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ON THE MAXIMAL SPECTRUM OF COMMUTATIVE
SEMIPRIMITIVE RINGS
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Abstract. The space of maximal ideals is studied on semiprimitive rings and reduced
rings, and the relation between topological properties of Max(R) and algebric properties of
the ring R are investigated. The socle of semiprimitive rings is characterized homologically,
and it is shown that the socle is a direct sum of its localizations with respect to isolated
maximal ideals. We observe that the Goldie dimension of a semiprimitive ring R is equal
to the Suslin number of Max(R).

1. Introduction. Throughout this paper, R is a commutative ring with
identity. We write Spec(R), Max(R) and Min(R) for the spaces of prime ide-
als, maximal ideals and minimal prime ideals of R, respectively. The topol-
ogy of these spaces is the Zariski topology (see [2], [4], [5] and [7]). Also we
denote by Py(R), Mo(R) and Zy(R) the sets of isolated points of the spaces
Spec(R), Max(R) and Min(R), respectively. We say R is semiprimitive if
(1Max(R) = (0). For a semiprimitive Gelfand ring R, we show that

Po(R) = Mo(R) = To(R) = Ass(R).

A nonzero ideal in a commutative ring is said to be essential if it inter-
sects every nonzero ideal nontrivially, and the intersection of all essential
ideals, or the sum of all minimal ideals, is called the socle (see [9]). We
characterize the socle of semiprimitive rings in two ways: in terms of maxi-
mal ideals and in terms of localizations with respect to maximal ideals. We
denote the socle of R by S(R) or S and the Jacobson radical of R by J(R).

We know that the infinite intersection of essential ideals in any ring may
not be an essential ideal. We shall show that in a semiprimitive ring, every
intersection of essential ideals is an essential ideal if and only if My(R) is
dense in Max(R).

A set {B;}icr of nonzero ideals in R is said to be independent if B; N
(Xizjer Bi) = (0), ie, 37, r Bi = @,y Bi- We say R has a finite Goldie
dimension if every independent set of nonzero ideals is finite, and if R does
not have a finite Goldie dimension, then the Goldie dimension of R, denoted
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by dim R, is the smallest cardinal number ¢ such that every independent set
of nonzero ideals in R has cardinality less than or equal to c¢. Also the
smallest cardinal ¢ such that every family of pairwise disjoint nonempty
open subsets of a topological space X has cardinality less than or equal to
c is called the Suslin number or cellularity of the space X and is denoted
by S(X) (see [3]). We show that for any semiprimitive ring R, the Suslin
number of Max(R) is equal to the Goldie dimension of R.

2. The socle of semiprimitive rings

DEFINITION. Let M(a) = {M € Max(R) : a € M} for all a € R, and
M(I) ={M(a) : a € I} for all ideals I of R. Anideal M € Max(R) is called
trivial if M is generated by an idempotent element, i.e., M = (e), where

6226.

LEMMA 2.1. Suppose Nil(R) = J(R) and M is a maximal ideal of R.
Then M = \/@, where e is an idempotent element if and only if M is an
isolated point of Max(R). Furthermore in this case, if M = (e) and e # 0,
then I = (1 — e) is a nonzero minimal ideal.

Proof. Let M = /(e), where e = e. Then {M} = Max(R)—M(1—e),
i.e., M is an isolated point of Max(R). Conversely, suppose {M} is open
in Max(R). If Max(R) = {M}, then M = /(0). Otherwise, there exist
a,b,r € R such that a € ﬂM,eMaX(R)_{M} M —M,be M and ar +b = 1.
Obviously, ab € J, hence (ab)™ = 0 for some n > 0. We have 1 = (ar+b)?" =
axy + b"xy. Let e = b"xy. Then e(1 — e) = 0 and this means that e is an
idempotent element of R. Also for every m € M, there is n > 0 such that
[(1—e)m]™ =0, s0m" € (e), i.e., M = +/(e). m

The following proposition is proved in [8, 1.6].

LEMMA 2.2. If R is a semiprimitive ring then I is a nonzero minimal
ideal of R if and only if I is contained in every mazimal ideal except one,

i.e., IM(I)] = 2.

In [7], it is proved that the socle of C(X) (the ring of continuous func-
tions) consists of all functions that vanish everywhere except at a finite
number of points of X. We give a generalization of this fact.

THEOREM 2.3. In a semiprimitive ring R, the socle S = S(R) is exactly
the set of all elements which belong to every maximal ideal except for a finite
number. In fact,

S ={a € R: Max(R) — M(a) is finite}.

Proof. Suppose a € S. If a = 0, then Max(R) — M(a) = 0. Otherwise,
a=ai+...+ an,, where each a; belongs to some idempotent minimal ideal
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in R. Thus by 2.2, a; + ...+ a, belongs to every maximal ideal except for
a finite number. It follows that Max(R) — M(a) is finite.

Conversely, let Max(R) — M(a) be a finite set. We have to show that
a € S. Let Max(R) — M(a) = {My,...,M,}. We claim that each My,
k =1,...,n, is an isolated point of Max(R). Indeed, for every i # k and
1 <4 < n there exists a; € M; — M. Set b=aay...a_10k4+1...a,. Then
M(b) = Max(R) — {My}, so {My} is open, i.e., My is isolated. Now by
2.1, for each Mj, there exists a minimal ideal I, such that R = My & I
and I, = (er), where ey, is an idempotent element of R. Let b = a — ae; —
... —aey. Then for every 1 < k < n, exb € J(R) = 0, and consequently
{Mq,...,M,} € M(b). On the other hand, M(a) C M(b), hence b = 0,
therefore a =ae; +...+ae, €1 +...+1,CS. n

Now we give a characterization of the socle of semiprimitive rings by
localizations with respect to maximal ideals.

THEOREM 2.4. Let R be a semiprimitive ring and let I be an ideal of R.
Then I C S if and only if the sequence

01% D > D Iy — 0
MeEMax(R) MEMax(R)—Mo(R)

1s exact, where ¢ is the natural map and w is the projection map and Ips
18 the localization of I. Furthermore, the socle is the unique ideal with this

property.

Proof. (=) Suppose I C S, and consider the natural map ¢ : [ —
@D rrerax(r) Im such that Va € I, ¢(a) = (a/1)memax(r)- Now suppose
a € I. Then by 2.3, Max(R) — M(a) = {Mi,...,M,}. Hence for each
1 < k < n, there exists e; such that My = (ex). Put b =ey...e,. It is
evident that ab € J = (0) and b € R — M for each M € M(a), so a/1 =0
in Ip;. Hence ¢ is a well defined homomorphism. Also

Ker¢p ={a€l:VM, 3t € R— M such that ta =0} C J = (0),

thus ¢ is one-to-one. Now we show that Im ¢=Ker 7. Suppose (b/t) premax(r)
€ Im ¢. Then there is a € I such that (a/1)yemax(r) = (b/t) MeMax(r)- Ob-
viously, a/1 = 0 in Ips for every M € Max(R) — My(R). (Since Max(R) —
M(a) = {My,...,M,}, for each 1 < k < n there is t,, € My — M. Let
t=ty,...t,. Thent € R — M and at € J = (0).) Thus ¢(a) € Kerm and
consequently, Im¢ C Kernw. To prove Im¢ O Kerm, it is enough to show
that if 0 # b/t € Ipr, where M € My(R), then there exists a € I such
that the M-component of ¢(a) is b/t and all the other components are zero.
To see this, we note that b,t ¢ M and M = (e) where e is an idempotent
element of R. So there exists ' € R such that tt'—1 € M. Let a = (1—e)t'b
and s =1 —e. We have s(at —b) = sb(tt' —1—tt'e) € J = (0). Soa/1 =0/t
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in M-components, and also ea = 0, hence a/1 = 0 for all other components.
Thus the sequence is exact.
(<) Let a € I and suppose the sequence

015 D wm> D Iy — 0
MeMax(R) MeMax(R)—Mo(R)

is exact. Since ¢(a) is well defined, every component of ¢(a) is zero except
for a finite numbers of components My, ..., M,. Clearly, Max(R) — M(a) C
{My,...,M,}. Thusa€ S,ie, I CS.

Finally, if S’ is an ideal of R that satisfies the conditions of the theorem,
then the exact sequences

0-5% @ Su D Sar — 0,
MeMax(R) MeMax(R)—Mo(R)

0-5% @ sy D Shy =0
MeMax(R) MeMax(R)—Mo(R)
yield S € 8" and S’ C S, respectively. Consequently, S = S’. m

COROLLARY 2.5. In a semiprimitive ring R, for every ideal I C S we
have I = ®M€M0(R) Iy. In particular,

Sz P Su
MeMo(R)

We note that minimal ideals in a semiprimitive ring R are projective,
so every ideal contained in the socle of R is projective. Next we have the
following result.

COROLLARY 2.6. Let R be a semiprimitive ring and let I C S be an
ideal. Then for each R-module A and n > 2, we have

Il Exth(la, A) = 11 Ext (I, A).
M EMax(R) MEMax(R)—Mo(R)

Proof. The exact sequence

0-1% @ In> D Ing =0
MeMax(R) MeMax(R)—Mo(R)
yields the exact sequence
0=Bxty (LA s Extp (D IuA)
MeMax(R)—Mo(R)

— Ext’, ( A A) — Ext?(I, A) = 0.
MeMax(R)
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So we have

[ Exta(a,4)= Ext};( D IM,A>
MeMax(R) MeMax(R)—Mo(R)

11 Ext’(Ip, A). =
MeMax(R)—Mo(R)

1%

3. Essential ideals and space of maximal ideals. The following the-
orem characterizes essential ideals of a semiprimitive ring R via a topological
property.

THEOREM 3.1. If I is a nonzero ideal in a semiprimitive ring R, then
the following are equivalent.

(i) I is an essential ideal in R.

(il) Y M(I) is a nowhere dense subset of Max(R), i.e., int (Y M(I) = 0.

Proof. (i)=-(ii). Suppose that the interior of (JM(I) is nonempty;
denote it by U. Let M € U. Since Max(R) — U is closed, there exists
a € N emax(ry—v M’ —M. Thus ab = 0 for every b € I, i.e., Ann(I) # (0),
a contradiction.

(ii)=-(i). Let K be a nonzero ideal in R and 0 # b € K. Then Max(R) —
M(b) is an open set and clearly (Max(R)—M(b))N(Max(R)—(M(I)) # 0.
This implies that there is a € I such that (Max(R) — M(b)) N (Max(R) —
A M(a)) # 0, so M(ab) # Max(R), i.e.,0£abe KNI. m

It is easy to see that a finite intersection of essential ideals in any com-
mutative ring is an essential ideal. But a countable intersection of essential
ideals need not be an essential ideal. The following result gives a necessary
and sufficient condition for essentiality of each intersection of essential ideals
in semiprimitive rings.

THEOREM 3.3. In a semiprimitive ring R, the following are equivalent.

(i) Every intersection of essential ideals of R is an essential ideal.

(i) Naremory M = (0), ice., Mo(R) is dense in Max(R).

Proof. (i)=(ii). By hypothesis, Ann(S5)=(0). Now if a € (e p,(r) M
then for every minimal ideal I of R, al = (0), so a € Ann(S) and this implies
a=0.

(ii)=(i). Clearly every minimal ideal of R is generated by an idempotent,
hence S=@D, . ;;(e), where E is a set of idempotents in R. We note that (e) is
minimal if and only if (1—e) is a trivial maximal ideal, and Ann(e) = (1—e).

But
Ann(S) = ﬂ Ann(e) = ﬂ (1—e) = ﬂ M =0.
ecE eckE MeMo(R)
This means that S is essential. m
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THEOREM 3.4. In a semiprimitive ring R, the socle S = S(R) is finitely
generated if and only if the number of trivial mazximal ideals is finite, i.e.,
Mo (R) is finite. In particular, if R is a noetherian ring then Mo(R) is
finite.

Proof. (=) Without loss of generality we can suppose S = (a,b).
Assume My(R) = {M; : i € I} is infinite. We know that for every i
I, M; = (e}), where €] is an idempotent element of R. Set e; = 1 — ¢}
and T = {e; : © € I}. Now we have a = r;e;, + ... + 1€, and b =
rj €5, + ...+ r;e;, for some r;,r; € R. On the other hand there exists
ee€T —{e,....€i,€5,...,€.}, 50 e =ra-+r'b, where r,r" € R. Also
ee; € J = (0) for every e; # e, so e = e? = rae + rbe = 0, a contradiction.

(<) Trivial. m

The following theorem characterizes the Goldie dimension of semiprimi-
tive rings via a topological property.

THEOREM 3.5. In a semiprimitive ring R, dim R = S(Max(R)).

Proof. Let dimR = c and @, ; B; be a direct sum of ideals in R,
where |I|, the cardinality of I, is less than or equal to ¢. Now for each i € I,
let 0 # a; € B;; then a;a; = 0 when ¢ # j. Hence (Max(R) — M(a;)) N
(Max(R)—M(a;)) = 0, and this implies that F' = {Max(R)—M(a;) : i € I}
is a collection of disjoint open sets in Max(R), i.e., S(Max(R)) > c¢. Now
let {G; : i € I'} be any collection of disjoint open sets in Max(R). Then for
all i € I, there exists 0 # a; € R such that a; € ﬂMax(R)fGi M. Now we
put B; = (a;) for all i € I and claim that {B;}ics is an independent set
of nonzero ideals in R. To see this, we show that B; N (3, 4,.; Br) = (0).
Let a € B; N (Z#TE[ B,). Then a = a;b = a,, by + ... + a, by, where
b,br € R, a; € B; and a,, € By, and i # ry, for all kK = 1,...,n. But
clearly a;a,, € J = (0) for every k = 1,...,n and this implies that a?b = 0,
i.e., a> = 0 and therefore @ = 0. This means that dimR = ¢ > |I|, i.e.,
c>S(Max(R)). m

The following proposition gives a characterization of essential ideals in

a reduced ring R (i.e., R has no nonzero nilpotent element) when Ass(R) is
dense in Spec(R).

PRrROPOSITION 3.6. Let R be a reduced ring, and let E be an ideal of R.
Then the following are equivalent:

(i) Ass(R) is dense in Spec(R).

(ii) E is an essential ideal in R if and only if E € P for every P €
Ass(R).

Proof. (i)=(ii). Suppose F is an essential ideal of R and P € Ass(R).
Since P is not essential we have F ¢ P. Conversely, suppose F ¢ P for
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every P € Ass(R). If E is not essential then there is 0 # a € R such that
aE = (0) = Npeass(r) F» 50 @ =0, a contradiction.

(ii)=(i) . For every P € Ass(R), there exists a, € (Ngenin(r)—(p} @—F-
Suppose E is the ideal generated by the a,’s, i.e., E = (a, : P € Ass(R)).
Observe that E ¢ P for any P € Ass(R), hence E is essential. Now if
a€\peass(r) L then aa, = 0 for every P € Ass(R), hence aE'=(0). Since
E is essential, a = 0, therefore (\pgpq(r) P = (0). This yields that Ass(R)
is dense in Spec(R). m

The following proposition characterizes the isolated points of the spaces
of maximal ideals and minimal prime ideals in a reduced ring R.

PROPOSITION 3.7. Let R be a reduced ring.

(i) If T € Min(R) is dense in Min(R), then Ass(R) C T.

(ii) P € Po(R) if and only if P € Ty(R) and P is not the intersection of
the prime ideals which contain it strictly.

(ili) Zo(R) = Ass(R).

In particular, if R is semiprimitive, we have

(iv) Po(R) = Mo(R).

Proof. (i) Suppose P € Ass(R), hence P = ann(a) for some a € R.
Therefore P = (\ger_v/(q) Q> Where V(a) = {P € Spec(R) : a € P}. This
implies that P = @ for some Q € T.

(ii) Suppose P € Py(R). Then clearly P € Zy(R). Now if P =
ﬂQev(P)_{P} Q, where V(P) = {@Q € Spec(R) : P C @}, then we have
ﬂQeSpeC(R)_{P} Q C P,ie, P & Py(R), a contradiction. Conversely,
suppose that P € Zo(R) and P # (\gey (p)_py @- Then there exist a €
ﬂQeMin(R)—{P}Q —Pand b € erV(P)—{P}Q — P, thus we have ab €
nQGSpeC(R)—{P}Q_P7 i.e., PG PO(R).

(iii) Assume that P € Zo(R). Then there exists a € (gemin(r)—(p) @ —
P, hence P = ann(a) € Ass(R). Conversely, let P € Ass(R) so P = ann(a)
for some a € R. Suppose P ¢ Zy(R); put T = Min(R) — {P}. Since
Nger @ = (0), it follows that 7 is dense in Min(R) and (i) implies that
Ass(R) C T; consequently, P € T, a contradiction.

(iv) Suppose M € My(R). Then M = (e), where e is an idempotent
element of R. Hence for any M # P € Spec(R), 1 —e € P. This means that
Npespec(r)—{my £ € M, ie., M € Po(R), and therefore Mo(R) € Po(R).
The opposite inclusion is trivial. m

4. Gelfand rings. A ring is called a Gelfand ring (or a pm ring) if each
prime ideal is contained in a unique maximal ideal. For a commutative ring
R, De Marco and Orsatti [2] show: R is Gelfand if and only if Max(R) is



12 K. SAMEI

Hausdorff, and if and only if Spec(R) is normal. For each M € Max(R), let
Own = (\pcas P, where P ranges over all prime ideals contained in M. One
can easily see that in a semiprimitive Gelfand ring R, Oy ={a € R: M €
int M(a)} and for any P € Spec(R), P C M if and only if Op; C P (int is
the interior in the space Max(R)).

PropoOSITION 4.1. If R is a semiprimitive Gelfand ring, then
Po(R) = Mo(R) =To(R) = Ass(R).

Proof. By 3.7 it is sufficient to prove My(R) = Zyp(R). Let P €
Zo(R). Then P C M’ for a unique maximal ideal M’ € Max(R), therefore
Nyremax(r)—(arry Om ¢ P. This means that (yrenpa(r)— vy Om # (0),
hence there exists 0 # e € ﬂMeMaX(R)_{M,} M. Observe that e ¢ M’, thus
M’ is an isolated point of Max(R), and consequently P = M' € My(R). m

COROLLARY 4.2. In a semiprimitive Gelfand ring R every prime ideal is
either an essential ideal or an isolated maximal ideal. In particular,

Ass(R) = {M € Max(R) : M = (e), where e is an idempotent}.
Proof. Evident by 2.1 and 4.1. =

The following result shows that in a semiprimitive Gelfand ring, the set
of uniform ideals and the set of minimal ideals coincide.

PROPOSITION 4.3. Let R be a semiprimitive Gelfand ring and I be an
ideal in R. Then the following are equivalent.

(i) I is a uniform ideal.
(ii) For any two nonzero elements a,b € I, ab # 0.
(iii) I is a minimal ideal.

Proof. (i)=(ii). Since (a) N (b) # 0, there exist ¢1,co € R such that
acy = bcg # 0. This shows that abeica # 0 and therefore ab # 0.

(ii)=-(iii). By 2.2, it is sufficient to show that there is a fixed isolated point
M e My(R) such that Max(R) —{M} C M(a) for all a € I. Now let 0#a €
I, and let M’ and M" be two distinct elements in Max(R) — M(a) and G,
H be two disjoint open sets containing M’, M" respectively. Then there are
by € ﬂMeMaX(R)_G M — M’ and b, € ﬂMeMax(R)_HM — M". Clearly ab;
and aby are nonzero elements of R and abiabs € ﬂMeMax(R) M =0, a con-
tradiction. Next suppose that for distinct nonzero elements ay,as € I there
are distinct elements M;, My € Max(R) such that Max(R)—{M;} C M(ay)
and Max(R) — {M2} C M(az). Then we have ajas = 0, which contra-
dicts (ii).

(iii)=(i). Trivial. m
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