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INTERPOLATION SETS FOR FRÉCHET MEASURES

BY

J. C A G G I A N O (STATE UNIVERSITY, AR)

Abstract. We introduce various classes of interpolation sets for Fréchet measures—
the measure-theoretic analogues of bounded multilinear forms on products of C(K) spaces.

1. Introduction. The classical theory of interpolation sets in a harmo-
nic-analytic context can be roughly described as the study of norm prop-
erties of “one-dimensional” objects (bounded linear forms) in relation to
some underlying spectral set. The study of interpolation sets for naturally
multi-dimensional structures has developed only in the last twenty years;
see [GMc], [GS2]. In this work, it is our aim to examine certain harmonic-
analytic interpolation properties of Fourier transforms of Fréchet measures—
the measure-theoretic counterparts of multi-linear forms on products of
C0(K) spaces. There are some interesting departures from the one-dimen-
sional theory.

Definition 1 ([B5, Def. 1.1]). Let X1, . . . ,Xn be locally compact spaces
with respective Borel fields A1, . . . ,An. A set function µ : A1×. . .×An → C

is an Fn-measure if, when n− 1 coordinates are fixed, µ is a measure in the
remaining coordinate.When the measure spaces are arbitrary or understood,
we denote the space of Fn-measures by Fn = Fn(A1, . . . ,An).

For our purposes, each space Xi will be the circle group T. There is a
natural identification between the space of Fn-measures on T× . . .×T and
the space of bounded n-linear forms on C(T)× . . .×C(T) [B4, Thm. 4.12].
Denoting this identification by

βη ↔ η,

we define the Fourier transform of an Fn-measure η on Tn to be the function
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on Zn given by

η̂(m1, . . . ,mn) = βη(e
−im1t1 , . . . , e−imntn)

=
\
Tn

e−im1t1 ⊗ . . .⊗ e−imntn η(dt1, . . . , dtn)

=
\

Tn−1

e−im1t1 ⊗ . . .⊗ e−imn−1tn−1

\
T

e−imntn η(dt1, . . . , dtn).

The integral above is defined iteratively, i.e.,\
T

e−imntn η(dt1, . . . , dtn) ∈ Fn−1(T, . . . ,T);

see [B4, Lemma 4.9] for details.

The space of F2-measures on X×Y (referred to as the space of bimeasures

on X × Y in the literature) is a convolution Banach *-algebra [GS1] whose
structure extends that of the space of measures on X × Y. Convolution of
Fn-measures is not well defined in general when n > 2 [GS3], essentially
because there is no general Grothendieck-type inequality for n > 2. If we
restrict our attention to the so-called projectively bounded Fréchet measures,
we have a well defined convolution, as well as suitable extensions of the
Grothendieck inequality. The class of completely bounded multi-linear forms
has also been considered as a natural class of Fn-measures which satisfies a
Grothendieck-type inequality; see [CS], [ZS], [Y].

Definition 2 ([B5]). Let µ ∈ Fn(T, . . . ,T), and let E1, . . . , En be finite
subsets of the unit ball of L∞(T). For (f1, . . . , fn) ∈ E1 × . . .× En define

(1) φµ(f1, . . . , fn) =
\
Tn

f1 ⊗ . . .⊗ fn µ(dt1, . . . , dtn).

Let

(2) ‖µ‖pbn
= sup{‖φµ‖Vn(E1,...,En) :

Ej ⊂ Ball(L∞(T)), |Ej | <∞, j = 1, . . . , n}.
Then µ is projectively bounded if ‖µ‖pbn

< ∞. The space of projectively
boundedFn-measures on T×. . .×T is denoted by PBFn = PBFn(T, . . . ,T).

The class of projectively bounded Fn-measures is a non-empty proper
subspace of Fn for n > 2, and PBFn = Fn for n < 3 (see [B5]). Pro-
jectively bounded Fn-measures obey a Grothendieck-type inequality in the
sense that µ̂ ∈ Ṽn(Z, . . . ,Z) for all µ ∈ PBFn. To see this, let EN =
{e−iNt, . . . , 1, . . . , eiNt}, and let m1, . . . ,mn ∈ [N ] = {−N, . . . ,−1,
0, 1, . . . , N}. Then
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(3) ‖µ̂1[N ]n‖Vn([N ],...,[N ]) = ‖φµ‖Vn(EN ,...,EN ) ≤ ‖µ‖PBFn
.

Since µ̂1[N ]n → µ̂ pointwise, we see immediately that µ̂ ∈ Ṽn(Z, . . . ,Z).
Given E ⊂ Zn and m ≤ n, we define

Bm(E) = {φ ∈ ℓ∞(E) : ∃µ ∈ Fm, µ̂(j1, . . . , jn) = φ(j1, . . . , jn) on E},
with

‖φ‖Bm(E) = inf{‖µ‖Fm
: µ̂ = φ on E},

and

PBm(E) = {φ ∈ ℓ∞(E) : ∃µ ∈ PBFm, µ̂(j1, . . . , jn) = φ(j1, . . . , jn) on E},
with

‖φ‖PBm(E) = inf{‖µ‖PBFm
: µ̂ = φ on E}.

A word about the condition m ≤ n: there are certain canonical contain-
ments in Fn(T, . . . ,T), which yield corresponding containments in the re-
striction algebras defined above. Consider the case n=3. We have F1(T

3)  
F2(T

2,T)  F3(T,T,T), so B1(Z
3)  B2(Z

3)  B3(Z
3). For certain subsets

of Zn we may have equality of restriction algebras; see Def. 11.
For a given Banach space A of functions on Zn and S ⊂ Zn, we use the

notation [A]|S to denote the quotient space A/JS , where

JS = {f ∈ A : f = 0 on S}.
Similarly, for a given Banach space B of functions on Tn and S ⊂ Zn,
we use the notation [B]S to denote {f ∈ B : f̂ = 0 on Sc}. We define

Vn = Vn(T, . . . ,T) ≡ ⊗̂
n
k=1C(T). The Banach space dual of Vn is Fn =

Fn(T, . . . ,T) [B4, Thm. 4.12]. The Banach space dual of Fn(Z, . . . ,Z) is the
space Ṽn(Z, . . . ,Z), given by

Ṽn(Z, . . . ,Z) = {φ ∈ ℓ∞(Zn) : φ = lim
k
φk pointwise, sup

k
‖φk‖⊗̂ <∞},

where ‖ ‖⊗̂ denotes the norm in Vn(Z, . . . ,Z). We will use ‖ · ‖⊗̌ to denote
the injective tensor norm, and we note that it is straightforward to show

that Fn(Z, . . . ,Z) is canonically isomorphic to
⊗̌

n
j=1ℓ

1(Z).

2. Interpolation sets

2.1. PBFn-Sidon sets

Proposition 3 ([GS2, Thm. 1]). η̂ ∈ Ṽ2(Z,Z) for all η ∈ F2(T,T).

P r o o f. Choose Grothendieck probability measures ν1, ν2 ([G, Corol-
laire 2, p. 61], [GS1, Thm. 1.2]), so that η extends to L2(T, ν1)×L2(T, ν2).
Still denoting this extension by η, we have

‖η‖ ≤ KG‖η‖F2
.
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Let S : L2(T, ν1) → L2(T, ν2) satisfy η(f, g) = 〈Sf, g〉 and let {ajk} ∈
F2(Z,Z). Finally, choose finite subsets A and B of Z. Then

∣∣∣
∑

j∈A,k∈B

ajkη̂(j, k)
∣∣∣ = KG‖η‖F2

∣∣∣∣
∑

j∈A, k∈B

ajk

〈
Se−ijs

KG‖η‖F2

, e−ikt
〉∣∣∣∣

≤ 4K2
G‖η‖F2

‖{ajk}‖F2(Z,Z).

The last inequality follows immediately from the Grothendieck inequality
[LP, Thm. 2.1].

We note that Proposition 3 is equivalent to ℓ1(Z) ⊗̌ ℓ1(Z) ⊂ C(T) ⊗̂C(T)
under the correspondence

{amn} ↔
∑

m,n

amne
imseint.

Definition 4. A set S ⊂ Z × Z is called PBFn-Sidon if PBn(S) =

[Ṽn(Z, . . . ,Z)]|S . The PBFn-Sidon constant of S is

γS = sup{‖φ‖PBn(S) : ‖φ‖[Ṽn(Z,...,Z)]|S
= 1}.

In [GS1] (resp. [GS2]), the authors define BM-Sidon (resp. BM-inter-

polation) sets to be those subsets E of Ĝ × Ĥ for which PB2(E) = C(E),
where G and H are LCA groups. The case n = 2 in Definition 4 is different,
and we see that BM-Sidon sets are necessarily PBF2-Sidon.

The sections of PBFn-Sidon sets behave as expected; let E be PBFn-
Sidon, and let S ⊂ {1, . . . , n} be an ordered subset with |S| = m. Define the
projection πS : Zn → Zm in the obvious way. Then the (n−m)-section

E ∩ π−1
S (j1, . . . , jm)

is PBFn−m-Sidon. To show this, we need only interpolate elementary ten-

sors in Ṽn−m(Z, . . . ,Z). Any such tensor ψ is extendible to a tensor ψ ∈
Ṽn(Z, . . . ,Z) in the obvious way. Since E is PBFn-Sidon, we can find a pro-
jectively bounded Fréchet measure µψ which interpolates ψ on E. Viewing
µψ as an n-linear form, we see that we obtain a bounded (n−m)-linear form
by simply fixing the coordinates of µψ corresponding to S. This restriction

is projectively bounded, and interpolates the original tensor ψ on E ∩ π−1
S .

For S ⊂ Z× Z we let IS(T,T) = {f ∈ [V2(T,T)]S : f̂ ∈ [ℓ1 ⊗̌ ℓ1]S}. The
proof of the following theorem is straightforward.

Theorem 5. Let S ⊂ Z× Z. The following are equivalent :

(i) IS(T,T) = [V2(T,T)]S (i.e., S is PBF2-Sidon).

(ii) ∃C > 0 with ‖f̂‖⊗̌ ≤ C‖f‖V2(T,T ), ∀f ∈ IS(T,T).

(iii) IS(T,T) = [L∞(T) ⊗̂ L∞(T)]S .
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Proposition 6. (i) Let E,F ⊂ Z be Sidon. Then E×F is PBF2-Sidon.

(ii) Let f : Z → Z be strictly monotone. Then the graph of f is PBF2-

Sidon.

P r o o f. (i) Clearly [Ṽ2(Z,Z)]|E×F = Ṽ2(E,F ). We show Ṽ2(E,F ) ⊂
PB2(E × F ). By a standard compactness argument, we need only interpo-
late restrictions of elementary tensors to E × F. Let αE , αF be the Sidon
constants of E and F , and let φ ⊗ ψ be an elementary tensor of norm 1
in V2(E,F ). Then we can find measures µ and ν such that µ̂(m)ν̂(n) =
φ(m)ψ(n) for any (m,n) ∈ E × F, with ‖µ ⊗ ν‖F2

≤ αEαF .
(ii) As shown in [GS1, Thm. 6.3], any bounded sequence on graph f can

be interpolated by the transform of an F2-measure.

The existence of other examples of PBF2-Sidon sets is not known. In one
dimension, the use of Riesz products as interpolating measures suggests a
number of arithmetic criteria on subsets as sufficient conditions for satisfac-
tion of the Sidon property. There is no clear connection between arithmetic
properties of a given subset of Z2 and the PBF2-Sidon property, making
the question of sufficiency somewhat more delicate.

As in the one-dimensional case, there is an approximate interpolation
condition for PBF2-Sidon sets.

Proposition 7. Let E⊂Z×Z. If there are 0<δ<1 and 0<C<∞ such

that for all f, g ∈ Ball1(ℓ
∞(Z)), there is µ ∈ F2(T,T), ‖µ‖F2

< C, satisfying

(4) ‖f ⊗ g − µ̂‖[Ṽ2(Z,Z)]|E
< δ,

then E is PBF2-Sidon.

P r o o f. We show that [C(T) ⊗̂ C(T)]E ⊂ [ℓ1 ⊗̌ ℓ1]E . Choose a polyno-
mial f with support in E, and select ω1, ω2 ∈ {−1, 1}Z. The canonical pro-
jections rj : {−1, 1}Z → {−1, 1} given by rj(ω) = ω(j) are the Rademacher
functions. Choose an F2-measure µω1,ω2

satisfying

‖µ̂ω1,ω2
(j, k) − rj(ω1)rk(ω2)‖[Ṽ2(Z,Z)]|E

< δ.

By (4) and duality,
∣∣∣

∑

(j,k)∈E

f̂(j, k)rj (ω1)rk(ω2)
∣∣∣ ≤

∣∣∣
∑

(j,k)∈E

f̂(j, k)(rj (ω1)rk(ω2)− µ̂ω1,ω2
(j, k))

∣∣∣

+
∣∣∣

∑

(j,k)∈E

f̂(j, k)µ̂ω1,ω2
(j, k)

∣∣∣

≤ δ‖f̂‖⊗̌ + ‖f‖V2(T,T)‖µω1,ω2
‖F2(T,T).

Taking suprema over all choices of ω1 and ω2, we obtain

‖f̂‖⊗̌ ≤ 4C

1− δ
‖f‖V2(T,T).
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The factor 4 appears due to the consideration of real and imaginary parts
in the calculation of the injective norm of f̂ .

We note that it is straightforward to show that the union of PBF2-Sidon
sets of the type described in Proposition 6 is again PBF2-Sidon, whereas
the union problem in general remains open. An analogous approximate in-
terpolation condition holds for PBFn-Sidon sets.

That the diagonal of Z × Z is PBF2-Sidon allows us to demonstrate
a fundamental difference between multiplier properties of F1-measures and
F2-measures. Define U : F2(T,T)×F2(T,T) → F2(T,T) by U(µ, ν) = µ∗ν.
Then U is a bounded bilinear operator [GS1, Thm. 2.6]. Interestingly, U is
not bounded on Lp(T2)×F2(T,T), in direct contrast with the situation for
(F1-)measures.

Proposition 8. Let 2 < p < ∞. Then U is not a bounded operator on

Lp(T2)×F2(T,T).

Let ∆ denote the diagonal in Z× Z, and let f be a ∆-polynomial,

f(s, t) =
∑

aje
ij(s+t).

For ω ∈ {−1, 1}Z, let
fω(s, t) =

∑
aje

ij(s+t)rj(ω).

Since ∆ is PBF2-Sidon, we can find µω ∈ F2(T,T) such that

µ̂(j, j) = rj(ω), j ∈ Z,
and ‖µω‖F2

≤ γ∆ for all ω. Suppose ‖U‖ = C <∞. Then

f = fω ∗ µω = U(fω, µω)

and ‖f‖Lp ≤ Cγ∆‖fω‖Lp , which implies that

‖f‖Lp ≤ Cγ∆Eω‖fω‖Lp .

Applying Khinchin’s inequalites, we obtain

‖f‖pLp ≤ Cpγp∆Eω
\
T

\
T

∣∣∣
∑

aje
ij(s+t)rj(ω)

∣∣∣
p

= Cpγp∆

\
T

\
T

Eω

∣∣∣
∑

aje
ij(s+t)rj(ω)

∣∣∣
p

≤ Cpγp∆p
p/2

(∑
|aj |2

)p/2
,

which shows that ∆ is a Λ(p)-set, a contradiction.

We now consider PBFn-Sidon sets for n > 2. The space of F1-measures
on Tn is denoted by M(Tn).

Lemma 9. M(Tn) ⊂ PBFn(T, . . . ,T).
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P r o o f. Let µ ∈ M(Tn), and choose finite subsets E1, . . . , En in the unit
ball of L∞(T). Then

‖φµ‖Vn(E1,...,En)

= sup
‖β‖Fn≤1

∣∣∣
∑

f1∈E1,...,fn∈En

β(f1, . . . , fn)
\
Tn

(f1 ⊗ . . .⊗ fn)µ(dt× . . .× dt)
∣∣∣

≤ sup
‖β‖Fn≤1

\
Tn

∣∣∣
∑

f1∈E1,...,fn∈En

β(f1, . . . , fn)(f1 ⊗ . . .⊗ fn)
∣∣∣ |µ|(dt× . . .× dt)

≤ 2n‖µ‖M(Tn).

Corollary 10. If E1, . . . , En are Sidon, then E1 × . . .× En is PBFn-

Sidon.

P r o o f. We need only recall that B(E1 × . . .×En) = Ṽn(E1, . . . , En).

2.2. Fm/Fn-sets

Definition 11. Let m > n ≥ 0. For n > 0, a set E ⊂ Zm is an Fm/Fn-
set if Bm(E) = Bn(E); E ⊂ Zm is an Fm/F0-set if Bm(E) = ℓ∞(E).

We define PBFm/PBFn, PBFm/Fn, and Fm/PBFn sets analogously.
In this terminology, Sidon sets are F1/F0-sets and BM-Sidon sets are F2/F0-
sets. In [GS2], the authors use the term BM/B-sets for those subsets of the
dual of an LCA group whose bimeasure restriction algebra coincides with
the measure restriction algebra. In our terminology, these are F2/F1-sets.
We see immediately that any Sidon set in Zm is Fm/F0, Fm/F1 (and hence
Fm/Fn for any n < m), PBFm/PBFn and Fm/PBFm.

The proof of Proposition 6(i) shows that we need not step outside the

space of measures to interpolate all of Ṽ2(E,F ) when E and F are Sidon.
Thus, we have

Corollary 12. If E and F are Sidon subsets of Z, then E × F is

F2/F1.

There is a partial converse to the previous corollary: if A× A is F2/F1

then A is Sidon. To see this, let ∆A×A = {(aj , aj) : aj ∈ A}. Since the
F2/F1 property is inherited by subsets, ∆A×A is F2/F1. We claim that
∆A×A is Sidon in Z× Z. Let φ ∈ ℓ∞(∆A×A). For f, g ∈ C(T), define

ηφ(f, g) =
∑

j

φ(j)f̂(aj)ĝ(aj).

Then ηφ is a bounded linear form on V2(T,T) satisfying

η̂φ(aj , aj) = φ(j).
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But ∆A×A is F2/F1, and so we can find a measure µφ satisfying

µ̂φ(aj , aj) = φ(j).

So ∆A×A is Sidon. Now, let f be an A-polynomial, f(s) =
∑
j cje

iajs, and
consider

F (s, t) =
∑

j

cje
iaj(s+t).

If B denotes the Sidon constant of ∆A×A, we have

‖f̂‖ℓ1 =
∑

j

|cj | ≤ B sup
s,t

∣∣∣
∑

j

cje
iaj(s+t)

∣∣∣ = B‖f‖∞,

and A is Sidon. We also note that the result above need not hold when the
factors forming the Cartesian product in Z × Z are different. For example,
Z × {n} is F2/F1. To see this, choose µ ∈ F2(T,T), and let ηµ be the
corresponding bilinear form on C(T)× C(T). Then

µ̂|Z×{n} = (ηµ(·, n)⊗ eintdt)|Z×{n}.

This leads to a question. Given two (different) infinite subsets A and B such
that A×B is F2/F1, must A or B be Sidon? We do not know the answer.

Which sets are both F2/F1 and PBF2-Sidon? It is obvious that any
Sidon subset of Z×Z is necessarily F2/F1 and PBF2-Sidon. We can glean
a bit more. It is straightforward to show

Proposition 13. If S is F2/F1 and PBF2-Sidon then S is Λ(p) for all

p <∞.

We can separate the various interpolation sets described thus far. Let us
consider the two-dimensional case. A product of two Sidon sets is PBF2-
Sidon and F2/F1, but not F2/F0. Z × {n} is F2/F1 but not PBF2-Sidon
or F2/F0, while the diagonal ∆ = {(n, n) : n ∈ Z} is F2/F0 (hence PBF2-
Sidon) but not F2/F1.

In [GS2], the authors ask: if E,F, and G are infinite subsets of Z such
that E ∪ F and G are lacunary (E ∩ F = ∅), must (E + F ) × G be an
F2/F1-set? This question turns out to be a “cusp” case, as Theorem 15 and
the next lemma demonstrate.

Lemma 14. Let E, F , G and H be infinite subsets of Z with E ∩ F =
G ∩ H = ∅, and E ∪ F, G ∪ H lacunary. Choose a one-to-one correspon-

dence between N and N3, and enumerate E, F , G and H according to this

correspondence:

(8) E = {λabc}, F = {νabc}, G = {̺abc}, H = {κabc}, a, b, c ∈ N.
Then U ⊂ (E + F )× (G+H) given by

U = {(λabc + νbcd)× (̺cda + κdab)}
is not Sidon.
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P r o o f. As described in [B3], the scheme above gives rise to a 4/3-
product, with Sidon index 8/7.

Theorem 15. If E, F , G, and H are as above, then (E +F )× (G+H)
is not F2/F1.

P r o o f. We can find a bounded function φ on U which is not the trans-
form of a measure on T2. Then φ is a function of twelve variables, but by
the linkages described in the lemma we consider φ as a function of a, b, c,
and d. Let βφ be the bilinear form on C(T)× C(T) given by

βφ(f, g) =
∑

a,b,c,d

φ(a, b, c, d)f̂ (λabc + νbcd)ĝ(̺cda + κdab).

An application of the Cauchy–Schwarz inequality gives boundedness of βφ,
and we easily verify that

β̂φ(λabc + νbcd, ̺cda + κdab) = φ(a, b, c, d).

Thus U is not F2/F1, and any set containing U cannot be F2/F1.

Let A,B ⊂ Z, A ∩ B = ∅, card(A) = card(B) = ∞. For m,n ≥ 2, let
E1, . . . , Em be pairwise disjoint infinite subsets of A and let F1, . . . , Fn be
pairwise disjoint infinite subsets of B. By considering translates of a set of
the form (E +F )× (G+H), we see that (E1 + . . .+Em)× (F1 + . . .+ Fn)
is not an F2/F1-set.

We can illustrate something of the “tightness” of the original question
in [GS2] as it relates to a generalization of an inequality of Littlewood. One
avenue of attack on the problem is as follows. Let

E = {λi}, F = {νj}, G = {̺k}.
Any element of ℓ2(N2)⊗̌ℓ2(N) naturally induces a bounded bilinear form on
C(T)× C(T). For a = {a(j,k),l} ∈ ℓ2(N2) ⊗̌ ℓ2(N), define such a form βa by

βa(f, g) =
∑

j,k,l

a(j,k),lf̂(λj + νk)ĝ(̺l).

The problem is solved if we can produce a tensor as above which simultane-
ously is not the transform of a measure restricted to (E +F )×G. But this
cannot be done. Littlewood’s mixed-norm inequality in three dimensions [D]
states that if {a(j,k),l} is any finitely supported tensor, then

‖a(j,k),l‖Ṽ3(N,N,N)
≤ 2

√
2 sup

l

√∑

(j,k)

|a(j,k),l|2,

which implies that ℓ2(N2) ⊗̌ ℓ2(N) ⊂ Ṽ3(N,N,N). Since B((E + F ) × G)

contains all elements of Ṽ3(N,N,N), we see that it is impossible to find a
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tensor with the desired properties. As a final comment along this line we
remark that in [GS2] the authors prove the following:

Proposition 16. Let H be an infinite subgroup of the discrete group Γ ,
and let K be any infinite subset of Γ . Then H ×K is not F2/F1.

Notice that this is a “limiting case” of (E1 + . . .+ En)×K.

Certain of the “fractional Cartesian products” [B3], [B4] provide exam-
ples of PBFn-Sidon sets,PBFn/F1-sets, andFn/F0-sets. For completeness,
we include some of the ideas of [B3] and [B4]. Let E be a lacunary subset
of Z. Let [m] = {1, . . . ,m}. Given S ⊂ [m], πS denotes the projection from
Em to E|S| (|S| = card(S)) given by

πS(e1, . . . , em) = (ej : j ∈ S),

with the |S|-tuple on the right of the equality above ordered canonically.
Let S = {Sk : k = 1, . . . , n} be a collection of subsets of [m] whose union
is [m]. Further, we require that each element of [m] appears in at least two
elements of S. For each k = 1, . . . , n, consider ℓ2(Z|Sk|). Let φ ∈ ℓ∞(Zm),
and for (x1, . . . , xn) ∈ ℓ2(Z|S1|)× . . .× ℓ2(Z|Sn|) define

(6) ηφ,S(x1, . . . , xn)

=
∑

~a∈Zm

φ(~a)x1(πS1
(~a)) . . . xn(πSn

(~a)), xj ∈ ℓ2(Z|Sj|).

In [B1], Blei shows that for all bounded arrays φ, ηφ,S is a well defined n-
linear form whose norm is bounded by ‖φ‖∞. As such, ηφ,S can be regarded
as an n-linear form on C(T|S1|)× . . .×C(T|Sn|), or (equivalently) as an Fn-
measure on the product of the respective Borel fields of the given products
of T. Let

VS(Z
m) =

{
φ(~a) =

∞∑

j=1

αjψj1(πS1
(~a)) . . . ψjn(πSn

(~a)),

ψji ∈ c0(Z
|Si|),

∑
|αj | <∞

}
.

Identifying arrays which are the same pointwise on Zm, we obtain a quotient
space, with norm

‖φ‖VS
= inf

{∑
|βj | : φ(~a) =

∞∑

j=1

βjψj1(πS1
(~a)) . . . ψjn(πSn

(~a))

pointwise on Zm
}
.

ṼS(Z
m) is the space of arrays on Zm obtained by taking pointwise limits of

uniformly bounded sequences of elements in VS(Z
m).
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We now transfer the constructions above to Fn(T, . . . ,T). Let E ⊂ Z

be lacunary, and let S = {Sk : k = 1, . . . , n} be a cover of [m] with the
properties described above. Consider an m-fold enumeration of E : E =
{ea1...am : aj ∈ N} along with |Sj |-fold enumerations of E : Ej={ea1...a|Sj |

}.
Then we define a subset ES of En by

ES = {(e(1)πS1
(j1,...,jm), e

(2)
πS2

(j1,...,jm), . . . , e
(n)
πSn (j1,...,jm)) : e

(i)
πSi

(j1,...,jm)∈Ei ∀i}.
We view ηφ,S as an Fn-measure in the natural way. It is known [B4] that

ṼS(Z
m) can be realized as a restriction algebra of Fourier–Stieltjes trans-

forms of measures on Tn, namely,

ṼS(Z
m) = B(ES) = M(Tm)/{µ ∈ M(Tm) : µ̂ = 0 on (ES)c}.

Theorem 17 ([B1]). The n-linear form ηφ,S defined by (6) is projectively

bounded if and only if φ ∈ ṼS(Z
m).

Let eS be the combinatorial dimension of ES ([BS]). By [B5, Cor. 7.4]
we see that if eS = 1, then ES is PBFm/F0. This is a generalization of the
“monotone graphs” of Proposition 6.

Theorem 18. Let E be lacunary , and let S be a cover of [m] so that

every element of [m] appears in at least two elements of S. If eS > 1, then
ES ⊂ Zm is PBFm-Sidon, PBFm/F1, and Fm/F0, but not Fm/PBFm.

P r o o f. ES is PBFm-Sidon and PBFm/F1 since

ṼS = B(ES) ⊂ PBm(ES) ⊂ Ṽm|ES = ṼS .

The last equality follows from the fact that 1ES ∈ ṼS . Next, E
S is Fm/F0

since (6) is bounded for all arrays ~a. Finally, because (6) can be projectively
unbounded for some choice of φ ([B5, Cor. 7.4]) we see that ES is not
Fm/PBFm.

I am grateful to the referee of this paper for a number of useful comments
and corrections, and for the suggested definition of Fm/F0-sets.
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