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Abstract. We study the densities of the semigroup generated by the operator −X2+
|Y | on the 3-dimensional Heisenberg group. We show that the 7th derivatives of the
densities have a jump discontinuity. Outside the plane x = 0 the densities are C∞. We
give explicit spectral decomposition of images of −X2 + |Y | in representations.

1. Introduction. In [1] P. G lowacki and A. Hulanicki discovered that
there exist convolution semigroups (µt)t>0 of probability measures on a Lie
group G such that all µt have densities pt whose first group derivatives Xpt
are in L2 but higher derivatives are not. Paper [1] does not say anything
about pointwise derivatives of pt. The aim of the present paper is to clarify
this point. Indeed, the densities pt of the semigroup considered in [1] do
have a number of derivatives but at some points the seventh derivative does
not exist. In order to obtain the result and clarify the situation, we study
the semigroup and its infinitesimal generator in some detail, mainly when
transferred by unitary irreducible representations of G. The operators thus
obtained are known objects but the information about them needed here is
perhaps easier to prove directly than to recover from the fairly complicated
general theory. Therefore we include many proofs here. Of course, we do not
claim any originality at this point.

By the 3-dimensional Heisenberg group G we mean the Euclidean space
R

3 with multiplication defined by

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1y2).

The basis X, Y , Z of the left invariant Lie algebra of G related to the
coordinate system is

X =
∂

∂x
, Y =

∂

∂y
+ x

∂

∂z
, Z =

∂

∂z
.
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The operator we are going to study is defined as

A = −X2 + |Y |.
For t > 0, let δt be the automorphism

δt(x, y, z) = (tax, tby, tcz),

where a, b > 0, c = a+ b. If f is a function from the Schwartz class S(G),
then

X(f ◦ δt) = ta · (Xf) ◦ δt,
Y (f ◦ δt) = tb · (Y f) ◦ δt,
Z(f ◦ δt) = tc · (Zf) ◦ δt.

To simplify calculations we assume from now on that b = 2a, c = 3a and a
is an odd, positive number. Then

A(f ◦ δt) = tb · (Af) ◦ δt.
Let us define a family of unitary representations πλ : G → U(L2(R)) for
λ ∈ R

∗ (where R
∗ = R \ {0}):

π±1
(x,y,z)ϕ(u) = e±i(z+uy)ϕ(u+ x), where u ∈ R, (x, y, z) ∈ G, ϕ ∈ L2(R),

πλ
g = π1

δ|λ|(g)
if λ > 0,

πλ
g = π−1

δ|λ|(g)
if λ < 0.

We shall write simply π for π1. The representations πλ can be extended to
the space of bounded measures:

πλ
µ =
\
G

πλ
g dµ(g) if µ ∈ M(G).

Expanding the formula for πλ
f , where f ∈ L1(G) ∩ L2(G), we obtain

πλ
fϕ(u) =

\
R

(

ϕ(v)|λ|−a
\
R2

f

(

v − u

|λ|a , y, z

)

ei sgn(λ)(|λ|
cz+|λ|buy) dy dz

)

dv.

Thus the kernel of the operator πλ
f is given by

(1.1) kλf (u, v) = |λ|−aF2F3f

(

v − u

|λ|a ,− sgn(λ)|λ|bu,− sgn(λ)|λ|c
)

,

where Fi, i = 1, 2, 3, denotes the Fourier transform with respect to the
ith coordinate. The operators 1√

2π
Fi are isometries, hence we have the

Plancherel formula

(1.2) ‖f‖2L2(G) =
c

(2π)2

\
R

‖πλ
f ‖2HS|λ|2c−1 dλ.
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Applying the inverse Fourier transform to (1.1) one can verify that

(1.3) f(x, y, z) =
c

(2π)2

\
R2

kλf (|λ|au, |λ|a(u+x))|λ|a+2c−1e−iλc(z+uy) du dλ.

We have just defined πλ
µ for measures. Now we extend this representation

over some class of operators. Let T be a (possibly unbounded) operator on
L2(G) such that every function f from the Schwartz class S(G) belongs to
the domain of T and Tf ∈ L1(G). If for all λ ∈ R

∗, f ∈ S(G), ϕ ∈ L2(R),

πλ
fπ

λ
Tϕ = πλ

Tfϕ

and the operator πλ
T is closable, then we define the representation of T as

the closure of πλ
T . We denote this closure also by πλ

T . One can check that

πλ
X = |λ|a

(

− ∂

∂u

)

, πλ
Y = sgn(λ)|λ|b(−iu), πλ

Z = sgn(λ)|λ|c(−i),

πλ
A = |λ|b

(

− ∂2

∂u2
+ |u|

)

.

Acknowledgments. I am very grateful to my tutors, Prof. W. Hebisch,
Prof. A. Hulanicki and Prof. T. Pytlik for their teaching and guidance
throughout my study. Very special thanks are due to my Mother for her
help and encouragement at difficult moments while writing this article.

2. Eigenfunctions of πλ
A. In this section we aim to show that all

eigenfunctions of πλ
A arise in a simple way from the Airy function. Since the

operator πλ
A differs from πA only by a scalar factor, we restrict our attention

to πA. The operator πA is selfadjoint and positive definite (cf. [4], Theorem
X.28), hence

σ(πA) ⊆ [0,∞).

Proposition 2.1. The operator (πA + I)−1 is compact.

P r o o f. It is enough to show that the set

K = {ϕ ∈ L2(R) : ‖(πA + I)ϕ‖L2(R) ≤ 1}
has a finite ε-mesh for every ε > 0. Let ϕ ∈ K. Then

‖ϕ‖L2(R) ≥ ‖(πA + I)ϕ‖L2(R)‖ϕ‖L2(R) ≥ 〈(πA + I)ϕ,ϕ〉

=

∥

∥

∥

∥

∂

∂u
ϕ

∥

∥

∥

∥

2

L2(R)

+ ‖|u|1/2ϕ‖2L2(R) + ‖ϕ‖2L2(R).

Hence

(2.1) ‖ϕ‖L2(R) ≤ 1,

∥

∥

∥

∥

∂

∂u
ϕ

∥

∥

∥

∥

L2(R)

≤ 1, ‖|u|1/2ϕ‖L2(R) ≤ 1.
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If M−1/2 < ε/2, then the set K1 = {ψ1 = ϕ · 1[−M,M ]c : ϕ ∈ K} has a
trivial ε/2-mesh which consists of a single point 0. Moreover (2.1) shows
that functions belonging to K2 = {ψ2 = ϕ− ψ1 = ϕ · 1[−M,M ] : ϕ ∈ K} are
uniformly bounded and equicontinuous, which, combined with the Ascoli–
Arzelà theorem, completes the proof.

Corollary 2.2. There exists an orthogonal system ϕn of normalized

eigenfunctions of πA such that

πAϕ =
∞
∑

n=1

λn〈ϕ,ϕn〉ϕn.

The only point of accumulation of the sequence (λn) is ∞, so we can assume

that (λn) is weakly increasing.

Since the potential of πA, which equals |u|, is symmetric and tends to
∞ as u→ ±∞, we have

Fact 2.3. Every eigenvalue of πA is simple and every eigenfunction of

πA is either even or odd.

Let ϕ be an eigenfunction of πA, which means (−∂2/∂u2 + |u|)ϕ(u) =
λϕ(u). Then the function

ψ(u) = ϕ(u + λ)

satisfies the formulae
(

− ∂2

∂u2
+ u

)

ψ(u) = 0 if u ≥ −λ,(2.2)

∞\
−λ

|ψ(u)|2 du =

∞\
0

|ϕ(u)|2 du ≤ ‖ϕ‖2L2(R) <∞.(2.3)

We can extend ψ|[−λ,∞) to the whole line keeping the condition (2.2); after
normalization we obtain a function Φ such that
(

− ∂2

∂u2
+ u

)

Φ(u) = 0 if u ∈ R,

∞\
0

|Φ(u)|2 du <∞, Φ(0) =
Γ (1/3)

2π31/6
.

These are exactly the conditions characterizing the Airy function. The fol-
lowing facts about this function can be found in [2], pp. 213–215:

Fact 2.4. At infinity both Φ(u) and −Φ′(u) decrease to 0 faster than any

e−Mu, M > 0.

Fact 2.5. The function Φ has an analytic extension to the whole C, given
by the explicit formula

(2.4) Φ(u) = Φy(u) = C

∞\
−∞

ei(
1
3
(ξ+iy)3+u(ξ+iy)) dξ for all y > 0.
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The extended function Φ(z) satisfies the following estimate: For all k ∈ N,
z = x + iy ∈ C and some constants Ck, which depend only on k,

(2.5) |Φ(k)(z)| ≤ Ck(|z| + 1)k/2 e
√

|z|+1 |y|.

It follows from Fact 2.3 that Φ(−λ) = 0 or Φ′(−λ) = 0 whenever λ is
an eigenvalue of πA. It turns out that also the converse implication holds.
More precisely, we have

Theorem 2.6. The spectrum of πA equals

(2.6) σ(πA) = {λ ∈ R : Φ(−λ) = 0 or Φ′(−λ) = 0}.
Moreover , the function

ϕn(u) = CnΦ(u− λn) if u ≥ 0, Cn =
(

2

∞\
−λn

|Φ(u)|2 du
)−1/2

,(2.7.a)

ϕn(u) = (−1)n+1ϕn(−u) if u ≤ 0,(2.7.b)

is the normalized eigenfunction corresponding to the eigenvalue λn. We have

Φ(−λn) = 0 for n even and Φ′(−λn) = 0 for n odd.

The next fact gives an estimate of the nth eigenvalue of πA, and of the
difference of two consecutive eigenvalues. The formula (2.8) follows from
(2.6), and from the estimate of the zeros of Φ in [2], p. 215. The formula
(2.9) holds, since the Airy function Φ oscillates faster than solutions of the
differential equation (−∂2/∂z2 + λn)ϕ = 0 and slower than solutions of
(−∂2/∂z2 +λn+1)ϕ = 0 on the interval [−λn+1,−λn] (cf. [3], pp. 311–316),
and the above equations are satisfied by sin(

√
λn u + u0) and sin(

√

λn+1 u
+ u1).

Fact 2.7. The eigenvalues λn satisfy the following estimates:

λn ∼
(

3π

4
n

)2/3

,(2.8)

π

2
λ
−1/2
n+1 ≤ λn+1 − λn ≤ π

2
λ−1/2
n .(2.9)

The greatest zero of the function Φ′ is λ1 = −1.0189 . . . < −1, hence we
obtain the estimate

Fact 2.8. For all f ∈ DπA
,

(2.10) ‖πAf‖ ≥ ‖f‖.

3. Estimates of ‖Pnf‖L2(G) for P ∈ {X,Y,Z}. In this section we show
that any operator of multiplication by a polynomial and some differential
operators can be estimated by powers of the operator πA. We use these
results to estimate differential operators on the group G by powers of the
operator A.



90 P. GADZIŃSKI

Definition 3.1. Define V1 to be the linear space spanned by (ϕn)∞n=1,
and V2 to be the linear space spanned by

ukϕn · 1R+ , uk
∂

∂u
ϕn · 1R+ , ukϕn · 1R− , uk

∂

∂u
ϕn · 1R− ,

k = 0, 1, 2, . . . , n = 1, 2, . . .

(Note that by Fact 2.4, V2 is contained in L2.)

Most of the proofs in this section consist of checking inequalities for
functions from the space V1. Then the results for L2-functions follow by
the density of V1 in L2. Since higher derivatives of functions from V1 do
not necessarily belong to L2, it is useful to consider also V2. Notice that V2
is preserved by the operators of multiplication by u, |u|, and also by ∂/∂u
acting on R

∗. But it is not preserved by πA if we consider the elements of
this space as functions on R. Throughout this section we use (2.10), which
enables us to find explicit constants in the forthcoming inequalities. Some
of them already appeared in [1].

Proposition 3.2. The following estimates hold :
∥

∥

∥

∥

∂

∂u
ϕ

∥

∥

∥

∥

L2(R)

≤ ‖π1/2
A ϕ‖L2(R) if ϕ ∈ D

π
1/2

A

,(i)

‖uϕ‖2L2(R) +

∥

∥

∥

∥

∂2

∂u2
ϕ

∥

∥

∥

∥

2

L2(R)

≤ 3‖πAϕ‖2L2(R) if ϕ ∈ DπA
,(ii)

∥

∥

∥

∥

∂3

∂u3
ϕ

∥

∥

∥

∥

L2(R)

≤ 2
√

3‖π3/2
A ϕ‖L2(R) if ϕ ∈ D

π
3/2

A

,(iii)

P r o o f. We have
∥

∥

∥

∥

∂

∂u
ϕ

∥

∥

∥

∥

2

L2(R)

≤
〈(

− ∂2

∂u2
+ |u|

)

ϕ,ϕ

〉

= 〈πAϕ,ϕ〉 = ‖π1/2
A ϕ‖2L2(R),

which proves (i). For (ii),

∥

∥

∥

∥

∂2

∂u2
ϕ

∥

∥

∥

∥

2

L2(R)

+ ‖uϕ‖2L2(R)

=

∥

∥

∥

∥

(

− ∂2

∂u2
+ |u|

)

ϕ

∥

∥

∥

∥

2

L2(R)

− 2 Re

〈

− ∂2

∂u2
ϕ, |u|ϕ

〉

= ‖πAϕ‖2L2(R) − 2 Re

〈

∂

∂u
ϕ,

∂

∂u
|u|ϕ

〉
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= ‖πAϕ‖2L2(R) − 2 Re

〈

∂

∂u
ϕ, sgn(u)ϕ

〉

− 2

∥

∥

∥

∥

|u|1/2 ∂
∂u
ϕ

∥

∥

∥

∥

2

L2(R)

≤ ‖πAϕ‖2L2(R) + 2

∥

∥

∥

∥

∂

∂u
ϕ

∥

∥

∥

∥

L2(R)

‖ϕ‖L2(R) ≤ 3‖πAϕ‖2L2(R).

Finally, (iii) follows from (i) and (ii); indeed,
∥

∥

∥

∥

∂3

∂u3
ϕ

∥

∥

∥

∥

L2(R)

≤
√

3

∥

∥

∥

∥

πA
∂

∂u
ϕ

∥

∥

∥

∥

L2(R)

=
√

3

∥

∥

∥

∥

∂

∂u
πAϕ− sgn(u)ϕ

∥

∥

∥

∥

L2(R)

≤
√

3(‖π3/2
A ϕ‖L2(R) + ‖ϕ‖L2(R)) ≤ 2

√
3‖π3/2

A ϕ‖L2(R).

Remark 3.3. Modifying slightly the proof of (ii) of the last proposition
we obtain, for ϕ ∈ V2,
∥

∥

∥

∥

∂2

∂u2
ϕ

∥

∥

∥

∥

L2(R∗)

≤
(
∥

∥

∥

∥

(

− ∂2

∂u2
+ |u|

)

ϕ

∥

∥

∥

∥

2

L2(R∗)

+ 2

∥

∥

∥

∥

∂

∂u
ϕ

∥

∥

∥

∥

L2(R∗)

‖ϕ‖L2(R∗)

)1/2

≤
∥

∥

∥

∥

(

− ∂2

∂u2
+ |u|

)

ϕ

∥

∥

∥

∥

L2(R∗)

+

∥

∥

∥

∥

∂

∂u
ϕ

∥

∥

∥

∥

L2(R∗)

+ ‖ϕ‖L2(R∗).

Proposition 3.4. If ϕ ∈ Dπk
A
for some k ∈ N, then

‖ukϕ‖L2(R) ≤ 2k(k + 1)!‖πk
Aϕ‖L2(R).

P r o o f. Denote by Ck, k ∈ N, and Dk, k ∈ N\{0}, the smallest numbers
such that

‖ukϕ‖L2(R) ≤ Ck‖πk
Aϕ‖L2(R), ‖πAuk−1ϕ‖L2(R) ≤ Dk‖πk

Aϕ‖L2(R).

Put also D0 = 1/2. What we have to show is the estimate Ck ≤ 2k(k + 1)!.
Notice that

‖ukϕ‖L2(R) ≤ C1‖πAuk−1ϕ‖L2(R) ≤ C1Dk‖πk
Aϕ‖L2(R),

hence
Ck ≤ C1Dk ≤

√
3Dk ≤ 2Dk if k ≥ 1.

The inequality Ck ≤ 2Dk is also valid for k = 0, thus it is enough to verify
that Dk ≤ 2k−1(k + 1)!. We prove this by induction.

For k = 0, 1 the inequality is obvious. For k ≥ 2,

πAu
k−1ϕ = uk−1πAϕ− 2(k − 1)

∂

∂u
(uk−2ϕ) + (k − 1)(k − 2)uk−3ϕ,

therefore

‖πAuk−1ϕ‖L2(R) ≤ Ck−1‖πk
Aϕ‖L2(R) + 2(k − 1)Dk−1‖πk−1

A ϕ‖L2(R)

+ (k − 1)(k − 2)Ck−3‖πk−3
A ϕ‖L2(R),

Dk ≤ Ck−1 + 2(k − 1)Dk−1 + (k − 1)(k − 2)Ck−3,

and using the inductive hypothesis we obtain Dk ≤ 2k−1(k + 1)!.
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Theorem 3.5. If ϕ ∈ D
π
k/2

A

for some k ∈ N, then

∥

∥

∥

∥

∂k

∂uk
ϕ

∥

∥

∥

∥

L2(R∗)

≤ Ck‖πAk/2ϕ‖L2(R).

(We denote by the same letters functions on R and their restrictions to R
∗.)

P r o o f. The proof is by induction on k. The formula is obvious for k = 0,
and for k = 1, 2, 3 it follows from Proposition 3.2. Let now k ≥ 4. If ϕ ∈ V1,

then ∂k

∂ukϕ ∈ V2, hence, by Remark 3.3,
∥

∥

∥

∥

∂k

∂uk
ϕ

∥

∥

∥

∥

L2(R∗)

≤
∥

∥

∥

∥

(

− ∂2

∂u2
+ |u|

)

∂k−2

∂uk−2
ϕ

∥

∥

∥

∥

L2(R∗)

+

∥

∥

∥

∥

∂k−1

∂uk−1
ϕ

∥

∥

∥

∥

L2(R∗)

+

∥

∥

∥

∥

∂k−2

∂uk−2
ϕ

∥

∥

∥

∥

L2(R∗)

≤
∥

∥

∥

∥

(

∂k−2

∂uk−2
πA − (k − 2) sgn(u)

∂k−3

∂uk−3

)

ϕ

∥

∥

∥

∥

L2(R∗)

+ Ck−1‖π(k−1)/2
A ϕ‖L2(R) +Ck−2‖π(k−2)/2

A ϕ‖L2(R)

≤ Ck−2‖πk/2
A ϕ‖L2(R) + (k − 2)Ck−3‖π(k−3)/2

A ϕ‖L2(R)

+ Ck−1‖π(k−1)/2
A ϕ‖L2(R) +Ck−2‖π(k−2)/2

A ϕ‖L2(R)

≤ (Ck−1 + 2Ck−2 + (k − 2)Ck−3)‖πk/2
A ϕ‖L2(R).

Lemma 3.6. Let ω be a Hilbert–Schmidt operator on L2(R), and put

B0 = 1, B1 = 1, B2 =
√

3, B3 = 2
√

3, Ck = 2k(k + 1)!. Then

‖πλ
Xkω‖HS ≤ Bk‖(πλ

A)k/2ω‖HS if k = 0, 1, 2, 3,(i)

‖πλ
Y kZlω‖HS ≤ Ck‖(πλ

A)k+3l/2ω‖HS if k, l ∈ N.(ii)

P r o o f. We only prove (ii) using Proposition 3.4. The statement (i) fol-
lows from Proposition 3.2 in an analogous way.

Let (en)∞n=1 be an orthonormal basis of L2(R). Then

‖πλ
Y kZlω‖2HS =

∞
∑

n=1

‖πλ
Y kZlωen‖2L2(R) =

∞
∑

n=1

‖|λ|bkuk|λ|clωen‖2L2(R)

≤
∞
∑

n=1

C2
k‖(πλ

A)k+3l/2ωen‖2L2(R) = C2
k‖(πλ

A)k+3l/2ω‖2HS.

Theorem 3.7. Let the constants Bk, Ck be as in the previous lemma.

Then

‖Xkf‖L2(G) ≤ Bk‖Ak/2f‖L2(G) if f ∈ DAk/2 , k = 0, 1, 2, 3,(i)

‖Y kZ lf‖L2(G) ≤ Ck‖Ak+3l/2f‖L2(G) if f ∈ DAk+3l/2 , k, l ∈ N.(ii)



SEMIGROUP OF MEASURES 93

P r o o f. Using the Plancherel formula (1.2), and the last lemma, we ob-
tain

‖Xkf‖2L2(G) = C
\
R

‖πλ
Xkπ

λ
f ‖2HS|λ|2c−1 dλ

≤ C
\
R

B2
k‖(πλ

A)k/2πλ
f ‖2HS|λ|2c−1 dλ = B2

k‖Ak/2f‖2L2(G).

The inequality (ii) can be proved in a similar way.

4. Regularity of the semigroup generated by πA. For each t > 0,
e−tπA is an integral operator with kernel

(4.1) pt(u, v) =

∞
∑

n=1

e−tλnϕn(u)ϕn(v).

Proposition 4.1. The function pt(u, v) has an extension to the set K =
{(t, u, v) : Re t > 0, u, v ∈ C} which is analytic (in each variable) at every

point (t, u, v) ∈ K such that Reu 6= 0, Re v 6= 0.

P r o o f. Consider the analytic functions

ϕ+
n (z) = CnΦ(z − λn),

ϕ−
n (z) = (−1)n+1CnΦ(−z − λn) for z ∈ C.

Then, by Theorem 2.6, the function ϕn defined as

ϕn(z) =

{

ϕ+
n (z) if Re z ≥ 0,
ϕ−
n (z) if Re z < 0,

coincides for z ∈ R with the ϕn introduced in Corollary 2.2. The functions
ϕn(z) are analytic for Re z 6= 0 (for Re z = 0 they can even be discontin-
uous). Therefore it is enough to notice that by (2.5) and (2.8) the series
∑∞

n=1 e
−tλnϕ±

n (u)ϕ±
n (v) are uniformly convergent on every compact subset

of K. Thus they define analytic functions.

Proposition 4.2. If 0 ≤ k, l ≤ 3, t > 0, then

∂k

∂uk
∂l

∂vl
pt(u, v) ∈ L2(R2).

P r o o f. Using Proposition 3.2 we obtain

∞
∑

n=1

‖e−tλnϕ(k)
n (u)ϕ(l)

n (v)‖L2(R2) ≤
∞
∑

n=1

e−tλn‖ϕ(k)
n (u)‖L2(R)‖ϕ(l)

n (v)‖L2(R)

≤ BkBl

∞
∑

n=1

e−tλnλ(k+l)/2
n <∞,
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thus

∂k

∂uk
∂l

∂vl
pt(u, v) =

∞
∑

n=1

e−tλnϕ(k)
n (u)ϕ(l)

n (v).

Lemma 4.3. Set

r(h) = pt(hu0, hv0),

where u0, v0 are fixed real numbers, not simultaneously 0. Then the limits

g1 = lim
hր0

r(3)(h), g2 = lim
hց0

r(3)(h)

exist and g1 = −g2 6= 0. (In particular r(3) is discontinuous at 0.)

P r o o f. By the definition of the function r,

r(3)(h) =
(

∞
∑

n=1

e−tλnϕn(·u0)ϕn(· v0)
)(3)

(h)(4.2)

=

3
∑

k=0

((

3

k

)

u3−k
0 vk0

∞
∑

n=1

e−tλnϕ(3−k)
n (hu0)ϕ(k)

n (hv0)

)

.

(If u0 = 0, then we only consider terms with k = 3, and if v0 = 0, then only
those with k = 0.)

For every n ∈ N we have ϕn(0) = 0 or ϕ′
n(0) = 0, hence

ϕ′
n(hu0)ϕ′′

n(hv0) = ϕ′
n(0)ϕ′′

n(0) + o(h) = −λnϕ′
n(0)ϕn(0) + o(h) = o(h),

ϕn(hu0)ϕ′′′
n (hv0) = ϕn(hu0)(sgn(hv0)ϕn(hv0) + (|hv0| − λn)ϕ′

n(hv0))

= sgn(hv0)|ϕn(0)|2 + o(h).

Each of the functions

R
+ ∋ h 7→

∞
∑

n=1

e−tλnϕ(3−k)
n (hu0)ϕ(k)

n (hv0),

R
− ∋ h 7→

∞
∑

n=1

e−tλnϕ(3−k)
n (hu0)ϕ(k)

n (hv0)

has an analytic extension uniformly converging on compacta to the series
∞
∑

n=1

e−tλn(ϕ±
n )(3−k)(hu0)(ϕ±

n )(k)(hv0)

(with ϕ±
n defined as in the proof of Proposition 4.1). Hence we can pass to

the limits limhր0 and limhց0 under the sum sign in (4.2):

r(3)(h) =

(

3

0

)

u30

∞
∑

n=1

e−tλn sgn(hu0)|ϕn(0)|2



SEMIGROUP OF MEASURES 95

+

(

3

3

)

v30

∞
∑

n=1

e−tλn sgn(hv0)|ϕn(0)|2 + o(h)

= sgn(h)(|u0|3 + |v0|3)

∞
∑

n=1

e−tλn |ϕn(0)|2 + o(h),

which means that

g1 = −(|u0|3 + |v0|3)

∞
∑

n=1

e−tλn |ϕn(0)|2 6= 0, g2 = −g1.

Taking (u0, v0) = (0, 1) and (u0, v0) = (1, 0) we obtain

Corollary 4.4. The derivatives ∂4

∂u4 pt(u, v) and ∂4

∂v4 pt(u, v) do not be-

long to L2.

Theorem 4.5. The pointwise left and right derivatives
(

∂3

∂u3

)−
pt(0, v),

(

∂3

∂u3

)+

pt(0, v),

(

∂3

∂v3

)−
pt(u, 0),

(

∂3

∂v3

)+

pt(u, 0)

exist for all v, u. But outside a discrete set of v and u respectively we have
(

∂3

∂u3

)−
pt(0, v) 6=

(

∂3

∂u3

)+

pt(0, v),

(

∂3

∂v3

)−
pt(u, 0) 6=

(

∂3

∂v3

)+

pt(u, 0).

In particular ∂3

∂u3 pt(0, v) and ∂3

∂v3 pt(u, 0) do not exist at these points.

P r o o f. By symmetry we can only consider ∂3/∂u3. We see that

∂2

∂u2
pt(u, v) =

∞
∑

n=1

e−tλnϕ′′
n(u)ϕn(v) =

∞
∑

n=1

e−tλn(|u| − λn)ϕn(u)ϕn(v),

(

∂3

∂u3

)±
pt(0, v) = −

∞
∑

n=1

e−tλnλnϕ
′
n(0)ϕn(v) ±

∞
∑

n=1

e−tλnϕn(0)ϕn(v).

The two third derivatives are equal only in the case

∞
∑

n=1

e−tλnϕn(0)ϕn(v) = 0.

The left-hand side is real analytic for v ≥ 0 and for v ≤ 0, and moreover, its
value is

∑∞
n=1 e

−tλn |ϕn(0)|2 6= 0 for v = 0, thus it is 0 on a discrete set.

5. Regularity of the semigroup generated by A. In this section
we prove that the semigroup e−tA consists of convolution operators with L2

functions. Then we discuss singularities of these functions. Applying (4.1)
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we get

c

(2π)2

\
R

‖e−tπλ
A‖2HS|λ|2c−1 dλ =

c

(2π)2

\
R

∞
∑

n=1

e−2tλn|λ|b |λ|2c−1 dλ

=

(

3

16π2

∞
∑

n=1

λ−3
n

)

t−3.

According to (2.8),
∞
∑

n=1

λ−3
n ≤

∞
∑

n=1

D(n2/3)−3 <∞.

Hence by the Plancherel formula (1.2) and (1.3) we find that e−tA is a
convolution operator with a function Pt ∈ L2(G) such that

(5.1) Pt(x, y, z) = C
\
R

\
R

pλt (|λ|au, |λ|a(u+ x))|λ|a+2c−1e−iλc(z+uy) du dλ

= C
\
R

\
R

∞
∑

n=1

e−|λ|bλntϕn(|λ|au)ϕn(|λ|a(u+ x))

× |λ|a+2c−1e−iλc(z+uy) du dλ.

Using Theorem 3.7(ii) and standard arguments we obtain

Theorem 5.1. For every k, l ∈ N and every (x, y, z) the pointwise deriva-

tive

∂k

∂yk
∂l

∂zl
Pt(x, y, z)

exists, and the function ∂k

∂yk
∂l

∂zlPt is continuous on the whole G.

Theorem 5.2. The derivative

∂k

∂xk
Pt(x, y, z)

exists for every k ∈ N and every point (x, y, z) such that x 6= 0.

P r o o f. Fix x0 > 0. Let χ1, χ2 ∈ C∞(R) be functions such that

χ1(x) = 0 if x ≤ − 2
3x0, χ1(x) = 1 if x ≥ − 1

3x0,

0 ≤ χ1 ≤ 1, χ1(x) + χ2(x + x0) = 1.

First we estimate the integral with respect to u in (5.1). For x close to x0,

∂k

∂xk

\
R

ϕn(|λ|au)ϕn(|λ|a(u+ x))e−iλcuy du

= |λ|ak
\

suppχ1

ϕn(|λ|au)ϕ(k)
n (|λ|a(u+ x))e−iλcuyχ1(u) du
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+
\

u+x0−x∈suppχ2

∑

l+m+r=k

(

k

lmr

)

(−|λ|a)l(iλcy)m(−1)r

× ϕ(l)
n (|λ|a(u− x))ϕn(|λ|au)e−iλc(u−x)yχ

(r)
2 (u+ x0 − x) du.

We estimate these integrals using Theorem 3.5:
∣

∣

∣

∣

∂k

∂xk

\
R

ϕn(|λ|au)ϕn(|λ|a(u+ x))e−iλcuy du

∣

∣

∣

∣

≤ |λ|ak
\

R\{−x}
|ϕn(|λ|au)ϕ(k)

n (|λ|a(u+ x))| du

+
∑

l+m+r=k

(

k

lmr

)

|λ|al+cm|y|m

×
\

R\{x}
|ϕ(l)

n (|λ|a(u− x))ϕn(|λ|au)| du ‖χ(r)
2 ‖∞

≤ |λ|ak−a‖ϕn‖L2(R)‖ϕ(k)
n ‖L2(R∗)

+ C
∑

l+m≤k

|λ|al+cm−a|y|m‖ϕ(l)
n ‖L2(R∗)‖ϕn‖L2(R)

≤ C|λ|ak−aλk/2n + C
∑

l+m≤k

|λ|al+cm−a|y|mλl/2n ≤ C
∑

l+m≤k

|λ|a(l+3m−1)λl/2n .

We now show that

∂k

∂xk
Pt(x, y, z) = C

\
R

∞
∑

n=1

e−|λ|bλnt(5.2)

× ∂k

∂xk

(\
R

ϕn(|λ|au)ϕn(|λ|a(u+ x))e−iλcuy du
)

× |λ|a+2c−1e−iλcz dλ

and that the integral is absolutely convergent.
It is enough to estimate\
R

∞
∑

n=1

e−|λ|bλnt|λ|a(l+3m−1)λl/2n |λ|a+2c−1 dλ

=
∞
∑

n=1

(\
R

e−|λ|2aλnt|λ|a(l+3m+6)−1 dλ
)

λl/2n = C
∞
∑

n=1

λ−(l+3m+6)/2
n λl/2n

= C

∞
∑

n=1

λ−(3m+6)/2
n ≤ C

∞
∑

n=1

n−2−m <∞.
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The integral on the right-hand side of (5.2) is a continuous function of

(x, y, z), hence in fact it is equal to ∂k

∂xkPt(x, y, z).

For x0 < 0 the calculations are the same.

Corollary 5.3. The kernels Pt are C∞ functions outside the plane

{(x, y, z) : x = 0}.

Theorem 5.4. The derivatives

∂6

∂x6
Pt(0, y, z),

(

∂7

∂x7

)+

Pt(0, y, z),

(

∂7

∂x7

)−
Pt(0, y, z)

exist for every y, z. Moreover , there exists an open interval B containing 0
such that for all z ∈ B and y ∈ R,

(

∂7

∂x7

)+

Pt(0, y, z) 6=
(

∂7

∂x7

)−
Pt(0, y, z).

In particular ∂7

∂x7Pt(0, y, z) does not exist at these points.

P r o o f. The sixth derivative with respect to x of the inner integral in
(5.1) is equal to

∂6

∂x6

\
R

ϕn(|λ|au)ϕn(|λ|a(u+ x))e−iλcuy du

= |λ|3a ∂3

∂x3

\
R

ϕn(|λ|a(u− x))ϕ(3)
n (|λ|au)e−iλc(u−x)y du

=

3
∑

l=0

(

3

l

)

(−1)3−l|λ|(6−l)a(iλcy)l

×
\
R

ϕ(3−l)
n (|λ|a(u− x))ϕ(3)

n (|λ|au)e−iλc(u−x)y du.

The integral

C
\
R

∞
∑

n=1

e−|λ|bλnt

× ∂6

∂x6

(\
R

ϕn(|λ|au)ϕn(|λ|a(u+ x))e−iλcuy du
)

|λ|a+2c−1e−iλcz dλ

is absolutely convergent and defines a continuous function, hence, by (5.1), it

is equal to ∂6

∂x6Pt(0, y, z). The terms with l = 1, 2, 3 are differentiable. More-

over ϕ
(3)
n (v) = sgn(v)ϕn(v) + (|v| − λn)ϕ′

n(v). Observe that (|v| − λn)ϕ′
n(v)

has a derivative in L2. Thus we only have to discuss the behavior of the



SEMIGROUP OF MEASURES 99

integral

− |λ|6a
\
R

sgn(u− x)ϕn(|λ|a(u− x)) sgn(u)ϕn(|λ|au)e−iλc(u−x)y du

= −|λ|6a
\
R

sgn(u)ϕn(|λ|au) sgn(u+ x)ϕn(|λ|a(u+ x))e−iλcuy du.

The difference
((

∂

∂x

)+

−
(

∂

∂x

)−)
(

−|λ|6a
\
R

sgn(u)ϕn(|λ|au)

× sgn(u+ x)ϕn(|λ|a(u+ x))e−iλcuy du
)

is 0 for x 6= 0, and 4|λ|6a|ϕn(0)|2 for x = 0, hence

(5.3)

((

∂7

∂x7

)+

−
(

∂7

∂x7

)−)

Pt(0, y, z)

= C
\
R

∞
∑

n=1

e−|λ|bλnt4|λ|6a|ϕn(0)|2|λ|a+2c−1e−iλcz dλ.

This integral is continuous, does not depend on y, and for z = 0 equals

4C
\
R

∞
∑

n=1

e−|λ|bλnt|λ|6a|ϕn(0)|2|λ|a+2c−1 dλ > 0.

Therefore (5.3) is not zero for z in a neighborhood of 0 and for all y ∈ R.
The theorem is proved.
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