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SEPARATION PROPERTIES IN
CONGRUENCE LATTICES OF LATTICES

BY

MIROSLAV P L O Š Č I C A (KOŠICE)

Abstract. We investigate the congruence lattices of lattices in the varieties Mn.
Our approach is to represent congruences by open sets of suitable topological spaces. We
introduce some special separation properties and show that for different n the lattices in
Mn have different congruence lattices.

1. Introduction. It is well known that a lattice is algebraic if and only if
it is the congruence lattice of some algebra. Much less is known if we require
this algebra to be of a special type. For instance, there is a longstanding
problem of whether every distributive algebraic lattice is isomorphic to the
congruence lattice of some lattice. We refer to this problem as CLP.

The only class of lattices for which the congruence lattices are well un-
derstood is the variety of distributive lattices. (We recall these results in
Section 4.) Recent investigations show that the congruence lattices of large
nondistributive lattices have much more complicated structure. Especially,
some refinement properties come into play. (See [10], [14].)

In this paper we investigate the congruence lattices of lattices belonging
to the varieties Mn generated by the lattices Mn, n ≥ 3. Here Mn denotes
the lattice of length 2 with n middle elements. As our main achievement we
consider the discovery of special conditions, called here n-separability. These
conditions show that lattices inMn for different n have, in general, different
congruence lattices. We believe that further investigation of conditions of
this kind can contribute significantly to the solution of CLP. We also hope
that the topological method used in this paper can be successfully applied to
other varieties of lattices and other algebras.

Our reference books are [8] for universal algebra, [4] for lattice theory
and [6] for topology. All notions unexplained in our paper can be found
there. We adopt the following notations. If f is a function, then dom(f)
and rng(f) stand for its domain and range, respectively. By ker(f) (the
kernel) we denote the binary relation on dom(f) given by (x, y) ∈ ker(f)
iff f(x) = f(y). The composition of functions is written in such a way that
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(fg)(x) = f(g(x)). By f�X we mean the restriction of f to X. If P is an
ordered set and x ∈ P then ↑x = {y ∈ P | y ≥ x} and ↓x = {y ∈ P | y ≤ x}.

2. Topological representation. An element a of a lattice L is called
strictly meet irreducible iff a =

∧
X implies that a ∈ X for every subset X

of L. The greatest element of L is not strictly meet irreducible. Let M(L)
denote the set of all strictly meet irreducible elements of L. We shall call a
set Z ⊆M(L) closed if Z = M(L) ∩ ↑x for some x ∈ L. A set is called open
if its complement is closed.

2.1. Lemma. Let L be a complete lattice. The sets ∅, M(L) are closed.
The intersection of any family of closed sets is closed. If L is distributive
then the union of two closed sets is closed.

P r o o f. It is easy to see that ∅ = M(L) ∩ ↑1, M(L) = M(L) ∩ ↑0,⋂
i∈I(M(L) ∩ ↑xi) = M(L) ∩ ↑(

∨
i∈I xi) for any xi ∈ L. Further, if L is

distributive then (M(L) ∩ ↑x1) ∪ (M(L) ∩ ↑x2) = M(L) ∩ ↑(x1 ∧ x2) for any
x1, x2 ∈ L.

Thus, if L is complete and distributive, then M(L) is a topological space.
For any topological space T let O(T ) denote the family of all open subsets,
ordered by set inclusion.

2.2. Theorem. If L is a distributive algebraic lattice, then L is isomor-
phic to O(M(L)).

P r o o f. The assignment x 7→ M(L) \ ↑x is clearly surjective and order
preserving. The rest follows from the fact that if L is algebraic, then x =∧

(M(L) ∩ ↑x) for every x ∈ L. (See 2.19 in [8] or I.4.23 in [3].)

Let us note that (under the assumptions of 2.2) the assignment x 7→ ↑x
is a bijection between elements of L and closed subsets of M(L). However,
it reverses order (x ≤ y iff ↑y ⊆ ↑x), so we choose the representation by
open sets.

Topological representations for distributive (algebraic) lattices appear
quite often in the literature, starting with M. H. Stone ([12]). Let us just
mention that the representations in [3] (Section V.4) and [4] (Section II.5)
are very close (but, in general, not equivalent) to our construction.

We are interested in the case when L = ConA is the congruence lattice
of an algebra A. Then M(ConA) is the set of all % ∈ ConA such that the
factor algebra A/% is subdirectly irreducible. In the sequel we investigate
connections between subdirect decomposition of an algebra A and topologi-
cal properties of the space M(ConA). We wish to mention that our original
source of motivation here is the natural duality theory of B. A. Davey and
H. Werner ([2], [1]). Although we make no explicit use of this theory, the
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reader might observe some of its characteristic features, especially the cor-
respondence between congruences of an algebra and open subsets of its dual
space.

For the rest of this section we make the following assumptions. Let the
algebra A belong to a congruence distributive, locally finite variety V. Let
SI(V) be the class of all subdirectly irreducible algebras in V. Choose S ⊆
SI(V) such that every T ∈ SI(V) is isomorphic to some S ∈ S and no two
members of S are isomorphic. Note that S may be a proper class.

We are going to describe M(ConA) by means of homomorphisms. For
S ∈ S let HS(A) denote the set of all surjective homomorphisms A → S
and H(A) =

⋃
{HS(A) | S ∈ S}. Clearly, ker(f) ∈ M(ConA) for every

f ∈ H(A). Let ϕ denote the surjective mapping H(A)→M(ConA) defined
by ϕ(f) = ker(f). We say that a set G ⊆ H(A) is closed iff G = ϕ−1(Z) for
some closed subset Z of M(ConA). Equivalently G is closed iff G = {f ∈
H(A) | ker(f) ⊇ α} for some α ∈ ConA. This obviously defines a topology
on H(A) and ϕ becomes continuous.

2.3. Theorem. The lattices O(H(A)) and ConA are isomorphic.

P r o o f. Let ψ : O(M(ConA)) → O(H(A)) be defined by ψ(Y ) =
ϕ−1(Y ). It is easy to see that ψ is a bijective lattice homomorphism. By
2.2, O(M(ConA)) is isomorphic to ConA.

The map ϕ need not be injective. It is easy to see that ker(f) = ker(g)
for f ∈ HS(A), g ∈ HT (A) iff there exists an isomorphism h : S → T such
that hf = g. Since we assume that all S ∈ S are mutually nonisomorphic,
this can only happen if S = T and h is an automorphism of S. In such a case
f and g are topologically indistinguishable in H(A), i.e. for every closed (or
open) set G we have f ∈ G iff g ∈ G. By identifying the indistinguishable
points we obtain a topological space H(A). More precisely, let ∼ be the
equivalence relation on H(A) given by f ∼ g iff ker(f) = ker(g). Let H(A)
be the factor set H(A)/∼. The ∼-class containing g ∈ H(A) will be denoted

by g. The set G ⊆ H(A) is defined to be closed if G = {g | g ∈ G} for some
closed set G ⊆ H(A). Equivalently, G is closed if G = {g | ker(g) ⊇ α} for
some α ∈ ConA. Now the assignment g 7→ ker(g) defines a homeomorphism
H(A)→M(ConA) and we have the following assertion.

2.4. Theorem. The spaces H(A) and M(ConA) are homeomorphic.
Consequently, the lattices O(H(A)) and ConA are isomorphic.

For a subset B ⊆ A let 〈B〉 denote the subalgebra of A generated by B.
Let X ⊆ A generate the whole A. (We are mainly interested in the case
when X is a free generating set, but this is not essential here.) Let X0 ⊆ X
be finite, S ∈ S and let r : X0 → S be a map that can be extended to a
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surjective homomorphism r∗ : 〈X0〉 → S. For any such r we define

Gr = {f ∈ H(A) | ker(f�〈X0〉) ⊆ ker(r∗)}.

Equivalently, f ∈ Gr iff there exists a homomorphism h : f(〈X0〉) → S with
hf�〈X0〉 = r∗.

2.5. Theorem. Every set of the form Gr is open and compact in H(A).
Every open set in H(A) is a union of sets of the form Gr. Consequently,
these sets form a basis of the topology on H(A).

P r o o f. Let α =
⋂
{ker(f) | f ∈ H(A) \Gr}. Then clearly H(A) \Gr ⊆

{f ∈ H(A) | ker(f) ⊇ α}. To show that Gr is open, it suffices to prove the
inverse inclusion. Let g ∈ Gr. We need to show that ker(g) + α.

Define an equivalence relation ≈ on H(A)\Gr by f1 ≈ f2 iff ker(f1�〈X0〉)
= ker(f2�〈X0〉). Because of the local finiteness of V, 〈X0〉 is finite and
we have only a finite number of equivalence classes C1, . . . , Cm. Let αi =⋂
{ker(f) | f ∈ Ci}. Clearly, α = α1 ∧ . . . ∧ αm. Since ker(g) is meet ir-

reducible it suffices to show that ker(g) + αi for every i. Choose f ∈ Ci

arbitrarily. Since f 6∈ Gr, we have ker(f�〈X0〉) * ker(r∗). Hence, there are
u, v ∈ 〈X0〉 with (u, v) ∈ ker(f) and (u, v) 6∈ ker(r∗). Then (u, v) ∈ ker(f ′)
for every f ′ ≈ f , hence (u, v) ∈ αi. On the other hand, ker(g�〈X0〉) ⊆
ker(r∗), hence (u, v) 6∈ ker(g).

To prove the compactness, we first show that α is compact. The relations
α′i = αi∩〈X0〉2 are congruences of 〈X0〉. We already know that α′i * ker(r∗).
Since r∗(〈X0〉) ∈ S, ker(r∗) is strictly meet irreducible in Con〈X0〉 and
we deduce that α ∩ 〈X0〉2 = α′1 ∧ . . . ∧ α′m * ker(r∗). Let β ∈ ConA be
generated by α ∩ 〈X0〉2. We claim that α = β. Clearly β ⊆ α. Assume now
that (u, v) 6∈ β. There is a surjective homomorphism f : A → T ∈ V with
ker(f) = β. The algebra T need not be subdirectly irreducible. However, by
the subdirect representation theorem, there exists S ∈ S and a surjective
homomorphism h : T → S such that (f(u), f(v)) 6∈ ker(h). Then hf ∈ H(A)
and (u, v) 6∈ ker(hf). Further, α ∩ 〈X0〉2 ⊆ ker(f�〈X0〉) ⊆ ker(hf�〈X0〉),
hence ker(hf�〈X0〉) * ker(r∗), hf 6∈ Gr and α ⊆ ker(hf). Thus, (u, v) 6∈ α,
which shows that α = β. Since 〈X0〉 is finite, β is finitely generated and
hence compact.

By 2.3 the lattices O(H(A)) and ConA are isomorphic and Gr in this
isomorphism corresponds to α (since Gr = {f ∈ H(A) | ker(f) + α}).
Hence, Gr is a compact element of the lattice O(H(A)), which clearly means
that Gr is a compact subspace of H(A).

For the last assertion, let G ⊆ H(A) be open and g ∈ G. We need
to find Gr such that g ∈ Gr ⊆ G. Since G is open, we have G = {f ∈
H(A) | ker(f) + θ} for some θ ∈ ConA. Hence, there are u, v ∈ A with
(u, v) ∈ θ \ ker(g). There is a finite set X0 ⊆ X such that u, v ∈ 〈X0〉.
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There exist T ∈ S and a surjective homomorphism h : g(〈X0〉) → T such
that (g(u), g(v)) 6∈ ker(h). Set r = hg�X0. Then clearly r∗ = hg�〈X0〉,
hence ker(g�〈X0〉) ⊆ ker(r∗) and g ∈ Gr. Further, for every f ∈ Gr we have
(u, v) 6∈ ker(r∗) ⊇ ker(f�〈X0〉), hence θ * ker(f) and therefore f ∈ G.

2.6. Corollary. An open subset of H(A) is compact iff it is a finite
union of sets of the form Gr.

Another consequence is that H(A) has a basis of compact open sets,
but this also follows easily from the fact that O(H(A)) is isomorphic to the
algebraic lattice ConA.

Further, we define Gr = {f ∈ H(A) | f ∈ Gr} and obtain the following
consequence.

2.7. Corollary. All sets Gr are compact and form a basis of the topol-
ogy on H(A). Compact open sets in H(A) are exactly the finite unions of
sets of the form Gr.

Since the whole space H(A) is an open set, it is also a union of sets of
the form Gr.

2.8. Corollary. The spaces M(ConA), H(A) and H(A) are locally
compact.

The spaces M(ConA), H(A) and H(A) need not be compact. Also, note
that the topology on H(A) is often close to the usual product topology.
This is especially true if S consists of a single algebra S with no proper
automorphisms. In this case H(A) inherits its topology from the product
topology of SA (with S discrete). We discuss such an example in Section 4.

3. Free algebras. Let V and S be as in the previous section. Let F (X)
denote the free algebra in V with X as free generating set.

3.1. Lemma. Let L be a distributive lattice, x ∈ L and Z = M(L)∩↑x.
Then the subspace Z of M(L) is homeomorphic to M(↑x).

P r o o f. It is easy to see that q ∈ M(↑x) iff q ∈ M(L) and q ≥ x. Hence
the sets Z and M(↑x) are equal and it is easy to check that their topologies
coincide.

3.2. Theorem. For a distributive lattice L the following conditions are
equivalent.

(1) L ∼= ConA for some A ∈ V;

(2) M(L) is homeomorphic to a closed subspace of M(ConF (X)) for
some set X;

(3) L ∼= O(Z) for some X and some closed subspace Z of M(ConF (X));

(4) M(L) is homeomorphic to a closed subspace of H(F (X)) for some X;

(5) L ∼= O(Z) for some X and a closed subspace Z of H(F (X)).
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P r o o f. (1)⇒(2). Let L ∼= ConA. There is a set X and θ ∈ ConF (X)
such that A ∼= F (X)/θ. Set Z = M(ConF (X)) ∩ ↑θ. Then ConA ∼= ↑θ and
therefore M(L) is homeomorphic to M(↑θ), which by 3.1 is homeomorphic
to Z.

(2)⇒(3). If M(L) is homeomorphic to Z then, by 2.2, L ∼= O(M(L)) ∼=
O(Z).

(3)⇒(1). Let L ∼= O(Z) and Z = M(ConF (X)) ∩ ↑θ. We set A =
F (X)/θ. By 3.1, Z is homeomorphic to M(↑θ), hence L ∼= O(M(↑θ)) ∼=
O(M(ConA)) ∼= ConA.

(2)⇔(4) and (3)⇔(5) follow from 2.4.

Thus, our strategy is to describe the spaces H(F (X)) and their closed
subspaces. (Note that, in accordance with 2.2, we use the lattices of open
sets in such closed subspaces for the representation of congruence lattices.)
The existence of a free generating set allows some simplification in the de-
scription of the spaces H(A) and H(A). Every map f : X → S ∈ S extends
uniquely to a homomorphism f∗ : F (X) → S. Therefore, we can identify
the set H(F (X)) with the set of all maps f : X → S ∈ S such that f(X)
generates S. The sets Gr are defined for all r : X0 → S ∈ S such that r(X0)
generates S.

4. Distributive lattices. Before we turn to the varieties Mn, let
us briefly discuss the well known case of distributive lattices. The variety
D of distributive lattices contains only one subdirectly irreducible member,
namely the two-element lattice D = {0, 1}. In this case H(F (X))=H(F (X))
and this space is isomorphic to the space DX \ {o, i} with the usual product
topology. (Here o and i denote the two constant functions X → {0, 1}.)

4.1. Theorem. For a distributive lattice L, the following conditions
are equivalent.

(1) L ∼= ConM for some M ∈ D;

(2) L ∼= O(Z \ {z}) for some Boolean space Z and some z ∈ Z;

(3) L ∼= O(Z \ {z1, z2}) for some Boolean space Z and some z1, z2 ∈ Z;

(4) L ∼= O(Z ′) for some locally compact, Hausdorff, zero-dimensional
space Z ′.

P r o o f. It is a topological exercise to show that Z ′ satisfies the conditions
in (4) iff Z ′ = Z \ {z} iff Z ′ = Z \ {z1, z2} for some Boolean (compact,
Hausdorff, zero-dimensional) space Z. We omit this proof. The equivalence
of (1) and (3) follows from 3.2 and is also known from Priestley or Stone
duality. (See e.g. [4] or [11].)

Boolean spaces are rather well investigated and some of their properties
are easy to deduce. In a Hausdorff space, every compact set is closed and
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therefore every compact open set is clopen (closed and open). Furthermore,
the intersection of two compact sets is compact ([6], exercise B in Chapter
5). Thus, the compact elements in the congruence lattice of a distributive
lattice are closed under intersection. In fact, L ∼= ConM for some M ∈ D iff
the compact elements of L form a generalized Boolean algebra. (See [4], II.3
and II.4.) This nontopological characterization can also be deduced from (4).

The situation becomes even simpler if we consider the class D01 of
bounded distributive lattices. Then L ∼= ConM for some M ∈ D01 iff
L ∼= O(Z) for some Boolean space Z iff the compact elements of L form
a Boolean algebra.

5. The varieties Mn. For n ≥ 3 let Mn = {0, 1, a1, . . . , an} denote the
lattice having the smallest element 0, the greatest element 1 and n mutually
incomparable “middle” elements a1, . . . , an.
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LetMn denote the variety generated by the lattice Mn. It is well known
that subdirectly irreducible members of Mn are (up to isomorphism) the
lattice D = {0, 1} and the lattices M3,M4, . . . ,Mn. (This follows easily from
Jónsson’s lemma.)

For any set X let Fn(X) denote the free algebra in Mn with X as the
set of free generators. According to Section 3, the points of H(Fn(X)) are
all maps f : X → Mn such that either f(X) = {0, 1} or {a1, . . . , ak} ⊆
f(X) ⊆ {0, 1, a1, . . . , ak} for some k ≥ 3. (Notice that all subdirectly irre-
ducible algebras in Mn are subalgebras of Mn, so we only consider maps
X → Mn.) For every f ∈ H(Fn(X)) let f∗ denote its unique extension to a
homomorphism Fn(X)→Mn.

The sets Gr are defined for all finite X0 ⊆ X and all r : X0 → Mn such
that r(X0) = {0, 1} or {a1, . . . , ak} ⊆ r(X0) ⊆ {0, 1, a1, . . . , ak} for some
k ≥ 3. Now we shall look closer at these sets. Let An be the set of all
automorphisms of Mn, i.e. all permutations π : Mn → Mn with π(0) = 0
and π(1) = 1. Thus, f, g ∈ H(Fn(X)) are indistinguishable (i.e. ker(f∗) =
ker(g∗)) iff πf = g for some π ∈ An. In such a case we write f ∼ g.
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5.1. Lemma. If r(X0) = {0, 1} then

Gr = {f ∈ H(Fn(X)) | r−1(0) ⊆ (πf)−1({0, a1}) and

r−1(1) ⊆ (πf)−1({1, a2}) for some π ∈ An}.

If {a1, . . . , ak} ⊆ r(X0) ⊆ {0, 1, a1, . . . , ak} for some k ≥ 3 then

Gr = {f ∈ H(Fn(X)) | r = πf�X0 for some π ∈ An}

and the set Gr is clopen.

P r o o f. Consider the lattice homomorphism s : {0, 1, a1, a2} → {0, 1} de-
fined by s(0) = s(a1) = 0 and s(1) = s(a2) = 1. If r−1(0) ⊆ (πf)−1({0, a1})
and r−1(1) ⊆ (πf)−1({1, a2}) then r = sπf�X0, which implies that
ker(r∗) ⊇ ker(πf∗�〈X0〉) = ker(f∗�〈X0〉), hence f ∈ Gr.

Conversely, let f ∈ Gr, i.e. ker(f∗�〈X0〉) ⊆ ker(r∗). Since r∗(X0) =
{0, 1}, there is a lattice homomorphism g : f∗(〈X0〉) → {0, 1} with r∗ =
gf∗�〈X0〉. For k ≥ 3 there is no lattice homomorphism from Mk onto {0, 1}.
Thus, f∗(〈X0〉) is a sublattice of Mn not isomorphic to Mk and we can
assume that f∗(〈X0〉) ⊆ {0, 1, aj , ak} for some j 6= k. The equality g(aj) =
g(ak) is impossible, because it implies that g is constant while r∗ is not.
Therefore we can assume that g−1(0) ⊆ {0, aj} and g−1(1) ⊆ {1, ak}. Choose
π ∈ An such that π(aj) = a1 and π(ak) = a2. Then r−1(0) ⊆ (πf)−1({0, a1})
and r−1(1) ⊆ (πf)−1({1, a2}).

Now the second formula. If πf�X0 = r then obviously ker(r∗) =
ker(f∗�〈X0〉), hence f ∈ Gr. Conversely, let f ∈ Gr. Now we have r∗(〈X0〉) =
Mk and there is a surjective homomorphism g : f∗(〈X0〉) → Mk with
r∗ = gf∗�〈X0〉. The only sublattices of Mn that can be homomorphically
mapped onto Mk are those isomorphic to Mk. Thus, we can assume that
f∗(〈X0〉) = {0, 1, ai1 , . . . , aik}, g(ai1) = a1, . . . , g(aik) = ak. Choose π ∈ An

such that π(ai1) = a1, . . . , π(aik) = ak. Then clearly r = πf�X0.
It remains to show that Gr is closed. Let f ∈ H(Fn(X))\Gr. Since f(X)

is finite, it is possible to choose a finite set X1 such that X0 ⊆ X1 ⊆ X and
f(X1) = f(X). Let s = f�X1. Then Gs is defined, f ∈ Gs and we claim
that Gr ∩ Gs = ∅. Let g ∈ Gr. Then g∗(〈X0〉) is isomorphic to r∗(〈X0〉)
and hence to Mk. Thus, g cannot belong to Gs if s(X1) = {0, 1}. Finally,
if s(X1) 6= {0, 1} then g ∈ Gs would imply f�X1 = s = πg�X1 for some
π ∈ An and then also f�X0 = πg�X0, hence f ∈ Gr, which is not true.

Recall that the space H(Fn(X)) arises from H(Fn(X)) by identifying
the indistinguishable points. By 3.2, the congruence lattices of algebras in
Mn are exactly the lattices of the form O(Z), where Z is a closed sub-
space of H(Fn(X)). Thus, we would like to describe the closed subspaces of
H(Fn(X)). Before we try to do so, let us present an illustrative example.

Let n = 3 and let ω denote the set of all nonnegative integers. The
points of H(F3(ω)) will be denoted as sequences of elements 0, 1, a1, a2, a3.
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Let W be the subspace of H(F3(ω)) whose points are x = (0, 1, 0, 0, 0 . . .),
y = (1, 0, 0, 0, 0 . . .), z1 = (a1, a2, a3, 0, 0 . . .), z2 = (a1, a2, 0, a3, 0 . . .), z3 =
(a1, a2, 0, 0, a3, 0 . . .), . . . (More precisely, the points of W are the ∼-equiv-
alence classes containing these sequences.) It is not difficult to check that W
is indeed a closed subspace. Topologically, W consists of a discrete sequence
{z1, z2, z3, . . .} converging to its two limit points x, y. Hence O(W ) is the
family of all sets G ⊆W satisfying the condition

if x ∈ G or y ∈ G then W \G is finite.

Such a set G is compact if it is finite or contains x or y. Notice that W
is not Hausdorff and the intersection of two compact sets need not be
compact. (Indeed, if {x, y} ∩ G1 = {x}, {x, y} ∩ G2 = {y}, then G1 ∩
G2 is not compact.) This is probably the simplest example of a congru-
ence lattice representable in M3 but not in the variety D of distributive
lattices. Note that we can explicitly indicate the lattice L ∈ M3 whose
congruence lattice is O(W ). Namely, L is the sublattice of (M3)ω gener-
ated by the elements (0, 1, a1, a1, a1 . . .), (1, 0, a2, a2, a2 . . .), (0, 0, a3, 0, 0 . . .),
(0, 0, 0, a3, 0 . . .), (0, 0, 0, 0, a3, 0 . . .), etc.

Now we turn to the question of what can be said about the closed sub-
spaces of H(Fn(X)) in general. Some properties are easy to observe. Let
Z ⊆ H(Fn(X)) be closed. It is natural to consider Z as the union of two
sets Z = Z0 ∪ Zn, where Z0 = {f ∈ Z | f(X) = {0, 1}} and Zn = Z \ Z0.

Note that if Z corresponds (in the sense of 3.2) to L ∈ Mn then Z0

corresponds to the largest distributive quotient of L. However, if Z is an
abstract space, then its partition into Z0 and Zn is not determined uniquely.
It is easy to find closed subspaces Y and Z of H(Fn(X)) such that Y and
Z are homeomorphic, while Y0 and Z0 are not. This ambiguity is natural,
since nonisomorphic lattices may have isomorphic congruence lattices.

5.2. Lemma. Let W ⊆ Z be closed and f ∈ Zn \W. Then f ∈ Gr

and Gr ∩ W = ∅ for some r : X0 → Mn with {a1, . . . , ak} ⊆ r(X0) ⊆
{0, 1, a1, . . . , ak} for some k ≥ 3.

P r o o f. Since W is closed, there is some set Gs with f ∈ Gs and Gs∩W =
∅. The only difficulty is that s may be a function X0→{0, 1}. Since f ∈Zn,
there is a finite set Y ⊆ X with X0 ⊆ Y and {a1, . . . , ak} ⊆ f(Y ) ⊆
{0, 1, a1, . . . , ak}. Set r = f�Y . Then clearly Gr ⊆ Gs and f ∈ Gr.

5.3. Lemma.

(1) Z is a T1-space (i.e. all singletons are closed sets);

(2) Z has a basis of compact open sets;

(3) Z0 is a closed subspace of Z;

(4) both Z0 and Zn are locally compact, Hausdorff, zero-dimensional.
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P r o o f. (1) is a direct consequence of the fact that all subdirectly irre-
ducible algebras in Mn are simple. Indeed, for every α ∈ M(ConFn(X))
the closed set M(ConFn(X))∩ ↑α is equal to α. Thus, H(Fn(X)) is homeo-
morphic to the T1-space M(ConFn(X)) and Z is its subspace.

(2) is satisfied because O(Z) is isomorphic to ConA for some A ∈ Mn,
which is an algebraic lattice.

For every f ∈ Zn there is a finite set X0 ⊆ X such that f(X0) =
{a1, a2, a3}. For r = f�X0 we have f ∈ Gr and Gr ∩ Z0 = ∅. Hence, every
point of Zn has a neighbourbood disjoint from Z0, which means that Zn is
open and Z0 closed. Thus, (3) holds.

The basis of the topology on Z0 consists of all sets of the form Gr ∩Z0 =
{f ∈ Z0 | f�X0 = r�X0}, where X0 ⊆ X is finite and r : X0 → {0, 1}
is surjective. It is easy to see that all these sets are clopen (in Z0) and
they separate the points of Z0, hence Z0 is Hausdorff and zero-dimensional.
Further, any f ∈ Z0 belongs to some Gr, which is compact by 2.7. Since Z0

is closed, Gr ∩ Z0 is compact, showing that Z0 is locally compact.

By 5.2, every open subset of Zn is a union of clopen sets. Hence, Zn

is zero-dimensional. Since one-element sets are closed, 5.2 implies that any
two points can be separated by a clopen set, hence Zn is Hausdorff. Further,
any f ∈ Zn belongs to some Gr with r : X0 → Mn such that {a1, . . . , ak} ⊆
r(X0) ⊆ {0, 1, a1, . . . , ak} for some k ≥ 3. Since Z is closed in H(Fn(X)),
the set Zn ∩Gr = Z ∩Gr is compact and hence Zn is locally compact.

For later use, let us explicitly state the following consequence of 5.2 and
5.3(1).

5.4. Corollary. If f ∈ Zn and g1, . . . , gm ∈ Z are mutually different
then there is a clopen set C ⊆ Z such that f ∈ C and g1, . . . , gm 6∈ C.

By 5.3, the spaces Z0 and Zn look very much the same. By 4.1 they
arise from Boolean spaces by deleting one point. In other words, they are
dual spaces of some distributive lattices. The difficult point is how Z0 and
Zn are glued together. We have seen in our example that while Z0 and Zn

are Hausdorff, Z need not be Hausdorff. Namely, Z0 may contain points that
do not have disjoint neighbourhoods in Z. Equivalently a sequence (or, more
generally, a net) in Zn may have two limit points in Z0. The next lemma
actually says that such a net cannot have three limit points.

5.5. Lemma. If f, g, h ∈ Z are mutually different then there are open
sets A,B,C ⊆ Z such that f ∈ A, g ∈ B, h ∈ C and A ∩B ∩ C = ∅.

P r o o f. If one of f, g, h belongs to Zn (say f ∈ Zn) then by 5.4 there
is a clopen set Gr with f ∈Gr and g, h 6∈Gr. We can set A= Z ∩ Gr and
B=C=Z\Gr.
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Assume now that f, g, h ∈ Z0, hence f, g, h are functions X → {0, 1}.
Since they are different, we have x, y, z ∈ X such that f(x) 6= g(x), f(y) 6=
h(y), g(z) 6= h(z). Let X0 be a finite subset of X such that x, y, z ∈ X0

and f(X0) = g(X0) = h(X0) = {0, 1}. Set r = f�X0, s = g�X0, t = h�X0,
A = Gr, B = Gs, C = Gt. Then clearly f ∈ A, g ∈ B, h ∈ C. It remains to
show that A∩B ∩C = ∅. For contradiction, suppose that k ∈ Gr ∩Gs ∩Gt.
Since {r(x), s(x)} = {0, 1}, k(x) must be in {a1, . . . , an} by 5.1. Similarly,
k(y), k(z) ∈ {a1, . . . , an}. Now we claim that k(x), k(y), k(z) are different.
Suppose k(x) = k(y). Then, by 5.1, r(x) = r(y), s(x) = s(y), t(x) = t(y).
Since r(x) 6= s(x) and r(y) 6= t(y), necessarily s(x) = t(x) = t(y) = s(y).
Since s(z) 6= t(z), we have without loss of generality s(y) = s(z), t(y) 6= t(z).
Since k ∈ Gs ∩ Gt, the equality s(y) = s(z) implies k(y) = k(z), while
t(y) 6= t(z) implies k(y) 6= k(z), which is impossible. Hence, k(x) 6= k(y) and
similarly k(y) 6= k(z) 6= k(x). By 5.1, such a k cannot belong to Gr.

6. Uniform separation. In the previous sections we have seen that
the spaces H(Fn(X)) for different n look very similar. In this section we
introduce topological properties that distinguish these spaces.

A subset Q of a topological space T is called discrete if for every q ∈ Q
there is an open set C with C ∩ Q = {q}. The space T will be called n-
uniformly separable (n ≥ 3) if for every discrete set Q ⊆ T there is a family
{Bpq | p, q ∈ Q, p 6= q} of open sets such that p ∈ Bpq for every p, q ∈ Q
and

⋂
{Bpq | p, q ∈ Q0, p 6= q} = ∅ for every n-element set Q0 ⊆ Q.

By 5.5, any three points have disjoint neighbourhoods. However, n-
uniform separability requires that disjoint neighbourhoods can be chosen
simultaneously for large families of points.

6.1. Lemma. Let X1, . . . , Xk be finite sets, k ≥ 3, and Y = X1 ∪ . . . ∪
Xk. Let f1, . . . , fk be functions Y → {0, 1} such that for all i 6= j there exists
x ∈ Xi with fi(x) 6= fj(x). Let h be a function such that dom(h) = Y and
ker(fi�(Xi ∪ Xj)) = ker(h�(Xi ∪ Xj)) for all i, j. Then h takes at least k
values (i.e., rng(h) is at least k-element).

P r o o f. Our assumptions imply that the sets Xi are nonempty and ker(h)
⊆ ker(fi) for every i. Indeed, suppose that (x, y) 6∈ ker(fi), x ∈ Xj , y ∈ Xm,
and choose z ∈ Xi arbitrarily. Then either (z, x) ∈ ker(fi) or (y, z) ∈ ker(fi);
we can assume that (z, x) ∈ ker(fi). Then x, z ∈ Xi ∪ Xj , hence (x, z) ∈
ker(h). Similarly, y, z ∈ Xi ∪ Xm implies that (y, z) 6∈ ker(h). Then clearly
(x, y) 6∈ ker(h).

Our next claim is that h�(X1 ∪ X2) is not constant. Suppose it is. Then
every fi must be constant onX1 ∪X2. Without loss of generality, f1(X1 ∪X2)
= {0}. For every i 6= 1 the functions fi and f1 differ onX1, hence fi(X1 ∪ X2)
= {1}. But then there is no x ∈ X2 with f2(x) 6= f3(x), a contradiction.
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Hence, h is not constant onX1 ∪X2. On the other hand, ker(h�(X1 ∪X2))
= ker(f1�(X1 ∪ X2)), so h cannot take three values onX1 ∪ X2. We conclude
that h takes exactly two values onX1 ∪X2. (And similarly for anyXi ∪Xj .)

Now we show that h takes at least three values on X1∪X2∪X3. Suppose it
takes only two values on X1∪X2∪X3. We claim that ker(f1�(X1∪X2∪X3)) =
ker(h�(X1∪X2∪X3)). The inclusion ker(h) ⊆ ker(f1) is already proved. Let
x, y ∈ X1 ∪ X2 ∪ X3, h(x) 6= h(y). We need to show that f1(x) 6= f1(y).
This is clear if x, y ∈ X1 ∪ X2 or (x, y) ∈ X1 ∪ X3. The remaining case is
x ∈ X2, y ∈ X3. Choose z ∈ X1 arbitrarily. Since h takes only two values
on X1 ∪X2 ∪X3, we have either h(x) = h(z) or h(y) = h(z). Without loss
of generality, h(x) = h(z) 6= h(y). Since x, z ∈ X1 ∪X2 and y, z ∈ X1 ∪X3,
we conclude that f1(x) = f1(z) 6= f1(y).

Similar arguments hold for f2 and f3. Hence, for every i = 1, 2, 3 we
have ker(fi�(X1 ∪X2 ∪X3)) = ker(h�(X1 ∪X2 ∪X3)). There are only two
functions X1 ∪ X2 ∪ X3 → {0, 1} with this property, hence two of f1, f2, f3
must coincide on X1 ∪X2 ∪X3, which contradicts our assumptions.

We have proved that h takes two values on X1 ∪ X2, two values on
X1 ∪X3 but at least three values on X1 ∪X2 ∪X3. This is only possible if
h is constant on X1. For similar reasons, h is constant on each Xi. Since h
is not constant on Xi ∪ Xj , all the sets Xi must be disjoint and h takes a
different value on each Xi.

6.2. Theorem. For any set X and every n ≥ 3, the spaces H(Fn(X))
and H(Fn(X)) are (n+ 1)-uniformly separable.

P r o o f. We present the proof for H(Fn(X)). (Transition to H(Fn(X))
is obvious.) As in the previous section, let H0 = {f ∈ H(Fn(X)) | f(X) =
{0, 1}} and Hn = H(Fn(X)) \ H0. Let Q ⊆ H(Fn(X)) be discrete. If p ∈
Q ∩ Hn then, by 5.4, for every q ∈ Q, q 6= p, there are open sets Bpq and
Bqp such that p ∈ Bpq, q ∈ Bqp and Bpq ∩ Bqp = ∅. Suppose now that
p, q ∈ Q ∩ H0. By our assumption, for every t ∈ Q there exists an open
set Ct with Ct ∩ Q = {t}. We can assume that Ct = Grt for a suitable
function rt. If t ∈ H0 then clearly rt = t�Xt for some finite set Xt. We set
rpq = p�(Xp ∪ Xq) and Bpq = Grpq . It remains to verify that the family
{Bpq | p, q ∈ Q, p 6= q} has the required property.

It is obvious that p ∈ Bpq for every p, q. Now let q1, . . . , qn+1 be different
elements of Q. Write Bij instead of Bqiqj . If any of qi belongs to Hn then
clearly

⋂
{Bij | i 6= j} = ∅. So assume that q1, . . . , qn+1 ∈ H0. For contra-

diction suppose that p ∈
⋂
{Bij | i 6= j}. Set X ′i = {x ∈ Xqi | qj(x) 6= qi(x)

for some j ∈ {1, . . . , n+ 1}} and Y = X ′1 ∪ . . . ∪X ′n+1. For any y ∈ Y , p(y)
cannot be 0, because if y ∈ X ′i then qi(y) = 1 or qj(y) = 1 for some j and
we suppose that p ∈ Bij ∩ Bji. (See 5.1.) For similar reasons, p(y) 6= 1 and
therefore p(y) ∈ {a1, . . . , an}.
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By 5.1 we have ker(p�(Xqi∪Xqj ))=ker(rqiqj ) = ker(qi�(Xqi∪Xqj )). Since
X ′i ∪ X ′j ⊆ Xqi ∪ Xqj , we also have ker(p�(X ′i ∪ X ′j)) = ker(qi�(X ′i ∪ X ′j)).
Further, if i 6= j then qj 6∈ Cqi , hence qj(x) 6= rqi(x) = qi(x) for some
x ∈ Xi, which shows that x ∈ X ′i. Thus, we can apply 6.1 to the functions
fi = qi�Y and h = p�Y . We deduce that h takes at least n+ 1 values, which
is impossible because p(Y ) ⊆ {a1, . . . , an}.

It is easy to see that if a space is n-uniformly separable then all its sub-
spaces are n-uniformly separable. By 3.2 we have the following consequence.

6.3. Theorem. If L ∼= ConK for some K ∈Mn then M(L) is (n+1)-
uniformly separable.

Now we show that H(Fn(X)) is not n-uniformly separable if the cardi-
nality of X is at least ℵ2. We need the following combinatorial principle of
Hajnal and Máté. For a set X let [X]2 denote the set of all two-element
subsets of X. Analogously, let [X]<ω be the set of all finite subsets of X.

6.4. Lemma (see [5], Section 3.2). Let |X| ≥ ℵ2 and let f be a function
[X]2 → [X]<ω. Then for every natural number n there are x1, . . . , xn ∈ X
such that xi 6∈ f({xj , xk}) whenever i 6= j 6= k 6= i.

The special case n = 3 was proved by Kuratowski [7]. The importance
of this principle for congruence lattices was discovered by Wehrung in [13]
and [14]. The principle was subsequently used in [10] and [9].

6.5. Theorem. If |X| ≥ ℵ2 and n ≥ 3, then the spaces H(Fn(X)) and
H(Fn(X)) are not n-uniformly separable.

P r o o f. For every x ∈ X we define fx : X → {0, 1} by fx(x) = 1 and
fx(y) = 0 for all y 6= x. Let Q = {fx | x ∈ X}. Clearly, Q is discrete.
(Indeed, if {x} ( X0 ⊆ X and r = fx�X0, then Gr is defined, fx ∈ Gr

and Gr ∩ Q = {fx}.) Suppose that {Bxy | x, y ∈ X, x 6= y} is a family
of open sets with fx ∈ Bxy. We can assume that Bxy = Grxy

for some
rxy : Xxy → {0, 1}. (Necessarily, rxy is the restriction of fx to some finite
set.) Let f : [X]2 → [X]<ω be defined by f({x, y}) = dom(rxy) ∪ dom(ryx).
Using 6.4 we find x1, . . . , xn ∈ X such that xi 6∈ dom(rxjxk

) whenever
i 6= j 6= k 6= i. Define g : X→Mn by g(xi)=ai and g(y)=0 otherwise.

We claim that g ∈
⋂
{Bxixj

| i, j ∈ {1, . . . , n}, i 6= j}. Set r = rxixj
.

Let π ∈ An be such that π(ai) = a2, π(aj) = a1. If x ∈ r−1({1}) then
x = xi, g(x) = ai and πg(x) = a2. If x ∈ r−1({0}) then either x = xj and
πg(x) = a1 or x 6∈ {x1, . . . , xn} and g(x) = πg(x) = 0. Hence, r−1({1}) ⊆
(πg)−1({1, a2}) and r−1({0}) ⊆ (πg)−1({0, a1}), which by 5.1 means that
g ∈ Bxixj .

If L = ConFn+1(X) then M(L) is homeomorphic to H(Fn+1(X)) and
hence not (n+ 1)-uniformly separable. By 6.3 we have the following result.
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6.6. Theorem. Let n ≥ 3, |X| ≥ ℵ2 and L = ConFn+1(X). Then
there is no K ∈Mn such that ConK ∼= L.

Hence, the lattices in differentMn have different congruence lattices. On
the other hand, it is an open question if for |X| ≤ ℵ1 the lattice ConFn+1(X)
can be represented in Mn. (Equivalently, if H(Fn+1(X)) is homeomorphic
to a closed subspace of H(Fn(X)).)
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