be in $\bmod \Lambda$. Then:
(i) If $\operatorname{Ker} f$ is not projective, then $\operatorname{pd}_{\Lambda}(V, X, f) \geq 2$.
(ii) Assume that $\operatorname{pd}_{A} \operatorname{Coker} f \leq 1$. Then $\operatorname{pd}_{\Lambda}(V, X, f) \leq 1$ if and only if $\operatorname{Ker} f$ is projective.
(iii) $\operatorname{id}_{\Lambda}(V, X, f) \leq 1$ if and only if $\operatorname{id}_{A} X \leq 1$ and $\operatorname{Ext}_{A}^{1}(M, X)=0$.

Proof. See [7, Lemma III.2.1, 2.2].

Proposition 6. Let $A$ be an Artin algebra, and let $\Lambda=\left(\begin{array}{cc}F & 0 \\ M & A\end{array}\right)$ for an A-module $M$ and $F \subseteq \operatorname{End}_{A}(M)^{\mathrm{op}}$ a division algebra. If $\Lambda$ is quasitilted, then so is $A$.

Proof. See [7, Proposition III.2.3].
The proof of the next result is a slight modification of the proof given in [7, Proposition III.2.4].

Proposition 7. Let $A$ be an Artin algebra, and let $\Lambda=\left(\begin{array}{cc}F & 0 \\ M & A\end{array}\right)$ for an A-module $M$ and $F \subseteq \operatorname{End}_{A}(M)^{\mathrm{op}}$ a division algebra. If $\Lambda$ is quasitilted, then $M$ is in add $\mathcal{L}_{A}$.

The next result is a generalization of a result by Coelho-Happel [3, Lemma 1.4].

Lemma 8. Let $A$ be an Artin algebra. Let $M=M_{1} \oplus M_{2}$ be an $A$-module with $M_{1} \neq 0 \neq M_{2}$, and let $F \subseteq \operatorname{End}_{A}(M)^{\text {op }}$ be a division algebra. Let $\Lambda$ be the triangular matrix algebra $\Lambda=\left(\begin{array}{cc}F & 0 \\ M & A\end{array}\right)$. Let $X_{1}$ and $X_{2}$ be two indecomposable nonisomorphic A-modules and let $f_{i}: M_{i} \rightarrow X_{i}$ be nonzero morphisms for $i=1$, 2. Then the $\Lambda$-module $\left(F, X_{1} \oplus X_{2},\left(\begin{array}{cc}f_{1} & 0 \\ 0 & f_{2}\end{array}\right)\right)$ is indecomposable.

Proof. Let $f=\left(\begin{array}{cc}f_{1} & 0 \\ 0 & f_{2}\end{array}\right)$. If $\left(F, X_{1} \oplus X_{2}, f\right)$ is decomposable, then there exists an $i$ such that $\left(0, X_{i}, 0\right)$ is isomorphic to a direct summand of $\left(F, X_{1} \oplus\right.$ $\left.X_{2}, f\right)$. We may assume that $i=1$. Then there exists a commutative diagram

with $h g=\operatorname{id}_{X_{1}}$. Writing $g=\binom{g_{1}}{g_{2}}$ and $h=\left(h_{1}, h_{2}\right)$, we obtain $h_{1} f_{1}=$ $0=h_{2} f_{2}$ and $h_{1} g_{1}+h_{2} g_{2}=\mathrm{id}_{X_{1}}$. Since $X_{1}$ is indecomposable and $X_{1} \not \nsim$ $X_{2}$, we see that $h_{2} g_{2}$ is nilpotent. Thus $h_{1} g_{1}=\mathrm{id}_{X_{1}}-h_{2} g_{2}$ is invertible. In particular, $h_{1}$ is invertible, and therefore $f_{1}=0$, a contradiction. We conclude that $\left(F, X_{1} \oplus X_{2}, f\right)$ is indecomposable.

We have the following direct observation [3, Lemma 1.5].
Lemma 9. Let $A$ be an Artin algebra. Let $M$ be an $A$-module, and let $F \subseteq \operatorname{End}_{A}(M)^{\text {op }}$ be a division algebra. Let $\Lambda=\left(\begin{array}{cc}F & 0 \\ M & A\end{array}\right)$. Let $X$ be an indecomposable $A$-module and let $f: M \rightarrow X$ be a nonzero morphism. Then the $\Lambda$-module $(F, X, f)$ is indecomposable.

Let $\Lambda$ be an algebra. Let $M$ be a $\Lambda$-module, not necessarily indecomposable. Following Happel-Ringel [9] we say that $M$ is nondirecting if there exist indecomposable direct summands $M_{1}$ and $M_{2}$ of $M$ and an indecomposable nonprojective module $W$ such that $M_{1} \rightsquigarrow \mathrm{D} \operatorname{Tr} W$ and $W \rightsquigarrow M_{2}$.

Otherwise we say that $M$ is directing. A path $M \rightsquigarrow \mathrm{DTr} W \rightsquigarrow W \rightsquigarrow N$ is called a hook path.

The next result is due to Enge-Slungård-Smalø [6, Theorem 9].
Theorem 10. Let $\Lambda$ be an algebra and let $M$ be a decomposable $\Lambda$-module. Let $G \subseteq \operatorname{End}_{\Lambda}(M)^{\mathrm{op}}$ be a local subalgebra of $\operatorname{End}_{\Lambda}(M)^{\mathrm{op}}$. If the triangular matrix algebra $\Gamma=\left(\begin{array}{cc}G & 0 \\ M & \Lambda\end{array}\right)$ is quasitilted, then $G$ is a division algebra, and $M$ is either directing or of the form $M=M_{1} \amalg P$ where $M_{1}$ is indecomposable nondirecting, $P$ is hereditary projective and the only hook paths from $M$ to $M$ are the ones both starting and ending in $M_{1}$.

Next we consider subsets of preprojective components which we will need later. Let $\Lambda$ be an algebra, and let $\mathcal{P}$ be a preprojective component in the Auslander-Reiten quiver of $\Lambda$. Let $J$ be the direct sum of one copy of each indecomposable injective module lying in $\mathcal{P}$. Let $\mathcal{P}(J \rightsquigarrow)=\{X \in \mathcal{P} \mid I \rightsquigarrow X$ for some indecomposable direct summand $I$ of $J\}$. Moreover, for $N \in \mathcal{P}$, let $\mathcal{P}(N \rightsquigarrow)=\{X \in \mathcal{P} \mid N \rightsquigarrow X\}$.

A walk between different DTr-orbits $\left\{(\operatorname{TrD})^{i} X\right\}_{i \in \mathbb{Z}}$ and $\left\{(\operatorname{TrD})^{i} Y\right\}_{i \in \mathbb{Z}}$ in $\mathcal{P}$ is a walk $M-Z_{1}-\ldots-Z_{t}=N$ of irreducible morphisms with $M \in$ $\left\{(\operatorname{TrD})^{i} X\right\}_{i \in \mathbb{Z}}$ and $N \in\left\{(\operatorname{TrD})^{i} Y\right\}_{i \in \mathbb{Z}}$. The distance between two DTr-orbits $\left\{(\operatorname{TrD})^{i} X\right\}_{i \in \mathbb{Z}}$ and $\left\{(\operatorname{TrD})^{i} Y\right\}_{i \in \mathbb{Z}}$ in $\mathcal{P}$ is the minimal length of walks $M-Z_{1}-\ldots-Z_{t}=N$ with $M \in\left\{(\operatorname{TrD})^{i} X\right\}_{i \in \mathbb{Z}}$ and $N \in\left\{(\operatorname{TrD})^{i} Y\right\}_{i \in \mathbb{Z}}$.

Using this we obtain the following result.
Lemma 11. Let $\Lambda$ be an algebra, and let $\mathcal{P}$ be a preprojective component in the Auslander-Reiten quiver of $\Lambda$. Then:
(a) If $\mathcal{P}$ contains some injective module, then $\mathcal{P} \backslash \mathcal{P}(J \rightsquigarrow)$ is finite.
(b) If $\mathcal{P}$ contains no injective module, then $\mathcal{P} \backslash \mathcal{P}(N \rightsquigarrow)$ is finite for any $N \in \mathcal{P}$.

Proof. We prove (a). The proof of (b) is similar.
It suffices to show that every DTr-orbit in $\mathcal{P}$ has an element in $\mathcal{P}(J \rightsquigarrow)$. Let $\mathcal{D}$ be the set of DTr -orbits in $\mathcal{P}$ with no element in $\mathcal{P}(J \rightsquigarrow)$. Note that any DTr -orbit in $\mathcal{D}$ is infinite. Assume that $\mathcal{D}$ is nonempty. Since $\mathcal{P}$ is connected there is a walk between any DTr-orbit in $\mathcal{D}$ and any DTr-orbit not in $\mathcal{D}$. Take the minimal distance between DTr -orbits in $\mathcal{D}$ and DTr -orbits not in $\mathcal{D}$. Again, since $\mathcal{P}$ is connected, this minimal distance has to be one. Thus there is a $\operatorname{DTr}$-orbit $\left\{(\operatorname{TrD})^{i} X\right\}_{i \in \mathbb{Z}} \in \mathcal{D}$ and a $\operatorname{DTr}$-orbit $\left\{(\operatorname{TrD})^{i} Y\right\}_{i \in \mathbb{Z}} \notin \mathcal{D}$ with $M \in\left\{(\operatorname{TrD})^{i} X\right\}_{i \in \mathbb{Z}}$ and $N \in\left\{(\operatorname{TrD})^{i} Y\right\}_{i \in \mathbb{Z}}$ such that there is a walk $M$ $N$. We may assume $N \in \mathcal{P}(J \rightsquigarrow)$, otherwise we consider $(\operatorname{TrD})^{i} N$ for some $i \geq 1$. Then we have an irreducible morphism $M \rightarrow N$, and $\operatorname{TrD} M=0$, since $\left\{(\operatorname{TrD})^{i} M\right\}_{i \in \mathbb{Z}} \in \mathcal{D}$. Hence $M$ is injective, which gives the desired contradiction.

This gives the immediate result.
Lemma 12. Let $A$ be an indecomposable quasitilted algebra, and let $P$ be an indecomposable projective $A$-module which is not contained in a preprojective component of $\Gamma_{A}$. Then no preprojective component of $\Gamma_{A}$ contains an injective $A$-module.

Proof. Since $A$ is indecomposable there exists an indecomposable projective $A$-module $P^{\prime}$ contained in a preprojective component $\mathcal{P}$ of $\Gamma_{A}$ and such that there exists a nonzero morphism $f: P^{\prime} \rightarrow P$ with $P$ not in a preprojective component. By the choice of $P$ and $P^{\prime}$, we have $f \in \operatorname{rad}_{A}^{\infty}\left(P^{\prime}, P\right)$. For all nonzero $f: P^{\prime} \rightarrow P$ and $m \in \mathbb{N}$, there is a direct sum of modules of the form $(\operatorname{TrD})^{j} X_{i} \in \mathcal{P}$ with $j \geq m$ such that $f$ factors through $\bigoplus_{i}(\operatorname{TrD})^{j} X_{i}$. Thus for each $m$ there exist $j \geq m$ and $i$ such that $\operatorname{Hom}_{A}\left((\operatorname{TrD})^{j} X_{i}, P\right) \neq 0$.

Assume $\mathcal{P}$ contains some injective modules. Let $J$ be the direct sum of one copy of each indecomposable injective module in $\mathcal{P}$. By Lemma 11 the subset $\mathcal{P} \backslash \mathcal{P}(J \rightsquigarrow)$ is finite, where $\mathcal{P}(J \rightsquigarrow)=\{X \in \mathcal{P} \mid I \rightsquigarrow X$ for some indecomposable direct summand $I$ of $J\}$. Hence there exists $m \in \mathbb{N}$ with $I \rightsquigarrow(\operatorname{TrD})^{j} X_{i}$ for $j \geq m$. So we obtain a path $I \rightsquigarrow(\operatorname{TrD})^{j-1} X_{i} \rightarrow E \rightarrow$ $(\operatorname{TrD})^{j} X_{i} \rightarrow P$ for some $j$, where $I$ is an indecomposable direct summand of $J$. By Theorem 2, $A$ is not quasitilted, which is a contradiction.
3. Existence of preprojective components. In this section we give necessary and sufficient conditions for the existence of preprojective components in the Auslander-Reiten quiver of an Artin algebra. This result is essentially proved by Dräxler-de la Peña [5]. Here we repeat the arguments with the necessary modifications for the general case.

Recall that with any Artin algebra $A$ we may associate a valued quiver $Q$, that is, a quiver with at most one arrow from a vertex $i$ to a vertex $j$, and an ordered pair of positive integers assigned to each arrow. The vertices of $Q$ are the isomorphism classes $[S]$ of simple $A$-modules. There is an arrow from $\left[S_{i}\right]$ to $\left[S_{j}\right]$ if $\operatorname{Ext}_{A}^{1}\left(S_{i}, S_{j}\right) \neq 0$, and we assign to this arrow the pair of integers $\left(\operatorname{dim}_{\operatorname{End}_{A}\left(S_{j}\right)} \operatorname{Ext}_{A}^{1}\left(S_{i}, S_{j}\right), \operatorname{dim}_{\operatorname{End}}^{A}\left(S_{i}\right)^{\text {op }} \operatorname{Ext}_{A}^{1}\left(S_{i}, S_{j}\right)\right)$. Let $A$ be an Artin algebra such that $Q$ has no oriented cycles. For a vertex $c \in Q$ we denote by $S_{c}$ the corresponding simple $A$-module, and by $P_{c}$ the projective cover of $S_{c}$. We consider a partial order on the vertices of $Q$ by defining $a \preccurlyeq b$ if there is a path from $a$ to $b$ in $Q$. Note that this implies that there is a path from $P_{b}$ to $P_{a}$ in $\bmod A$. Given any $A$-module $N$, we define the support algebra of $N$ as the factor algebra of $A$ modulo the ideal generated by all idempotents that annihilate $N$. Let $x$ be a vertex in $Q$. We denote by $A^{x}$ the support algebra of $\bigoplus_{a \npreceq x} S_{a}$. The indecomposable projective $A$-module $P_{x}$ has radical $\operatorname{rad} P_{x}$ which is an $A^{x}$-module. Let $\operatorname{rad} P_{x}=\bigoplus_{i=1}^{n_{x}} R_{x}(i)$ be its decomposition into indecomposable summands.

The next result is due to Happel-Ringel [9] and Skowroński-Wenderlich [10].

Theorem 13. Let $x$ be a vertex in $Q$. Then $P_{x}$ is directing in $\bmod A$ if and only if $\operatorname{rad} P_{x}$ is directing in $\bmod A$. Moreover, if $x$ is a source, then $P_{x}$ is directing in $\bmod A$ if and only if $\operatorname{rad} P_{x}$ is directing in $\bmod A^{x}$.

The next result gives an algorithmic criterion for the existence of preprojective components.

Theorem 14. Let $A$ be an Artin algebra such that the valued quiver $Q$ of $A$ has no oriented cycles. Then the Auslander-Reiten quiver $\Gamma_{A}$ of $A$ has a preprojective component if and only if for each vertex $x \in Q$ one of the following conditions is satisfied:
(1) There is a preprojective component $\mathcal{P}$ of $\Gamma_{A^{x}}$ such that $R_{x}(i) \notin \mathcal{P}$ for each $i \in\left\{1, \ldots, n_{x}\right\}$.
(2) For each $i \in\left\{1, \ldots, n_{x}\right\}$ the set of predecessors $\left\{Y \in \Gamma_{A^{x}} \mid Y \rightsquigarrow\right.$ $\left.R_{x}(i)\right\}$ of $R_{x}(i)$ in $\bmod A^{x}$ is finite and formed by directing modules. Moreover, if $x$ is a source, then $\operatorname{rad} P_{x}$ is directing in $\bmod A^{x}$.

Proof. Assume first that $\mathcal{P}$ is a preprojective component of $\Gamma_{A}$. Let $x$ be a vertex in $Q$. If the projective module $P_{x}$ belongs to $\mathcal{P}$, condition (2) holds for $x$. So assume $P_{x} \notin \mathcal{P}$. We show that $\mathcal{P}$ is formed by $A^{x}$-modules. Let $X \in \mathcal{P}$, and assume that $\operatorname{Hom}_{A}\left(P_{y}, X\right) \neq 0$ for a vertex $y \preccurlyeq x$. Then $P_{x} \rightsquigarrow P_{y} \rightsquigarrow X$ in $\bmod A$, thus $P_{x} \in \mathcal{P}$, which contradicts our assumption. We conclude that $\mathcal{P}$ is a preprojective component of $\Gamma_{A^{x}}$ and $R_{x}(i) \notin \mathcal{P}$ for every $1 \leq i \leq n_{x}$. Thus condition (1) is satisfied for the vertex $x$.

In order to prove the converse we first assume that for all vertices $x \in Q$ condition (2) is satisfied. We then claim that for every $x \in Q$ the following holds:
(3) For each $i \in\left\{1, \ldots, n_{x}\right\}$ the set of predecessors $\left\{X \in \Gamma_{A} \mid X \rightsquigarrow\right.$ $\left.R_{x}(i)\right\}$ of $R_{x}(i)$ in $\bmod A$ is finite and formed by directing modules.

Indeed, let $X$ be a predecessor of $R_{x}(i)$ in $\Gamma_{A}$ and assume that $X$ is not an $A^{x}$-module. Now there is a vertex $y$ with $y \preccurlyeq x$ such that $\operatorname{Hom}_{A}\left(P_{y}, X\right) \neq 0$. In $\bmod A$ we then get $P_{y} \rightsquigarrow X \rightsquigarrow R_{x}(i) \rightsquigarrow P_{x} \rightsquigarrow P_{y}$. By assumption rad $P_{y}$ is directing in $\bmod A^{y}$. Thus by Theorem 13 we see that $y$ is not a source in $Q$ since $P_{y}$ is not directing in $\bmod A$. Let $z$ be a source which is a proper predecessor of $y$ in $Q$. We see that $P_{y}$ is a nondirecting predecessor of some indecomposable direct summand of $\operatorname{rad} P_{z}$. By assumption, condition (2) is satisfied for a vertex $z$, so some of the modules $M$ in the path $P_{y} \rightsquigarrow P_{y}$ are not $A^{z}$-modules. Hence $\operatorname{Hom}_{A}\left(P_{z}, M\right) \neq 0$, and $P_{z}$ is not directing in $\bmod A$, a contradiction to Theorem 13.

Following Bongartz [2] we can then construct inductively full subquivers $C_{n}$ of $\Gamma_{A}$ satisfying
(i) $C_{n}$ is finite, connected, contains no oriented cycle and is closed under predecessors,
(ii) $\operatorname{TrD} C_{n} \cup C_{n} \subseteq C_{n+1}$.

Then $\bigcup_{n \in \mathbb{N}} C_{n}$ forms the desired preprojective component. Let $C_{1}=\{S\}$, where $S$ is a simple projective $A$-module. To get $C_{n+1}$ from $C_{n}$ number the modules $M_{1}, \ldots, M_{t}$ of $C_{n}$ with $\operatorname{TrD} M_{i} \notin C_{n}$ in such a way that $i<j$ provided that $M_{i} \rightsquigarrow M_{j}$. If $t=0$, we let $C_{n+1}=C_{n}$, and we have obtained a finite preprojective component.

Otherwise, let $D_{0}=C_{n}$, and for each $0 \leq i \leq t-1$ let $D_{i+1}$ be the full subquiver of $\Gamma_{A}$ with vertices those in $D_{i}$ and all predecessors of $\operatorname{TrD} M_{i+1}$. Consider the almost split sequence $0 \rightarrow M_{i+1} \rightarrow X \rightarrow \operatorname{TrD} M_{i+1} \rightarrow 0$, $0 \leq i \leq t-1$. We show that each indecomposable summand $Y$ of $X$ has only finitely many predecessors and does not lie on a cycle. If $Y$ is nonprojective then $\mathrm{D} \operatorname{Tr} Y$ belongs to $C_{n}$, hence $Y$ belongs to $D_{i}$ and we are done. If $Y$ is projective, say $Y=P_{y}$ for a vertex $y \in Q$, then condition (3) states that for each $i \in\left\{1, \ldots, n_{y}\right\}$ the set of predecessors of $R_{y}(i) \operatorname{in} \bmod A$ is finite and formed by directing modules. By Theorem $13, P_{y}$ is directing in $\bmod A$ and we are done. Thus by letting $C_{n+1}=D_{t}$ the induction step is proven.

In order to complete the proof we assume that for some vertex $x \in Q$ condition (2) is not satisfied, hence there exists a nondirecting predecessor of $\operatorname{rad} P_{x}$. By hypothesis, condition (1) is satisfied for the vertex $x$, which we may also assume to be a source. Thus we conclude that $\mathcal{P}$ is a preprojective component of $\Gamma_{A}$.
4. The main result. We now prove that if $\Lambda$ is a quasitilted algebra, then the Auslander-Reiten quiver of $\Lambda$ contains a preprojective component.

We first provide a generalization of a result by Coelho-Happel [3, Lemma 2.1].

Proposition 15. Let $\Lambda$ be a quasitilted algebra, and $M=M_{1} \oplus M_{2}$ a $\Lambda$ module such that $\Gamma=\left(\begin{array}{cc}F & 0 \\ M & \Lambda\end{array}\right)$ is a quasitilted algebra, where $F \subseteq \operatorname{End}_{\Lambda}(M)^{\text {op }}$. is a division algebra. Then either each indecomposable summand of $M_{1}$ is contained in $\mathcal{R}_{\Lambda}$ or $M_{2}$ is projective.

Proof. Assume that there exists an indecomposable direct summand $M_{1}^{\prime}$ of $M_{1}$ with $M_{1}^{\prime} \notin \mathcal{R}_{\Lambda}$ and that $M_{2}$ is not projective. Consider the $\Gamma$-module $Y=\left(F, M_{1}^{\prime},\left(\pi_{1}^{\prime}, 0\right)\right)$ where $\pi_{1}^{\prime}: M_{1} \rightarrow M_{1}^{\prime}$ is the projection according to a chosen decomposition of $M$. By Lemma $9, Y$ is indecomposable, and since $M_{2}$ is a direct summand of $\operatorname{Ker}\left(\pi_{1}^{\prime}, 0\right)$, we find by Lemma 5 that $\operatorname{pd}_{\Gamma} Y=2$. Thus there exists an indecomposable injective $\Gamma$-module $I$ such
that $\operatorname{Hom}_{\Gamma}(I, \mathrm{D} \operatorname{Tr} Y) \neq 0$. Therefore there exists a path $I \rightarrow \mathrm{D} \operatorname{Tr} Y \rightarrow E \rightarrow$ $Y$ where $E$ is an indecomposable direct summand of the middle term in the almost split sequence ending in $Y$. Since $M_{1}^{\prime} \notin \mathcal{R}_{\Lambda}$, there is a path from $M_{1}^{\prime}$ to an indecomposable $\Lambda$-module $X$ with $\operatorname{id}_{\Lambda} X=2$. In particular, $X \in \mathcal{L}_{\Lambda}$. By Lemma 3 there is a path $M_{1}^{\prime} \xrightarrow{f} N \xrightarrow{g} X$. If $g f \neq 0$, then by Lemma 5 the indecomposable $\Gamma$-module $\left(F, X,\left(g f \pi_{1}^{\prime}, 0\right)\right)$ has both projective and injective dimension equal to two, a contradiction. Thus $g f=0$. We then obtain the diagram

which commutes. Since $\operatorname{id}_{\Lambda} X=2$ there exists an indecomposable projective $\Lambda$-module $P$ and a nonzero $\Lambda$-morphism $h: \operatorname{TrD} X \rightarrow P[1$, Proposition IX.1.7]. Thus we obtain a path

$$
Y \rightarrow\left(F, N,\left(f \pi_{1}^{\prime}, 0\right)\right) \xrightarrow{(0, g)}(0, X, 0) \rightarrow(0, Z, 0) \rightarrow(0, \operatorname{TrD} X, 0) \xrightarrow{(0, h)}(0, P, 0)
$$

in ind $\Gamma$. Since $(0, P, 0)$ is an indecomposable projective $\Gamma$-module and $\operatorname{pd}_{\Gamma} Y$ $=2$, we see that $(0, P, 0) \notin \mathcal{L}_{\Gamma}$, which contradicts Theorem 2 .

We now have the main result.
Theorem 16. The Auslander-Reiten quiver of any quasitilted algebra has a preprojective component.

Proof. The proof is by induction on the number $n$ of isomorphism classes of simple $\Lambda$-modules. Assume $\Lambda$ is quasitilted with $n=1$ isomorphism class of simple modules. Since the valued quiver of $\Lambda$ contains no loops, the Auslander-Reiten quiver of $\Lambda$ consists of one point with no arrows, thus $\Lambda$ is a finite-dimensional $k$-division algebra.

Assume that all quasitilted algebras with less than $n$ isomorphism classes of simple modules have a preprojective component, and let $\Lambda$ be a quasitilted algebra with $n \geq 2$ isomorphism classes of simple modules. Let $Q$ be the valued quiver of $\Lambda$. Let $a$ be a vertex in $Q$. We want to prove that $a$ satisfies either condition (1) or (2) in Theorem 14. First we consider the case when $a$ is not a source in $Q$.

If $a$ is not a source in $Q$, there exists a source $\omega$ and a path from $\omega$ to $a$ in $Q$. Let $M=\operatorname{rad}_{\Lambda} P_{\omega}$. Then there exists a quasitilted algebra $A$ such that $\Lambda=\left(\begin{array}{cc}F & 0 \\ M & A\end{array}\right)$, where $F \subseteq \operatorname{End}_{\Lambda}(M)^{\text {op }}$ is a division algebra. Also, $\Lambda^{a}=$ $A^{a}$. By induction the Auslander-Reiten quiver $\Gamma_{A}$ of $A$ has a preprojective component, so the vertex $a$ satisfies one of the conditions of Theorem 14.

Thus we are left with the case where $a=\omega$ is a source. As noted before, we can write $\Lambda=\left(\begin{array}{cc}F & 0 \\ M & A\end{array}\right)$ for a quasitilted algebra $A$ and an $A$-module $M=$
$\operatorname{rad}_{\Lambda} P_{\omega}$, where $F \subseteq \operatorname{End}_{\Lambda}(M)^{\text {op }}$ is a division algebra. By induction $\Gamma_{A}$ has a preprojective component. Let $M_{1}$ be the direct sum of all indecomposable direct summands of $M$ that are contained in some preprojective component of $\Gamma_{A}$. Then $M=M_{1} \oplus M_{2}$ for some direct summand $M_{2}$ of $M$. If $\mathcal{P}$ is a preprojective component of $\Gamma_{A}$, then we may assume that $\mathcal{P}$ contains an indecomposable direct summand of $M_{1}$. Otherwise the vertex $\omega$ satisfies condition (1) of Theorem 14 , and $\mathcal{P}$ is a preprojective component of $\Gamma_{\Lambda}$. So from now on we assume that $M_{1} \neq 0$ and that $\omega$ does not satisfy condition (1) of Theorem 14. We show that $\omega$ satisfies condition (2) of Theorem 14. The proof is divided into several steps. Our main aim is to show that $M_{2}$ is hereditary projective. By doing this we also show that there is no path from an indecomposable direct summand of $M_{1}$ to an indecomposable direct summand of $M_{2}$. Then it is straightforward to show that $M$ is directing is $\bmod A$, and hence that $\omega$ satisfies condition (2) of Theorem 14. In order to show that $M_{2}$ is hereditary projective we need two preliminary steps.

Step 1. We show that $M_{2}$ is projective. Assume it is not, and let $M_{2}^{\prime}$ be its nonprojective indecomposable direct summand. Let $A_{2}$ be the block of $A$ supporting $M_{2}^{\prime}$. We consider two cases, according to whether or not all projective $A_{2}$-modules are contained in preprojective components of $\Gamma_{A_{2}}$.

Step 1a. Assume that all projective $A_{2}$-modules are contained in preprojective components of $\Gamma_{A_{2}}$. Let $P$ be an indecomposable projective $A_{2^{-}}$ module with $\operatorname{Hom}_{A_{2}}\left(P, \mathrm{DTr}_{A_{2}} M_{2}^{\prime}\right) \neq 0$. By assumption $P$ is contained in a preprojective component $\mathcal{P}$ of $\Gamma_{A_{2}}$ which also contains an indecomposable direct summand $M_{1}^{\prime}$ of $M_{1}$. We show that this contradicts $\Lambda$ being quasitilted.

If $\mathcal{P}$ contains no injective modules, then by Lemma $11, \mathcal{P} \backslash \mathcal{P}\left(M_{1}^{\prime} \rightsquigarrow\right)$ is finite, where $\mathcal{P}\left(M_{1}^{\prime} \rightsquigarrow\right)=\left\{X \in \mathcal{P} \mid M_{1}^{\prime} \rightsquigarrow X\right\}$. Now for all nonzero $f: P \rightarrow \mathrm{DTr} M_{2}^{\prime}$ and $m \in \mathbb{N}$, there is a direct sum of modules of the form $(\operatorname{TrD})^{j} X_{i} \in \mathcal{P}$ with $j \geq m$ such that $f$ factors through $\bigoplus_{i}(\operatorname{TrD})^{j} X_{i}$. Choose $f$ and $m$ as above such that there is a path $M_{1}^{\prime} \rightsquigarrow(\operatorname{TrD})^{j} X_{i} \rightsquigarrow \mathrm{D} \operatorname{Tr} M_{2}^{\prime} \rightsquigarrow$ $M_{2}^{\prime}$. By Theorem 10, $\Lambda$ is not quasitilted.

If $\mathcal{P}$ contains some indecomposable injective modules, let $J$ be the direct sum of one copy of each. By Lemma $11, \mathcal{P} \backslash \mathcal{P}(J \rightsquigarrow)$ is finite, where $\mathcal{P}(J \rightsquigarrow)=\{X \in \mathcal{P} \mid I \rightsquigarrow X$ for some indecomposable direct summand $I$ of $J\}$. Again, for all nonzero $f: P \rightarrow \mathrm{D} \operatorname{Tr} M_{2}^{\prime}$ and $m \in \mathbb{N}$, there is a direct sum of modules of the form $(\operatorname{TrD})^{j} X_{i} \in \mathcal{P}$ with $j \geq m$ such that $f$ factors through $\bigoplus_{i}(\operatorname{TrD})^{j} X_{i}$. Choose $f$ and $m$ as above such that there is a path $I \rightsquigarrow(\operatorname{TrD})^{j} X_{i} \rightsquigarrow \mathrm{DTr} M_{2}^{\prime} \rightsquigarrow M_{2}^{\prime}$, where $I$ is an indecomposable direct summand of $J$. If $\operatorname{Hom}_{A_{2}}\left(M_{1}, I\right) \neq 0$, then we obtain a path $M_{1} \rightsquigarrow I \rightsquigarrow(\operatorname{TrD})^{j} X_{i} \rightsquigarrow \mathrm{DTr} M_{2}^{\prime} \rightsquigarrow M_{2}^{\prime}$ in ind $A$. By Theorem 10, $\Lambda$ is not quasitilted. If $\operatorname{Hom}_{A_{2}}\left(M_{1}, I\right)=0$, then $(0, I, 0)$ is an indecomposable
injective $\Lambda$-module. We obtain a commutative diagram


Thus we get a nonsectional path

$$
\begin{aligned}
(0, I, 0) \rightsquigarrow\left(0,\left(\operatorname{TrD}_{A}\right)^{j} X_{i}, 0\right) & \rightarrow\left(0, \operatorname{DTr}_{A} M_{2}^{\prime}, 0\right) \\
& \rightarrow \operatorname{DTr}_{\Lambda}\left(0, M_{2}^{\prime}, 0\right) \rightarrow E^{\prime} \rightarrow\left(0, M_{2}^{\prime}, 0\right) \rightarrow P_{\omega}
\end{aligned}
$$

in ind $\Lambda$. By Theorem $2, \Lambda$ is not quasitilted.
Step 1b. Assume that there exists an indecomposable projective $A_{2^{-}}$ module which is not contained in a preprojective component of $\Gamma_{A_{2}}$. Since $A_{2}$ is an indecomposable algebra there exists an indecomposable projective $A_{2^{-}}$ module $P$ contained in a preprojective component $\mathcal{P}$ of $\Gamma_{A_{2}}$, and a projective $A_{2}$-module $P^{\prime}$ which is not contained in a preprojective component of $\Gamma_{A_{2}}$, such that there exists a nonzero morphism $f: P \rightarrow P^{\prime}$. By the choice of $P$ and $P^{\prime}$, we have $f \in \operatorname{rad}_{A_{2}}^{\infty}\left(P, P^{\prime}\right)$. Thus for each $r \geq 1$ there exists a chain of irreducible morphisms $P=X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} \ldots \xrightarrow{f_{r}} X_{r}$ and a morphism $g_{r}$ : $X_{r} \rightarrow P^{\prime}$ such that $g_{r} f_{r} \ldots f_{1} f_{0} \neq 0$. By Lemma $12, \mathcal{P}$ contains no injective modules. Then choose $r$ such that $\mathrm{D} \operatorname{Tr} X_{r}$ is a successor of $M_{1}^{\prime}$, where $M_{1}^{\prime}$ is as in Step 1a. Since $\operatorname{Hom}_{A}\left(X_{r}, P^{\prime}\right) \neq 0$, we have $\mathrm{id}_{A} \mathrm{D} \operatorname{Tr} X_{r}=2[1$, Proposition IX.1.7]. Now $M_{2}$ is not projective, hence by Proposition 15, $M_{1}^{\prime}$ is in $\mathcal{R}_{A}$. The subclass $\mathcal{R}_{A}$ is closed under successors, hence $\mathrm{D} \operatorname{Tr} X_{r} \in \mathcal{R}_{A}$, contrary to $\mathrm{id}_{A} \mathrm{D} \operatorname{Tr} X_{r}=2$. We conclude that $M_{2}$ is projective.

Step 2. Now assume $M_{2} \neq 0$. We show that in this case there exists an indecomposable $A$-module $X$ with $\operatorname{id}_{A} X=2$ and $\operatorname{Hom}_{A}\left(M_{1}, X\right) \neq 0$.

From Step 1 we know that $M_{2}$ is projective. Let $M_{2}^{\prime}$ be an indecomposable direct summand of $M_{2}$, and let $A_{2}$ be the block of $A$ supporting $M_{2}^{\prime}$. By induction $\Gamma_{A_{2}}$ contains a preprojective component $\mathcal{P}$ which contains an indecomposable direct summand $M_{1}^{\prime}$ of $M_{1}$. Note that not all projective $A_{2}$-modules are contained in preprojective components of $\Gamma_{A_{2}}$ since $M_{2}^{\prime}$ is not in a preprojective component. Then, since $A_{2}$ is an indecomposable algebra there exist indecomposable projective $A_{2}$-modules $P$ and $P^{\prime}$ with $P \in \mathcal{P}$ and $P^{\prime} \notin \mathcal{P}$ such that $\operatorname{Hom}_{A_{2}}\left(P, P^{\prime}\right) \neq 0$. Thus for each $r \geq 1$ there exists a chain of irreducible morphisms $P=X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} \ldots \xrightarrow{f_{r}} X_{r}$ and a morphism $g_{r}: X_{r} \rightarrow P^{\prime}$ such that $g_{r} f_{r} \ldots f_{1} f_{0} \neq 0$.

Let $\mathcal{S}\left(M_{1}^{\prime} \rightarrow\right)=\left\{Y \in \mathcal{P} \mid M_{1}^{\prime} \rightsquigarrow Y\right.$ and all paths from $M_{1}^{\prime}$ to $Y$ are sectional paths of irreducible maps $\}$. We consider two cases, according to whether or not there is a proper projective successor of $\mathcal{S}\left(M_{1}^{\prime} \rightarrow\right)$ in $\mathcal{P}$.

Step 2a. Assume that no proper successor of $\mathcal{S}\left(M_{1}^{\prime} \rightarrow\right)$ in $\mathcal{P}$ is projective. By Lemma 12, $\mathcal{P}$ contains no injective modules. Hence by assumption we may choose the number $r$ above so that $\mathrm{D} \operatorname{Tr} X_{r} \in \mathcal{S}\left(M_{1}^{\prime} \rightarrow\right)$. Since $\operatorname{Hom}_{A_{2}}\left(X_{r}, P^{\prime}\right) \neq 0$, and hence $\operatorname{Hom}_{A}\left(X_{r}, P^{\prime}\right) \neq 0$, we have $\operatorname{id}_{A} \mathrm{DTr} X_{r}=2$. Also, $\operatorname{Hom}_{A}\left(M_{1}, \mathrm{DTr} X_{r}\right) \neq 0$, since we have a sectional path of irreducible morphisms in $\Gamma_{A_{2}}$, and thus in $\Gamma_{A}$, from $M_{1}^{\prime}$ to $\operatorname{DTr} X_{r}[1$, Theorem VII.2.4].

Step 2b. Assume that there exists a proper successor $P$ of $\mathcal{S}\left(M_{1}^{\prime} \rightarrow\right)$ in $\mathcal{P}$ which is projective. Let $\mathcal{S}(\rightarrow P)$ consist of those predecessors $Y$ of $P$ with $Y \in \mathcal{P}$ such that all paths from $Y$ to $P$ are sectional paths of irreducible morphisms. Let $\mathrm{D} \operatorname{Tr}(\mathcal{S}(\rightarrow P))=\{\mathrm{D} \operatorname{Tr} Y \mid Y \in \mathcal{S}(\rightarrow P)\}$. Note that all indecomposable modules in $\operatorname{Dr}(\mathcal{S}(\rightarrow P))$ have injective $A$-dimension two, and that there is a path in $\mathcal{P}$ from $M_{1}^{\prime}$ to an indecomposable module in $\mathrm{D} \operatorname{Tr}(\mathcal{S}(\rightarrow P))$. Also note that $\mathrm{D} \operatorname{Tr}(\mathcal{S}(\rightarrow P))$ is a separating subcategory in the sense that each morphism from a predecessor of $\mathrm{D} \operatorname{Tr}(\mathcal{S}(\rightarrow P))$ to a module which is not such a predecessor factors through $\operatorname{DTr}(\mathcal{S}(\rightarrow P))$. Let $I$ be an indecomposable injective $A_{2}$-module such that there exists a nonzero morphism $g: M_{1}^{\prime} \rightarrow I$. By Lemma $12, I$ is a not predecessor of $\mathrm{D} \operatorname{Tr}(\mathcal{S}(\rightarrow P))$. Therefore $g$ factors through $\mathrm{D} \operatorname{Tr}(\mathcal{S}(\rightarrow P))$. In particular, there is a module $X \in \mathrm{D} \operatorname{Tr}(\mathcal{S}(\rightarrow P))$ with $\operatorname{Hom}_{A}\left(M_{1}^{\prime}, X\right) \neq 0$ and $\operatorname{id}_{A} X=2$.

Step 3 . Now we can prove that $M_{2}$ is a hereditary projective $A$-module. Assume there exists an indecomposable $A$-module $Y$ with $\mathrm{pd}_{A} Y=2$, and such that we have a nonzero morphism $g: M_{2} \rightarrow Y$. By Step 2 we know that there exists an $A$-module $X$ with $\operatorname{Hom}_{A}\left(M_{1}, X\right) \neq 0$ and $\operatorname{id}_{A} X=2$. Choose $0 \neq f \in \operatorname{Hom}_{A}\left(M_{1}, X\right)$, and consider the $\Lambda$-module $Z=\left(F, X \oplus Y,\left(\begin{array}{cc}f & 0 \\ 0 & g\end{array}\right)\right)$. By Lemma $8, Z$ is indecomposable, and since $\operatorname{id}_{A}(X \oplus Y)=2$ we have $\mathrm{id}_{\Lambda} Z=2$ by Lemma 5 . Now, $\operatorname{pd}_{A} Y=2$ implies that $\operatorname{Ker} g$ is nonprojective, thus $\operatorname{Ker}\left(\begin{array}{cc}f & 0 \\ 0 & g\end{array}\right)$ is nonprojective, therefore $\operatorname{pd}_{A} Z=2$ by Lemma 5 . But this contradicts $\Lambda$ being quasitilted. We conclude that $\operatorname{Hom}_{A}\left(M_{2}, Y\right)=0$ for all $Y \in \operatorname{ind} A$ with $\operatorname{pd}_{A} Y=2$. Let $X$ be a submodule of $M_{2}$, and consider the exact sequence $0 \rightarrow X \rightarrow M_{2} \rightarrow M_{2} / X \rightarrow 0$. Since $M_{2} / X$ has projective dimension less than two, it follows that $X$ is projective. We conclude that $M_{2}$ is a hereditary projective $A$-module.

Final Step. It remains to show that $M$ is directing as an $A$-module. By Step 3, $M_{2}$ is directing and each indecomposable direct summand of $M_{2}$ has only finitely many predecessors. Indeed, let $M_{2}^{\prime}$ be an indecomposable direct summand of $M_{2}$, and let $X \in \operatorname{ind} A$ with $\operatorname{Hom}_{A}\left(X, M_{2}^{\prime}\right) \neq 0$. Let $f: X \rightarrow$ $M_{2}^{\prime}$, and let $f=\mu \pi$ be the canonical factorization through $\operatorname{Im} f$. Then $\operatorname{Im} f$ is a submodule of $M_{2}$, hence projective, thus $X$ is projective and a submodule of $M_{2}$. Also, we infer that there is no path from an indecomposable direct summand of $M_{1}$ to a summand of $M_{2}$. If $M$ is decomposable, then the
conclusion follows from Theorem 10 since $M_{2}$ is hereditary projective and all indecomposable direct summands of $M_{1}$ are directing since they lie in preprojective components of $\Gamma_{A}$. If $M$ is indecomposable, then $M=M_{1}$ is contained in the preprojective component of $\Gamma_{A}$, thus $M$ is directing.

This shows that the extension vertex $\omega$ in $Q$ satisfies condition (2) of Theorem 14. Indeed, we have $\Lambda^{\omega}=A$, and we have shown that $M=$ $\operatorname{rad} P_{\omega}$ is directing in $\bmod A$. Also, any indecomposable direct summand of $M_{2}$ has only finitely many predecessors, all of which are directing. The indecomposable direct summands of $M_{1}$ are all contained in preprojective components of the Auslander-Reiten quiver of $A$, thus they have only finitely many predecessors, and all predecessors are directing.

We conclude that each quasitilted algebra has a preprojective component.

## REFERENCES

[1] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995.
[2] K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), 1-12.
[3] F. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proc. Amer. Math. Soc. 125 (1997), 1283-1291.
[4] F. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math. 149 (1996), 67-82.
[5] P. Dräxler and J. A. de la Peña, On the existence of postprojective components in the Auslander-Reiten quiver of an algebra, Tsukuba J. Math. 20 (1996), 457-469.
[6] O. Enge, I. H. Slungård and S. O. Smal $\varnothing$, Quasitilted extensions by nondirecting modules, preliminary manuscript, 1998.
[7] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996).
[8] —, -, —, Short cycles and sincere modules, in: CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 233-237.
[9] D. Happel and C. M. Ringel, Directing projective modules, Arch. Math. (Basel) 60 (1993), 237-246.
[10] A. Skowroński and M. Wenderlich, Artin algebras with directing indecomposable projective modules, J. Algebra 165 (1994), 507-530.
[11] H. Strauss, The perpendicular category of a partial tilting module, ibid. 144 (1991), 43-66.

Norwegian University of Science and Technology Department of Mathematical Sciences, Lade
N-7491 Trondheim, Norway

Present address: ClustRa AS, Haakon VII gt 7 N-7485 Trondheim, Norway E-mail: ole.enge@clustra.com


[^0]:    2000 Mathematics Subject Classification: 16E10, 16E30, 16G10, 16G20, 16G70.

