COLLOQUIUM MATHEMATICUM

VOL. 83 2000 NO. 2

INTERPOLATION SETS FOR FRECHET MEASURES

BY

J. CAGGIANO (STATE UNIVERSITY, AR)

Abstract. We introduce various classes of interpolation sets for Fréchet measures—
the measure-theoretic analogues of bounded multilinear forms on products of C'(K) spaces.

1. Introduction. The classical theory of interpolation sets in a harmo-
nic-analytic context can be roughly described as the study of norm prop-
erties of “one-dimensional” objects (bounded linear forms) in relation to
some underlying spectral set. The study of interpolation sets for naturally
multi-dimensional structures has developed only in the last twenty years;
see [GMc], [GS2]. In this work, it is our aim to examine certain harmonic-
analytic interpolation properties of Fourier transforms of Fréchet measures—
the measure-theoretic counterparts of multi-linear forms on products of
Co(K) spaces. There are some interesting departures from the one-dimen-
sional theory.

DEFINITION 1 ([B5, Def. 1.1]). Let A7, ..., &, be locally compact spaces
with respective Borel fields A;, ..., A,. A set function pu: A; x...x A, = C
is an F,-measure if, when n — 1 coordinates are fixed, p is a measure in the
remaining coordinate. When the measure spaces are arbitrary or understood,
we denote the space of F,-measures by F,, = F,,(A1,..., A,).

For our purposes, each space X; will be the circle group T. There is a
natural identification between the space of F,,-measures on T x ... x T and
the space of bounded n-linear forms on C(T) x ... x C(T) [B4, Thm. 4.12].
Denoting this identification by

By <1,

we define the Fourier transform of an F,-measure 1 on T" to be the function
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on Z" given by

ﬁ(ml, . ,’I’)’I,n) = ﬁn(eii’mltl, cey Bii’mnt")
= {emb o @e i (dty, ... dty)
Tn
= S eTimit @ @ e tMmn-1tn-t X et p(dty, ... dty,).
Tn—1 T

The integral above is defined iteratively, i.e.,

Se_im"t" U(dtl, . ,dtn) S .7:",1(’]?, ce ,T);
T

see [B4, Lemma 4.9] for details.

The space of Fy-measures on X' x ) (referred to as the space of bimeasures
on X x Y in the literature) is a convolution Banach *-algebra [GS1] whose
structure extends that of the space of measures on X x ). Convolution of
Fn-measures is not well defined in general when n > 2 [GS3], essentially
because there is no general Grothendieck-type inequality for n > 2. If we
restrict our attention to the so-called projectively bounded Fréchet measures,
we have a well defined convolution, as well as suitable extensions of the
Grothendieck inequality. The class of completely bounded multi-linear forms
has also been considered as a natural class of F,,-measures which satisfies a
Grothendieck-type inequality; see [CS], [ZS], [Y].

DEFINITION 2 ([B5]). Let p € F,,(T,...,T), and let Ey,..., E, be finite
subsets of the unit ball of £L°(T). For (f1,...,fn) € E1 X ... x E, define

(1) Sulfrv s fu)= | 1©®. . ® fupldty,... dt,).

Tn
Let

2)  ellss, = supfllonllv, ... :
E; C Ball(L>(T)), |E;| < oo, j=1,...,n}.

Then p is projectively bounded if ||p|[pn, < oo. The space of projectively
bounded F,,-measures on Tx...x T is denoted by PBF,, = PBF,(T,...,T).

The class of projectively bounded JF,-measures is a non-empty proper
subspace of F,, for n > 2, and PBF, = F, for n < 3 (see [B5]). Pro-
jectively bounded F,-measures obey a Grothendieck-type inequality in the
sense that o € V,(Z,...,Z) for all u € PBF,. To see this, let En =
{e=™®Nt . )1,...,eN) ) and let my,...,m, € [N] = {-N,...,—1,
0,1,...,N}. Then
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(3) [EL Ny v, (30, iv)) = @0l (Bn . By < llellPBE,-
Since pily» — 1 pointwise, we see immediately that i € ﬁn(Z, 7).

Given F C Z"™ and m < n, we define

B (E)={¢ € >*(E):3ue€ Fn, (1,.--in) = 0(1,...,Jn) on E},
with

115, (5) = inf{||ull 7, : &= ¢ on E},
and
PB,,(E)={¢ € t>°(E): 3u € PBFn, t(j1,---sJn) = ¢(J1,---,7n) on E},
with
16l pB,.(p) = nf{||pllpBF, : = ¢ on E}.

A word about the condition m < n: there are certain canonical contain-
ments in F,(T,...,T), which yield corresponding containments in the re-
striction algebras defined above. Consider the case n=3. We have F;(T?3) &
Fo(T?,T) ¢ F3(T, T, T), so B1(Z3) & Ba(Z3) & Bs(Z?). For certain subsets
of Z™ we may have equality of restriction algebras; see Def. 11.

For a given Banach space A of functions on Z™ and S C Z", we use the
notation [A]|s to denote the quotient space A/Jg, where

Js={f€A:f=0o0nS}.

Similarly, for a given Banach space B of functions on T" and S C 2",
we use the notation [B]g to denote {f € B : f = 0 on S°}. We define

Vi = Vo(T,...,T) = Q}_,C(T). The Banach space dual of V, is F, =
Fn(T,...,T) [B4, Thm. 4.12]. The Banach space dual of F,,(Z,...,Z) is the
space V,(Z,...,7Z), given by

VlZ,...,Z) = {¢ € 1®(Z") : ¢ = lillgn ¢r pointwise, sup [|¢rllg < oo},
k

where || || denotes the norm in V,,(Z,...,Z). We will use || - [/ to denote
the injective tensor norm, and we note that it is straightforward to show

that F,,(Z,...,7) is canonically isomorphic to (X N2,

2. Interpolation sets

2.1. PBF,-Sidon sets
PROPOSITION 3 ([GS2, Thm. 1)). §j € Vo(Z,Z) for all n € Fo(T,T).

Proof. Choose Grothendieck probability measures vy,vs ([G, Corol-
laire 2, p. 61], [GS1, Thm. 1.2]), so that 7 extends to L?(T,v;) x L?(T, vs).
Still denoting this extension by 7, we have

Inll < Kellnllz-
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Let S : L?(T,v1) — L*(T,vs) satisfy n(f,g) = (Sf,g) and let {a;r} €
Fo(Z,7Z). Finally, choose finite subsets A and B of Z. Then

Sfijs )
> g ™)
ity M\ Kl

< 4AKE|nllF a7 z.2)-

The last inequality follows immediately from the Grothendieck inequality
[LP, Thm. 2.1]. =

We note that Proposition 3 is equivalent to £}(Z)® ¢*(Z) C C(T)®C(T)
under the correspondence

{amn} o Z amneimseint.
m,n

S el k)| = Kallill
JEAKEB

DEFINITION 4. A set S C Z x Z is called PBF,-Sidon if PB,(S) =
Vn(Z,...,Z)]|s. The PBF,-Sidon constant of S is

vs = sup{l|9llpB,(s) : |10llp, (7. 2y = 1}

In [GS1] (resp. [GS2]), the authors define BM-Sidon (resp. BM-inter-
polation) sets to be those subsets E of G x H for which PBy(E) = C(E),
where G and H are LCA groups. The case n = 2 in Definition 4 is different,
and we see that BM-Sidon sets are necessarily PBF3-Sidon.

The sections of PBF,-Sidon sets behave as expected; let E be PBF,,-
Sidon, and let S C {1,...,n} be an ordered subset with |S| = m. Define the
projection 7g : Z™ — Z™ in the obvious way. Then the (n — m)-section

Enag Uiy s dm)

is PBF ,_,,-Sidon. To show this, we need only interpolate elementary ten-
sors in 17n_m(Z, ...,7Z). Any such tensor v is extendible to a tensor ¥ €
ljn(Z, ..., Z) in the obvious way. Since F is PBF,-Sidon, we can find a pro-
Jectively bounded Fréchet measure p which interpolates 1 on E. Viewing
pi as an n-linear form, we see that we obtain a bounded (n —m)-linear form
by simply fixing the coordinates of i corresponding to S. This restriction

is projectively bounded, and interpolates the original tensor ¥ on £ N 7151.
For S C Z x Z we let Is(T,T) = {f € [Vo(T,T)]s : f € [(* @ }]s}. The
proof of the following theorem is straightforward.
THEOREM 5. Let S C Z x Z. The following are equivalent:
(i) Is(T,T) = [Vo(T,T)]s (i-e., S is PBF3-Sidon).
(ii) 3C > 0 with ||fllz < CIflvairiry, Vf € Is(T.T).
(iti) Is(T,T) = [L(T) & L*(T)]s.
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PROPOSITION 6. (i) Let E, F' C Z be Sidon. Then E x F' is PBF3-Sidon.
(ii) Let f : Z — 7 be strictly monotone. Then the graph of f is PBFa-
Sidon.

Proof. (i) Clearly Vo(Z,Z)||gxr = Vo(E,F). We show Vy(E,F) C
PBy(E x F). By a standard compactness argument, we need only interpo-
late restrictions of elementary tensors to £ X F. Let ag,apr be the Sidon
constants of E and F, and let ¢ ® ¥ be an elementary tensor of norm 1
in V5(E, F). Then we can find measures p and v such that p(m)v(n) =
d(m)p(n) for any (m,n) € E x F, with ||p @ v||z, < agag.

(ii) As shown in [GS1, Thm. 6.3], any bounded sequence on graph f can
be interpolated by the transform of an Fy-measure. m

The existence of other examples of PBF5-Sidon sets is not known. In one
dimension, the use of Riesz products as interpolating measures suggests a
number of arithmetic criteria on subsets as sufficient conditions for satisfac-
tion of the Sidon property. There is no clear connection between arithmetic
properties of a given subset of Z? and the PBF,-Sidon property, making
the question of sufficiency somewhat more delicate.

As in the one-dimensional case, there is an approximate interpolation
condition for PBF,-Sidon sets.

PROPOSITION 7. Let ECZXZ. If there are 0<d<1 and 0<C < oo such
that for all f, g € Ball(¢*°(Z)), there is p € Fo(T,T), ||ull£ < C, satisfying
(4) ||f®9_m|[172(zzm,5 <9,
then E is PBF5-Sidon.

Proof. We show that [C(T) @ C(T)]g C [¢* ® ¢!]g. Choose a polyno-
mial f with support in E, and select wy,ws € {—1,1}%. The canonical pro-
jections r; : {—1,1}2 — {—1,1} given by 7;(w) = w(j) are the Rademacher
functions. Choose an Fy-measure i, ., satisfying

o Gs 1) = 75002 5,701 < O
By (4) and duality,
| TG R e < | DD FUR n)rwn) = oy, F)

(4,k)eE (J,k)eE

|30 TG R )
(4,k)EE
< 6||f”® + ||f||V2('JT,'JT)H:UJw1,w2||.7:2('ﬂ‘,'11‘)-
Taking suprema over all choices of w; and wy, we obtain

-~ 4Cc
I7ls < =1 Ivaam:
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The factor 4 appears due to the consideration of real and imaginary parts
in the calculation of the injective norm of f. m

We note that it is straightforward to show that the union of PBF,-Sidon
sets of the type described in Proposition 6 is again PBF3-Sidon, whereas
the union problem in general remains open. An analogous approximate in-
terpolation condition holds for PBJF,,-Sidon sets.

That the diagonal of Z x Z is PBF»s-Sidon allows us to demonstrate
a fundamental difference between multiplier properties of Fj-measures and
Fo-measures. Define U : Fo(T, T) x Fo(T, T) — Fo(T,T) by U(p,v) = pxv.
Then U is a bounded bilinear operator [GS1, Thm. 2.6]. Interestingly, U is
not bounded on LP(T?) x F(T,T), in direct contrast with the situation for
(F1-)measures.

PROPOSITION 8. Let 2 < p < oo. Then U is not a bounded operator on
LP(T?) x Fy(T,T).

Let A denote the diagonal in Z x Z, and let f be a A-polynomial,

f(s,t) = Zajeij(s+t).

For w € {—1,1}%, let

fu(s,t) = Zajeij(sH)Tj (w).

Since A is PBF2-Sidon, we can find p,, € Fo(T, T) such that
1(j,j) =rjw), Jj e,

and |||l 7, < va for all w. Suppose ||U|| = C' < co. Then
f = fw * Uy = U(fwy,uw)

and || f]|zr < Cyal|follze, which implies that
[fllr < CyaBollfullze-

Applying Khinchin’s inequalites, we obtain

1150 < CPREL §| D aze0r; (w)
TT

p

= 0 [ B D e 0w < o2 (s 2"

TT

which shows that A is a A(p)-set, a contradiction. m

We now consider PBF,-Sidon sets for n > 2. The space of Fj-measures
on T" is denoted by M (T").

LEMMA 9. M(T") Cc PBF,(T,...,T).
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Proof. Let u € M(T™), and choose finite subsets F1, ..., E, in the unit
ball of £°(T). Then

16ullv, (Er.....B)

= sup ‘ ST B ) V@@ f) pldt x L x dt)

1817, <1 fi1€EL,....fn€E, Tn

< sup H Z B(fi, s fo)(fi®... @ fo)] |p](dt x ... x dt)

CBlE S | fem o facE
< 2" gl ey

COROLLARY 10. If Ey, ..., E, are Sidon, then F1 X ... x E,, is PBF,-
Sidon.

Proof. We need only recall that B(Ey x ... X E,) = 17n(E1, o Ep). m
2.2. F,,/F,-sets

DEFINITION 11. Let m > n > 0. For n > 0, a set £ C Z™ is an F,,,/ Fp-
set if By, (F) = B,(E); E C Z™ is an F,,, [/ Fo-set if By, (E) = {>*(E).

We define PBF,,/PBF,, PBF,/Fn, and F,,/PBF, sets analogously.
In this terminology, Sidon sets are F; / Fp-sets and BM-Sidon sets are F5 / Fo-
sets. In [GS2], the authors use the term BM/B-sets for those subsets of the
dual of an LCA group whose bimeasure restriction algebra coincides with
the measure restriction algebra. In our terminology, these are JFs/Fi-sets.
We see immediately that any Sidon set in Z™ is F,,,/Fo, Fm/F1 (and hence
Fm | Fn for any n < m), PBF,,/PBF, and F,,/PBF,,.

The proof of Proposition 6(i) shows that we need not step outside the
space of measures to interpolate all of 172(E,F ) when E and F' are Sidon.
Thus, we have

COROLLARY 12. If E and F are Sidon subsets of Z, then E x F is
Fo/Fy.

There is a partial converse to the previous corollary: if A x A is Fo/F;
then A is Sidon. To see this, let Agxa = {(a;,a;) : a; € A}. Since the
F3/F1 property is inherited by subsets, Aaxa is Fo/F;. We claim that
Apxa is Sidon in Z X Z. Let ¢ € £°(Asxa). For f,g € C(T), define

no(f9) =D 6(0)F(a;)5(a;).

Then 7, is a bounded linear form on Vy(T, T) satisfying
Mg (az, a;) = ¢(j)-
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But Ay a4 is Fo/F1, and so we can find a measure p, satisfying
//Lf?(aj?aj) = ¢(])
So Ax 4 is Sidon. Now, let f be an A-polynomial, f(s) = Zj cje'®® and

consider |
F(s,t) = Z Cjezaj(8+t).
J
If B denotes the Sidon constant of A4« 4, we have
f] 1a.(s+t
1Flle: = ZJ: ;| < Bssf(zj:cje ()

and A is Sidon. We also note that the result above need not hold when the
factors forming the Cartesian product in Z x Z are different. For example,
Z x {n} is Fo/Fi. To see this, choose p € F5(T,T), and let 7, be the
corresponding bilinear form on C(T) x C(T). Then
Alzxny = (1) ® €M dt) |z () -

This leads to a question. Given two (different) infinite subsets A and B such
that A x B is F5/F;, must A or B be Sidon? We do not know the answer.

Which sets are both F»/F; and PBF3-Sidon? It is obvious that any

Sidon subset of Z x Z is necessarily Fo/F; and PBF3-Sidon. We can glean
a bit more. It is straightforward to show

PROPOSITION 13. If S is Fao/F1 and PBF2-Sidon then S is A(p) for all
p < 0.

= Bl flloo;

We can separate the various interpolation sets described thus far. Let us
consider the two-dimensional case. A product of two Sidon sets is PBFs-
Sidon and F5/F;, but not Fy/Fy. Z x {n} is Fo/F; but not PBF,-Sidon
or Fo/Fy, while the diagonal A = {(n,n) : n € Z} is Fa/Fy (hence PBF2-
Sidon) but not Fy/F;.

In [GS2], the authors ask: if E, F, and G are infinite subsets of Z such
that FU F and G are lacunary (E N F = (), must (E + F) x G be an
Fo/Fi-set? This question turns out to be a “cusp” case, as Theorem 15 and
the next lemma demonstrate.

LEMMA 14. Let E, F, G and H be infinite subsets of Z with ENF =
GNH=0, and EUF, GUH lacunary. Choose a one-to-one correspon-
dence between N and N3, and enumerate E, F, G and H according to this
correspondence:

(8) E = {Aabc}a F= {Vabc}a G = {Qabc}a H = {Kabc}, a, b,C e N.
Then U C (E+ F) x (G + H) given by

U= {()‘abc + Vbcd) X (cha + "fdab)}
18 not Sidon.
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Proof. As described in [B3], the scheme above gives rise to a 4/3-
product, with Sidon index 8/7.

THEOREM 15. If E, F, G, and H are as above, then (E+ F) x (G+ H)
is not Fo/Fi.

Proof. We can find a bounded function ¢ on U which is not the trans-
form of a measure on T2. Then ¢ is a function of twelve variables, but by
the linkages described in the lemma we consider ¢ as a function of a, b, c,
and d. Let 3, be the bilinear form on C(’]I‘) x C(T) given by

/8¢ f g Z ¢ a, b c, d abc + Vbcd)/g\(gcda + ﬁdab)-
a,b,c,d

An application of the Cauchy-Schwarz inequality gives boundedness of 5y,
and we easily verify that

/Bqﬁ()\abc + Vbeds Ocda + "fdab) = (b(a, b7 c, d)
Thus U is not Fy/F;, and any set containing U cannot be Fo/F;. =

Let A,B CZ, AN B =), card(A) = card(B) = oo. For m,n > 2, let
Eq, ..., E,, be pairwise disjoint infinite subsets of A and let Fy,...,F, be
pairwise disjoint infinite subsets of B. By considering translates of a set of
the form (E+ F) x (G+ H), we see that (Ey +...+ Ep) x (FA+...+ F,)
is not an Fy/F-set.

We can illustrate something of the “tightness” of the original question
in [GS2] as it relates to a generalization of an inequality of Littlewood. One
avenue of attack on the problem is as follows. Let

E={\}, F={v;}, G={o}.

Any element of £2(N?)®¢?(N) naturally induces a bounded bilinear form on
C(T) x C(T). For a = {a(j .1} € (2(N?) @ £2(N), define such a form 3, by

= agwaf (N +m)da).
7.k,

The problem is solved if we can produce a tensor as above which simultane-
ously is not the transform of a measure restricted to (E + F') x G. But this
cannot be done. Littlewood’s mixed-norm inequality in three dimensions [D]
states that if {a(; 1)} is any finitely supported tensor, then

g illv oy < 2\/581;13 > lagm .l
\ Gop)

which implies that EQ(NQ) & 2(N) C Vs(N,N,N). Since B((E + F) x G)
contains all elements of Vg(N N,N), we see that it is impossible to find a
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tensor with the desired properties. As a final comment along this line we
remark that in [GS2] the authors prove the following:

PROPOSITION 16. Let H be an infinite subgroup of the discrete group I,
and let K be any infinite subset of I'. Then H x K is not Fs/Fj.

Notice that this is a “limiting case” of (Ey + ...+ E,) x K.

Certain of the “fractional Cartesian products” [B3], [B4] provide exam-
ples of PBF,-Sidon sets, PBF,, /Fi-sets, and F,, / Fo-sets. For completeness,
we include some of the ideas of [B3] and [B4]. Let E be a lacunary subset
of Z. Let [m] = {1,...,m}. Given S C [m], mg denotes the projection from
E™ to E!S! (|S] = card(S)) given by

7-‘-S(el"",e?n) = (ej j € S)’

with the |S|-tuple on the right of the equality above ordered canonically.
Let S = {Sk : k =1,...,n} be a collection of subsets of [m] whose union
is [m]. Further, we require that each element of [m| appears in at least two
elements of S. For each k = 1,...,n, consider 62(Z|S’“‘). Let ¢ € >(Z™),
and for (x1,...,x,) € 2(ZI%1) x ... x £2(Z!5"]) define

(6) 77¢,3(x1, ceeyTy)
= Y (@i (s, (@) . wn(rs, (@), x; € F(ZI5),

a‘eZWL

In [B1], Blei shows that for all bounded arrays ¢, 14,5 is a well defined n-
linear form whose norm is bounded by ||¢|/. As such, 74 s can be regarded
as an n-linear form on C(TI%) x ... x C(T!S»I), or (equivalently) as an F,,-
measure on the product of the respective Borel fields of the given products
of T. Let

Vs(z") = {6(@) = 3 ayty (s, (@) ... tyu(ms, ().

by € co(Z!%), Z loj| < oo}.

Identifying arrays which are the same pointwise on Z™, we obtain a quotient
space, with norm

[¢llvs = inf { D 1Bl 0@ = Zﬁwﬂ(ﬂsl (@) .- jn(7s, (@)

pointwise on Zm}.

173 (Z™) is the space of arrays on Z" obtained by taking pointwise limits of
uniformly bounded sequences of elements in Vs(Z™).
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We now transfer the constructions above to F,(T,...,T). Let £ C Z
be lacunary, and let S = {S; : k = 1,...,n} be a cover of [m] with the
properties described above. Consider an m-fold enumeration of £ : £ =
{€as...a,, : a; € N} along with |S;|-fold enumerations of E : E; = {eal---a|sj| }.

Then we define a subset ES of E™ by
ES = {(e(l) 2) e ) e €E; Vi}.

751 (1seeenim)? Oy (tseensim)? 702 Gy (Genidim) ) sy (e
We view 14,5 as an F,-measure in the natural way. It is known [B4] that
ﬁs(Zm) can be realized as a restriction algebra of Fourier—Stieltjes trans-
forms of measures on T", namely,

Vs(Z™) = B(ES) = M(T™) /{1 € M(T™) : fi = 0 on (ES)°}.

THEOREM 17 ([B1]). The n-linear form n4 s defined by (6) is projectively
bounded if and only if ¢ € Vs(Z™).
Let es be the combinatorial dimension of ES ([BS]). By [B5, Cor. 7.4]

we see that if eg = 1, then Eg is PBF,,/Fo. This is a generalization of the
“monotone graphs” of Proposition 6.

THEOREM 18. Let E be lacunary, and let S be a cover of [m] so that

every element of [m] appears in at least two elements of S. If es > 1, then
ES C Z™ is PBF,-Sidon, PBF ./ Fi, and Fp/Fo, but not Fp, /PBF ..

Proof. ES is PBF,,-Sidon and PBF,,/F; since
Vs = B(ES) C PBy(ES) C Vylps = Vs.

The last equality follows from the fact that 1gs € 173. Next, ES is Fp/Fo
since (6) is bounded for all arrays d@. Finally, because (6) can be projectively
unbounded for some choice of ¢ ([B5, Cor. 7.4]) we see that ES is not
Fo/PBF . m

I am grateful to the referee of this paper for a number of useful comments
and corrections, and for the suggested definition of F,, /Fo-sets.
REFERENCES

[B1] R. C. Blei, Multi-dimensional extensions of the Grothendieck inequality and ap-
plications, Ark. Mat. 17 (1979), 51-68.

[B2] —, Rosenthal sets that cannot be sup-norm partitioned and an application to ten-
sor products, Colloq. Math. 37 (1977), 295-298.

[B3] —, Fractional Cartesian products of sets, Ann. Inst. Fourier (Grenoble) 29 (1979),
no. 2, 79-105.

[B4] —, Fractional dimensions and bounded fractional forms, Mem. Amer. Math. Soc.

331 (1985).



172

J. CAGGIANO

[BS]
(BS]

[CS]

R. C. Blei, Projectively bounded Fréchet measures, Trans. Amer. Math. Soc. 348
(1996), 4409-4432.

R. C. Blei and J. Schmerl, Combinatorial dimension and fractional Cartesian
products, Proc. Amer. Math. Soc. 120 (1994), 73-77.

E. Christensen and A. M. Sinclair, Representations of completely bounded
multilinear operators, J. Funct. Anal. 72 (1987), 151-181.

A. M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7
(1973), 31-40.

C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analy-
sts, Grundlehren Math. Wiss. 238, Springer, New York, 1979.

C.C. Graham and B. M. Schreiber, Bimeasure algebras on LCA groups, Pacific
J. Math. 115 (1984), 91-127.

—, —, Sets of interpolation for Fourier transforms of bimeasures, Colloq. Math.
51 (1987), 149-154.

—, —, Projections in spaces of bimeasures, Canad. Math. Bull. 31 (1988), 19-25.
A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topolo-
giques, Bol. Soc. Mat. Sao Paulo 8 (1956), 1-79.

J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in Lp-
spaces and their applications, Studia Math. 29 (1968), 275-326.

W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
N. Th. Varopoulos, On an inequality of von Neumann and an application of the
metric theory of tensor products to operators theory, J. Funct. Anal. 16 (1974),
83-100.

K. Ylinen, Noncommutative Fourier transforms of bounded bilinear forms and
completely bounded multilinear operators, ibid. 79 (1988), 144-165.

G. Zhao and B. M. Schreiber, Algebras of multilinear forms on groups, in:
Contemp. Math. 189, Amer. Math. Soc., 1995, 497-511.

Department of Computer Science and Mathematics
Box 70, Arkansas State University
State University, AR 72467, U.S.A.

Received 6 November 1998; (3653)
revised 6 April 1999



