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ON THE MAXIMAL SPECTRUM OF COMMUTATIVE
SEMIPRIMITIVE RINGS

BY

K. SAME I (HAMADAN)

Abstract. The space of maximal ideals is studied on semiprimitive rings and reduced
rings, and the relation between topological properties of Max(R) and algebric properties of
the ring R are investigated. The socle of semiprimitive rings is characterized homologically,
and it is shown that the socle is a direct sum of its localizations with respect to isolated
maximal ideals. We observe that the Goldie dimension of a semiprimitive ring R is equal
to the Suslin number of Max(R).

1. Introduction. Throughout this paper, R is a commutative ring with
identity. We write Spec(R), Max(R) and Min(R) for the spaces of prime ide-
als, maximal ideals and minimal prime ideals of R, respectively. The topol-
ogy of these spaces is the Zariski topology (see [2], [4], [5] and [7]). Also we
denote by P0(R),M0(R) and I0(R) the sets of isolated points of the spaces
Spec(R), Max(R) and Min(R), respectively. We say R is semiprimitive if⋂

Max(R) = (0). For a semiprimitive Gelfand ring R, we show that

P0(R) =M0(R) = I0(R) = Ass(R).

A nonzero ideal in a commutative ring is said to be essential if it inter-
sects every nonzero ideal nontrivially, and the intersection of all essential
ideals, or the sum of all minimal ideals, is called the socle (see [9]). We
characterize the socle of semiprimitive rings in two ways: in terms of maxi-
mal ideals and in terms of localizations with respect to maximal ideals. We
denote the socle of R by S(R) or S and the Jacobson radical of R by J(R).

We know that the infinite intersection of essential ideals in any ring may
not be an essential ideal. We shall show that in a semiprimitive ring, every
intersection of essential ideals is an essential ideal if and only if M0(R) is
dense in Max(R).

A set {Bi}i∈I of nonzero ideals in R is said to be independent if Bi ∩
(
∑
i6=j∈I Bj) = (0), i.e.,

∑
i∈I Bi =

⊕
i∈I Bi. We say R has a finite Goldie

dimension if every independent set of nonzero ideals is finite, and if R does
not have a finite Goldie dimension, then the Goldie dimension of R, denoted
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by dimR, is the smallest cardinal number c such that every independent set
of nonzero ideals in R has cardinality less than or equal to c. Also the
smallest cardinal c such that every family of pairwise disjoint nonempty
open subsets of a topological space X has cardinality less than or equal to
c is called the Suslin number or cellularity of the space X and is denoted
by S(X) (see [3]). We show that for any semiprimitive ring R, the Suslin
number of Max(R) is equal to the Goldie dimension of R.

2. The socle of semiprimitive rings

Definition. Let M(a) = {M ∈ Max(R) : a ∈ M} for all a ∈ R, and
M(I) = {M(a) : a ∈ I} for all ideals I of R. An ideal M ∈ Max(R) is called
trivial if M is generated by an idempotent element, i.e., M = (e), where
e2 = e.

Lemma 2.1. Suppose Nil(R) = J(R) and M is a maximal ideal of R.
Then M =

√
(e), where e is an idempotent element if and only if M is an

isolated point of Max(R). Furthermore in this case, if M = (e) and e 6= 0,
then I = (1− e) is a nonzero minimal ideal.

P r o o f. Let M =
√

(e), where e2 = e. Then {M} = Max(R)−M(1−e),
i.e., M is an isolated point of Max(R). Conversely, suppose {M} is open
in Max(R). If Max(R) = {M}, then M =

√
(0). Otherwise, there exist

a, b, r ∈ R such that a ∈
⋂
M ′∈Max(R)−{M}M

′ −M , b ∈ M and ar + b = 1.

Obviously, ab ∈ J , hence (ab)n = 0 for some n > 0. We have 1 = (ar+b)2n =
anx1 + bnx2. Let e = bnx2. Then e(1− e) = 0 and this means that e is an
idempotent element of R. Also for every m ∈ M , there is n > 0 such that
[(1− e)m]n = 0, so mn ∈ (e), i.e., M =

√
(e).

The following proposition is proved in [8, 1.6].

Lemma 2.2. If R is a semiprimitive ring then I is a nonzero minimal
ideal of R if and only if I is contained in every maximal ideal except one,
i.e., |M(I)| = 2.

In [7], it is proved that the socle of C(X) (the ring of continuous func-
tions) consists of all functions that vanish everywhere except at a finite
number of points of X. We give a generalization of this fact.

Theorem 2.3. In a semiprimitive ring R, the socle S = S(R) is exactly
the set of all elements which belong to every maximal ideal except for a finite
number. In fact ,

S = {a ∈ R : Max(R)−M(a) is finite}.

P r o o f. Suppose a ∈ S. If a = 0, then Max(R)−M(a) = ∅. Otherwise,
a = a1 + . . .+ an, where each ai belongs to some idempotent minimal ideal
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in R. Thus by 2.2, a1 + . . .+ an belongs to every maximal ideal except for
a finite number. It follows that Max(R)−M(a) is finite.

Conversely, let Max(R) −M(a) be a finite set. We have to show that
a ∈ S. Let Max(R) −M(a) = {M1, . . . ,Mn}. We claim that each Mk,
k = 1, . . . , n, is an isolated point of Max(R). Indeed, for every i 6= k and
1 ≤ i ≤ n there exists ai ∈Mi −Mk. Set b = aa1 . . . ak−1ak+1 . . . an. Then
M(b) = Max(R) − {Mk}, so {Mk} is open, i.e., Mk is isolated. Now by
2.1, for each Mk, there exists a minimal ideal Ik such that R = Mk ⊕ Ik
and Ik = (ek), where ek is an idempotent element of R. Let b = a− ae1 −
. . . − aen. Then for every 1 ≤ k ≤ n, ekb ∈ J(R) = 0, and consequently
{M1, . . . ,Mn} ⊆ M(b). On the other hand, M(a) ⊆ M(b), hence b = 0,
therefore a = ae1 + . . .+ aen ∈ I1 + . . .+ In ⊆ S.

Now we give a characterization of the socle of semiprimitive rings by
localizations with respect to maximal ideals.

Theorem 2.4. Let R be a semiprimitive ring and let I be an ideal of R.
Then I ⊆ S if and only if the sequence

0→ I
φ→

⊕
M∈Max(R)

IM
π→

⊕
M∈Max(R)−M0(R)

IM → 0

is exact , where φ is the natural map and π is the projection map and IM
is the localization of I. Furthermore, the socle is the unique ideal with this
property.

P r o o f. (⇒) Suppose I ⊆ S, and consider the natural map φ : I →⊕
M∈Max(R) IM such that ∀a ∈ I, φ(a) = (a/1)M∈Max(R). Now suppose

a ∈ I. Then by 2.3, Max(R) −M(a) = {M1, . . . ,Mn}. Hence for each
1 ≤ k ≤ n, there exists ek such that Mk = (ek). Put b = e1 . . . en. It is
evident that ab ∈ J = (0) and b ∈ R −M for each M ∈ M(a), so a/1 = 0
in IM . Hence φ is a well defined homomorphism. Also

Kerφ = {a ∈ I : ∀M, ∃t ∈ R−M such that ta = 0} ⊆ J = (0),

thus φ is one-to-one. Now we show that Imφ=Kerπ. Suppose (b/t)M∈Max(R)

∈ Imφ. Then there is a ∈ I such that (a/1)M∈Max(R) = (b/t)M∈Max(R). Ob-
viously, a/1 = 0 in IM for every M ∈ Max(R)−M0(R). (Since Max(R)−
M(a) = {M1, . . . ,Mn}, for each 1 ≤ k ≤ n there is tk ∈ Mk −M . Let
t = t1, . . . tn. Then t ∈ R −M and at ∈ J = (0).) Thus φ(a) ∈ Kerπ and
consequently, Imφ ⊆ Kerπ. To prove Imφ ⊇ Kerπ, it is enough to show
that if 0 6= b/t ∈ IM , where M ∈ M0(R), then there exists a ∈ I such
that the M -component of φ(a) is b/t and all the other components are zero.
To see this, we note that b, t 6∈ M and M = (e) where e is an idempotent
element of R. So there exists t′ ∈ R such that tt′−1 ∈M . Let a = (1−e)t′b
and s = 1− e. We have s(at− b) = sb(tt′−1− tt′e) ∈ J = (0). So a/1 = b/t



8 K. SAMEI

in M -components, and also ea = 0, hence a/1 = 0 for all other components.
Thus the sequence is exact.

(⇐) Let a ∈ I and suppose the sequence

0→ I
φ→

⊕
M∈Max(R)

IM
π→

⊕
M∈Max(R)−M0(R)

IM → 0

is exact. Since φ(a) is well defined, every component of φ(a) is zero except
for a finite numbers of components M1, . . . ,Mn. Clearly, Max(R)−M(a) ⊆
{M1, . . . ,Mn}. Thus a ∈ S, i.e., I ⊆ S.

Finally, if S′ is an ideal of R that satisfies the conditions of the theorem,
then the exact sequences

0→ S
φ→

⊕
M∈Max(R)

SM
π→

⊕
M∈Max(R)−M0(R)

SM → 0,

0→ S′
φ→

⊕
M∈Max(R)

S′M
π→

⊕
M∈Max(R)−M0(R)

S′M → 0

yield S ⊆ S′ and S′ ⊆ S, respectively. Consequently, S = S′.

Corollary 2.5. In a semiprimitive ring R, for every ideal I ⊆ S we
have I ∼=

⊕
M∈M0(R) IM . In particular ,

S ∼=
⊕

M∈M0(R)

SM .

We note that minimal ideals in a semiprimitive ring R are projective,
so every ideal contained in the socle of R is projective. Next we have the
following result.

Corollary 2.6. Let R be a semiprimitive ring and let I ⊆ S be an
ideal. Then for each R-module A and n ≥ 2, we have∏

M∈Max(R)

ExtnR(IM , A) ∼=
∏

M∈Max(R)−M0(R)

ExtnR(IM , A).

P r o o f. The exact sequence

0→ I
φ→

⊕
M∈Max(R)

IM
π→

⊕
M∈Max(R)−M0(R)

IM → 0

yields the exact sequence

0 = Extn−1R (I, A)→ ExtnR

( ⊕
M∈Max(R)−M0(R)

IM , A
)

→ ExtnR

( ⊕
M∈Max(R)

IM , A
)
→ ExtnR(I, A) = 0.
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So we have∏
M∈Max(R)

ExtnR(IM , A) ∼= ExtnR

( ⊕
M∈Max(R)−M0(R)

IM , A
)

∼=
∏

M∈Max(R)−M0(R)

ExtnR(IM , A).

3. Essential ideals and space of maximal ideals. The following the-
orem characterizes essential ideals of a semiprimitive ring R via a topological
property.

Theorem 3.1. If I is a nonzero ideal in a semiprimitive ring R, then
the following are equivalent.

(i) I is an essential ideal in R.
(ii)

⋂
M(I) is a nowhere dense subset of Max(R), i.e., int

⋂
M(I) = ∅.

P r o o f. (i)⇒(ii). Suppose that the interior of
⋂
M(I) is nonempty;

denote it by U . Let M ∈ U . Since Max(R) − U is closed, there exists
a ∈

⋂
M ′∈Max(R)−U M

′−M . Thus ab = 0 for every b ∈ I, i.e., Ann(I) 6= (0),

a contradiction.
(ii)⇒(i). Let K be a nonzero ideal in R and 0 6= b ∈ K. Then Max(R)−

M(b) is an open set and clearly (Max(R)−M(b))∩(Max(R)−
⋂
M(I)) 6= ∅.

This implies that there is a ∈ I such that (Max(R) −M(b)) ∩ (Max(R) −⋂
M(a)) 6= ∅, so M(ab) 6= Max(R), i.e., 0 6= ab ∈ K ∩ I.

It is easy to see that a finite intersection of essential ideals in any com-
mutative ring is an essential ideal. But a countable intersection of essential
ideals need not be an essential ideal. The following result gives a necessary
and sufficient condition for essentiality of each intersection of essential ideals
in semiprimitive rings.

Theorem 3.3. In a semiprimitive ring R, the following are equivalent.

(i) Every intersection of essential ideals of R is an essential ideal.
(ii)

⋂
M∈M0(R)M = (0), i.e., M0(R) is dense in Max(R).

P r o o f. (i)⇒(ii). By hypothesis, Ann(S)=(0). Now if a∈
⋂
M∈M0(R)M ,

then for every minimal ideal I of R, aI = (0), so a ∈ Ann(S) and this implies
a = 0.

(ii)⇒(i). Clearly every minimal ideal of R is generated by an idempotent,
hence S=

⊕
e∈E(e), where E is a set of idempotents in R. We note that (e) is

minimal if and only if (1−e) is a trivial maximal ideal, and Ann(e) = (1−e).
But

Ann(S) =
⋂
e∈E

Ann(e) =
⋂
e∈E

(1− e) =
⋂

M∈M0(R)

M = 0.

This means that S is essential.
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Theorem 3.4. In a semiprimitive ring R, the socle S = S(R) is finitely
generated if and only if the number of trivial maximal ideals is finite, i.e.,
M0(R) is finite. In particular , if R is a noetherian ring then M0(R) is
finite.

P r o o f. (⇒) Without loss of generality we can suppose S = (a, b).
Assume M0(R) = {Mi : i ∈ I} is infinite. We know that for every i ∈
I, Mi = (e′i), where e′i is an idempotent element of R. Set ei = 1 − e′i
and T = {ei : i ∈ I}. Now we have a = ri1ei1 + . . . + rikeik and b =
rj1ej1 + . . . + rjsejs for some ri, rj ∈ R. On the other hand there exists
e ∈ T − {ei1 , . . . , eik , ej1 , . . . , ejs}, so e = ra + r′b, where r, r′ ∈ R. Also
eei ∈ J = (0) for every ei 6= e, so e = e2 = rae+ rbe = 0, a contradiction.

(⇐) Trivial.

The following theorem characterizes the Goldie dimension of semiprimi-
tive rings via a topological property.

Theorem 3.5. In a semiprimitive ring R, dimR = S(Max(R)).

P r o o f. Let dimR = c and
⊕

i∈I Bi be a direct sum of ideals in R,
where |I|, the cardinality of I, is less than or equal to c. Now for each i ∈ I,
let 0 6= ai ∈ Bi; then aiaj = 0 when i 6= j. Hence (Max(R) −M(ai)) ∩
(Max(R)−M(aj)) = ∅, and this implies that F = {Max(R)−M(ai) : i ∈ I}
is a collection of disjoint open sets in Max(R), i.e., S(Max(R)) ≥ c. Now
let {Gi : i ∈ I} be any collection of disjoint open sets in Max(R). Then for
all i ∈ I, there exists 0 6= ai ∈ R such that ai ∈

⋂
Max(R)−Gi

M . Now we

put Bi = (ai) for all i ∈ I and claim that {Bi}i∈I is an independent set
of nonzero ideals in R. To see this, we show that Bi ∩ (

∑
i6=r∈I Br) = (0).

Let a ∈ Bi ∩ (
∑
i 6=r∈I Br). Then a = aib = ar1b1 + . . . + arnbn, where

b, bk ∈ R, ai ∈ Bi and ark ∈ Brk and i 6= rk, for all k = 1, . . . , n. But
clearly aiark ∈ J = (0) for every k = 1, . . . , n and this implies that a2i b = 0,
i.e., a2 = 0 and therefore a = 0. This means that dimR = c ≥ |I|, i.e.,
c ≥ S(Max(R)).

The following proposition gives a characterization of essential ideals in
a reduced ring R (i.e., R has no nonzero nilpotent element) when Ass(R) is
dense in Spec(R).

Proposition 3.6. Let R be a reduced ring , and let E be an ideal of R.
Then the following are equivalent :

(i) Ass(R) is dense in Spec(R).
(ii) E is an essential ideal in R if and only if E 6⊆ P for every P ∈

Ass(R).

P r o o f. (i)⇒(ii). Suppose E is an essential ideal of R and P ∈ Ass(R).
Since P is not essential we have E 6⊂ P . Conversely, suppose E 6⊂ P for
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every P ∈ Ass(R). If E is not essential then there is 0 6= a ∈ R such that
aE = (0) =

⋂
P∈Ass(R) P , so a = 0, a contradiction.

(ii)⇒(i) . For every P ∈ Ass(R), there exists ap ∈
⋂
Q∈Min(R)−{P}Q−P .

Suppose E is the ideal generated by the ap’s, i.e., E = 〈ap : P ∈ Ass(R)〉.
Observe that E 6⊂ P for any P ∈ Ass(R), hence E is essential. Now if
a∈
⋂
P∈Ass(R) P , then aap = 0 for every P ∈ Ass(R), hence aE=(0). Since

E is essential, a = 0, therefore
⋂
P∈Ass(R) P = (0). This yields that Ass(R)

is dense in Spec(R).

The following proposition characterizes the isolated points of the spaces
of maximal ideals and minimal prime ideals in a reduced ring R.

Proposition 3.7. Let R be a reduced ring.

(i) If T ⊆ Min(R) is dense in Min(R), then Ass(R) ⊆ T .
(ii) P ∈ P0(R) if and only if P ∈ I0(R) and P is not the intersection of

the prime ideals which contain it strictly.
(iii) I0(R) = Ass(R).

In particular , if R is semiprimitive, we have

(iv) P0(R) =M0(R).

P r o o f. (i) Suppose P ∈ Ass(R), hence P = ann(a) for some a ∈ R.
Therefore P =

⋂
Q∈T −V (a)Q, where V (a) = {P ∈ Spec(R) : a ∈ P}. This

implies that P = Q for some Q ∈ T .
(ii) Suppose P ∈ P0(R). Then clearly P ∈ I0(R). Now if P =⋂

Q∈V (P )−{P}Q, where V (P ) = {Q ∈ Spec(R) : P ⊆ Q}, then we have⋂
Q∈Spec(R)−{P}Q ⊆ P , i.e., P 6∈ P0(R), a contradiction. Conversely,

suppose that P ∈ I0(R) and P 6=
⋂
Q∈V (P )−{P}Q. Then there exist a ∈⋂

Q∈Min(R)−{P}Q − P and b ∈
⋂
Q∈V (P )−{P}Q − P , thus we have ab ∈⋂

Q∈Spec(R)−{P}Q− P , i.e., P ∈ P0(R).

(iii) Assume that P ∈ I0(R). Then there exists a ∈
⋂
Q∈Min(R)−{P}Q−

P , hence P = ann(a) ∈ Ass(R). Conversely, let P ∈ Ass(R) so P = ann(a)
for some a ∈ R. Suppose P 6∈ I0(R); put T = Min(R) − {P}. Since⋂
Q∈T Q = (0), it follows that T is dense in Min(R) and (i) implies that

Ass(R) ⊆ T ; consequently, P ∈ T , a contradiction.
(iv) Suppose M ∈ M0(R). Then M = (e), where e is an idempotent

element of R. Hence for any M 6= P ∈ Spec(R), 1−e ∈ P . This means that⋂
P∈Spec(R)−{M} P 6⊂ M , i.e., M ∈ P0(R), and therefore M0(R) ⊆ P0(R).

The opposite inclusion is trivial.

4. Gelfand rings. A ring is called a Gelfand ring (or a pm ring) if each
prime ideal is contained in a unique maximal ideal. For a commutative ring
R, De Marco and Orsatti [2] show: R is Gelfand if and only if Max(R) is
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Hausdorff, and if and only if Spec(R) is normal. For each M ∈ Max(R), let
OM =

⋂
P⊆M P , where P ranges over all prime ideals contained in M . One

can easily see that in a semiprimitive Gelfand ring R, OM = {a ∈ R : M ∈
intM(a)} and for any P ∈ Spec(R), P ⊆ M if and only if OM ⊆ P (int is
the interior in the space Max(R)).

Proposition 4.1. If R is a semiprimitive Gelfand ring , then

P0(R) =M0(R) = I0(R) = Ass(R).

P r o o f. By 3.7 it is sufficient to prove M0(R) = I0(R). Let P ∈
I0(R). Then P ⊆ M ′ for a unique maximal ideal M ′ ∈ Max(R), therefore⋂
M∈Max(R)−{M ′}OM 6⊂ P . This means that

⋂
M∈Max(R)−{M ′}OM 6= (0),

hence there exists 0 6= e ∈
⋂
M∈Max(R)−{M ′}M . Observe that e 6∈M ′, thus

M ′ is an isolated point of Max(R), and consequently P = M ′ ∈M0(R).

Corollary 4.2. In a semiprimitive Gelfand ring R every prime ideal is
either an essential ideal or an isolated maximal ideal. In particular ,

Ass(R) = {M ∈ Max(R) : M = (e), where e is an idempotent}.

P r o o f. Evident by 2.1 and 4.1.

The following result shows that in a semiprimitive Gelfand ring, the set
of uniform ideals and the set of minimal ideals coincide.

Proposition 4.3. Let R be a semiprimitive Gelfand ring and I be an
ideal in R. Then the following are equivalent.

(i) I is a uniform ideal.

(ii) For any two nonzero elements a, b ∈ I, ab 6= 0.

(iii) I is a minimal ideal.

P r o o f. (i)⇒(ii). Since (a) ∩ (b) 6= 0, there exist c1, c2 ∈ R such that
ac1 = bc2 6= 0. This shows that abc1c2 6= 0 and therefore ab 6= 0.

(ii)⇒(iii). By 2.2, it is sufficient to show that there is a fixed isolated point
M ∈M0(R) such that Max(R)−{M} ⊆ M(a) for all a ∈ I. Now let 0 6=a ∈
I, and let M ′ and M ′′ be two distinct elements in Max(R)−M(a) and G,
H be two disjoint open sets containing M ′, M ′′ respectively. Then there are
b1 ∈

⋂
M∈Max(R)−GM −M ′ and b2 ∈

⋂
M∈Max(R)−HM −M ′′. Clearly ab1

and ab2 are nonzero elements of R and ab1ab2 ∈
⋂
M∈Max(R)M = 0, a con-

tradiction. Next suppose that for distinct nonzero elements a1, a2 ∈ I there
are distinct elements M1,M2 ∈ Max(R) such that Max(R)−{M1} ⊆ M(a1)
and Max(R) − {M2} ⊆ M(a2). Then we have a1a2 = 0, which contra-
dicts (ii).

(iii)⇒(i). Trivial.
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