FUNDAMENTAL SOLUTIONS FOR TRANSLATION AND ROTATION INVARIANT DIFFERENTIAL OPERATORS ON THE HEISENBERG GROUP

BY

PRISCILLA GORELLI (TORINO)

Abstract

Let H_{1} be the three-dimensional Heisenberg group. Consider the left invariant differential operators of the form $D=P(-i T,-L)$, where P is a polynomial in two variables with complex coefficients, L is the sublaplacian on H_{1} and T is the derivative with respect to the central direction. We find a fundamental solution of D, whose definition is related to the way the plane curve defined by $P(x, y)=0$ intersects the Heisenberg fan $F=A \cup B, A=\left\{(x, y) \in \mathbb{R}^{2}: y=(2 m+1)|x|, m \in \mathbb{N}\right\}, B=\left\{(x, y) \in \mathbb{R}^{2}: x=0, y>\right.$ $0\}$. We can write an explicit expression of such a fundamental solution when the curve $P(x, y)=0$ intersects F at finitely many points, all belonging to A and, if one of them is the origin, the monomial y^{k} has a nonzero coefficient, where k is the order of zero at the origin. As a consequence, such operators are globally solvable on H_{1}.

1. Introduction. In this paper we study problems of solvability of left invariant differential operators on the three-dimensional Heisenberg group H_{1}.

Let Ω be an open set in a Lie group G. A left-invariant differential operator P on G is locally solvable at $x_{0} \in \Omega$ if there exists a neighborhood U of x_{0} in Ω such that for all $f \in C^{\infty}(\bar{U})$ there exists a distribution u on U that satisfies $P u=f$ on U.
P is semiglobally solvable in Ω if for all $f \in \mathcal{D}(\Omega)$ and for all open sets U relatively compact in Ω there exists $u \in C^{\infty}$ such that $P u=f$ on U.

Finally, P is globally solvable in Ω if $P C^{\infty}(\Omega)=C^{\infty}(\Omega)$. Global solvability is stronger than semiglobal solvability, and the latter implies local solvability.

We shall consider those differential operators that are expressed as polynomials with complex coefficients in L and T, L being the sublaplacian and T the derivative with respect to the central direction. L and T commute and generate the algebra of differential operators on H_{1} which are invariant with respect to both left translations and rotations.

Such a problem has already been solved for operators represented by polynomials of degree one. In [9] and [6] it is shown that the operator $-L+$

2000 Mathematics Subject Classification: 43A80, 22E30, 35A08.
$i \alpha T+c, \alpha, c \in \mathbb{C}$, is locally solvable unless $c=0$ and $\alpha=2 m+1$, for some integer m. As we shall see, it is natural to formulate the following conjecture: the operator $D=P(-i T,-L)$, where P is a polynomial with complex coefficients, is locally solvable on the Heisenberg group H_{1} if and only if $P(\lambda, \xi)$ is not divisible by $\xi-(2 m+1) \lambda$, for some $m \in \mathbb{Z}$.

In this work, we show that the above conjecture is correct with certain restrictions on P. In the solvable case we in fact construct a fundamental solution. If G is a Lie group, a distribution $E \in \mathcal{D}^{\prime}(G)$ is a fundamental solution of an invariant operator P if $P E=\delta_{0}, \delta_{0}$ being the Dirac delta at the identity. The existence of a fundamental solution implies semiglobal solvability. Moreover, if G is P-convex, then the semiglobal solvability of P implies its global solvability. The Heisenberg group is P-convex with respect to all nonzero invariant differential operators (see [4]).
2. Preliminaries. The $(2 n+1)$-dimensional Heisenberg group H_{n} is the Lie group, diffeomorphic to $\mathbb{R}^{2 n+1}$, whose multiplication law is defined as

$$
\begin{equation*}
(x, y, t)\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, t+t^{\prime}+2\left(x^{\prime} \cdot y-x \cdot y^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

where $x, y, x^{\prime}, y^{\prime} \in \mathbb{R}^{n}, t \in \mathbb{R}$ and $x \cdot y$ is the usual inner product on \mathbb{R}^{n}.
A base for its Lie algebra \mathbf{h}_{n} consists of the left invariant vector fields

$$
X_{j}=\frac{\partial}{\partial x_{j}}+2 y_{j} \frac{\partial}{\partial t}, \quad Y_{j}=\frac{\partial}{\partial y_{j}}-2 x_{j} \frac{\partial}{\partial t}, \quad T=\frac{\partial}{\partial t}
$$

where $j=1, \ldots, n$. The commutation relations are $\left[X_{j}, T\right]=\left[Y_{j}, T\right]=0$, $\left[X_{j}, Y_{k}\right]=-4 \delta_{j, k} T$, for all $j, k=1, \ldots, n$.

The sublaplacian is the left invariant operator on H_{n} defined by

$$
L=\frac{1}{4} \sum_{j=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)
$$

If $n=1$, then $L=\frac{1}{4}\left(X^{2}+Y^{2}\right)$. It is a homogeneous operator of degree two with respect to the dilations δ_{r} on H_{1}, induced by the automorphisms of \mathbf{h}_{1} defined by

$$
\delta_{r} X=r X, \quad \delta_{r} Y=r Y, \quad \delta_{r} T=r^{2} T .
$$

Indeed,

$$
\delta_{r} L=\frac{1}{4}\left(\delta_{r} X^{2}+\delta_{r} Y^{2}\right)=r^{2} L .
$$

Note that also $T=\partial / \partial t$ is homogeneous of degree two.
Consider the spherical functions

$$
\varphi_{\lambda, m}(x, y, t)=e^{-i \lambda t} l_{m}\left(2|\lambda|\left(x^{2}+y^{2}\right)\right),
$$

where $l_{m}(x)=e^{-x / 2} L_{m}(x)$ and $L_{m}(x)=L_{m}^{(0)}(x)$ is the m th Laguerre polynomial of index $\alpha=0$, defined by

$$
L_{m}^{(\alpha)}(x)=\sum_{k=0}^{m}\binom{m+\alpha}{m-k} \frac{(-x)^{k}}{k!}
$$

The $\varphi_{\lambda, m}$ are joint bounded radial eigenfunctions of L and T, and

$$
\begin{align*}
T \varphi_{\lambda, m} & =-i \lambda \varphi_{\lambda, m} \tag{2}\\
L \varphi_{\lambda, m} & =-|\lambda|(2 m+1) \varphi_{\lambda, m} \tag{3}
\end{align*}
$$

Let Δ be the Gelfand spectrum of the Banach algebra $L_{\text {rad }}^{1}\left(H_{1}\right)$ of integrable radial functions on H_{1}. Then

$$
\Delta=\left\{\varphi_{\lambda, m}: \lambda \neq 0, m \in \mathbb{N}\right\} \cup\left\{\varphi_{0, \xi}: \xi \geq 0\right\}
$$

where

$$
\varphi_{0, \xi}(x, y, t)=J_{0}\left(2 \sqrt{\xi\left(x^{2}+y^{2}\right)}\right)
$$

and

$$
J_{0}(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i t \sin \theta} d \theta
$$

is the Bessel function of order 0 .
It is shown in [2] that the Gelfand topology on Δ coincides with the topology on

$$
F=\left\{(\lambda,|\lambda|(2 m+1)) \in \mathbb{R}^{2}: \lambda \neq 0, m \in \mathbb{N}\right\} \cup\left\{(0, \xi) \in \mathbb{R}^{2}: \xi \geq 0\right\}
$$

induced from the Euclidean topology of \mathbb{R}^{2}.

The set F is usually called the Heisenberg fan.
We now state two technical lemmas involving Laguerre functions, which will be useful later on.

Lemma 2.1. The Laguerre functions $l_{m}^{(\alpha)}(x)=e^{-x / 2} L_{m}^{(\alpha)}(x)$ satisfy the following estimates:

$$
\begin{equation*}
\left|l_{m}^{(\alpha)}(x)\right| \leq 1 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\left|\frac{d^{j}}{d x^{j}} l_{m}^{(\alpha)}(x)\right| \leq C_{\alpha j}(m+1)^{j}, \quad j \geq 1 . \tag{5}
\end{equation*}
$$

Proof. Estimate (4) follows from the properties of Laguerre polynomials (see, for instance, Section 10.12 in [5]), while (5) is an immediate consequence of the following property:

$$
\begin{equation*}
\frac{d^{j}}{d x^{j}} l_{m}^{(\alpha)}(x)=\sum_{h=0}^{j} c_{h} m(m-1) \ldots(m-h+1) l_{m-h}^{(\alpha+h)}(x), \tag{6}
\end{equation*}
$$

which can be proved by induction from the identity

$$
\frac{d}{d x} l_{m}^{(\alpha)}(x)=-\frac{1}{2} l_{m}^{(\alpha)}(x)+\frac{m}{\alpha+1} l_{m-1}^{(\alpha+1)}(x)
$$

(see [5], formula (15) of Section 10.12).
Lemma 2.2. For all $\lambda \neq 0$,

$$
\begin{equation*}
\left|\frac{\partial^{j}}{\partial \lambda^{j}} \varphi_{-\lambda, m}(x, y, t)\right| \leq C_{j}\left[|t|+(m+1)\left(x^{2}+y^{2}\right)\right]^{j} \tag{7}
\end{equation*}
$$

Proof. By the estimates of Lemma 2.1 we have

$$
\begin{aligned}
\left|\frac{\partial^{j}}{\partial \lambda^{j}} \varphi_{-\lambda, m}(x, y, t)\right| & =\left|\frac{\partial^{j}}{\partial \lambda^{j}}\left(e^{i \lambda t} l_{m}^{(0)}\left(2|\lambda|\left(x^{2}+y^{2}\right)\right)\right)\right| \\
& \leq \sum_{h=0}^{j}\binom{j}{h}\left|\frac{\partial^{j-h}}{\partial \lambda^{j-h}} e^{i \lambda t}\right|\left|\frac{\partial^{h}}{\partial \lambda^{h}} l_{m}^{(0)}\left(2|\lambda|\left(x^{2}+y^{2}\right)\right)\right| \\
& =\sum_{h=0}^{j}\binom{j}{h}|t|^{j-h}\left(2\left(x^{2}+y^{2}\right)\right)^{h}\left|\frac{\partial^{h}}{\partial \eta^{h}} l_{m}^{(0)}(\eta)\right|_{\eta=2|\lambda|\left(x^{2}+y^{2}\right)} \\
& \leq \sum_{h=0}^{j}\binom{j}{h}|t|^{j-h} C_{h}(m+1)^{h}\left(2\left(x^{2}+y^{2}\right)\right)^{h} \\
& \leq C_{j} \sum_{h=0}^{j}\binom{j}{h}|t|^{j-h}\left[(m+1)\left(x^{2}+y^{2}\right)\right]^{h} \\
& =C_{j}\left[|t|+(m+1)\left(x^{2}+y^{2}\right)\right]^{j} .
\end{aligned}
$$

3. Solvability of polynomials in L and T. We will give some techniques that enable us to find a fundamental solution of operators of the form

$$
\begin{equation*}
D=P(-i T,-L) \tag{8}
\end{equation*}
$$

where P is a polynomial in two variables with complex coefficients, L is the sublaplacian, T is the derivative with respect to t.

Proposition 3.1. Let D_{1} and D_{2} be operators of the form (8). Then $D=D_{1} D_{2}$ is locally solvable if and only if D_{1} and D_{2} are locally solvable.

Proof. Suppose D is locally solvable; then there exist a neighborhood U and a distribution $u \in \mathcal{D}(U)$ such that for all $f \in C^{\infty}(\bar{U})$ one has $D u=f$ in U. Since D_{1} and D_{2} commute, we have

$$
D_{1}\left(D_{2} u\right)=f=D_{2}\left(D_{1} u\right)
$$

on U, that is, D_{1} and D_{2} are locally solvable. Let us see that the converse is also true.

If D_{1} is locally solvable, then there exists an open set U_{1} such that for all $f \in C^{\infty}\left(\bar{U}_{1}\right)$ (in particular $f \in \mathcal{S}\left(\bar{U}_{1}\right)$) there exists $u \in \mathcal{D}^{\prime}\left(U_{1}\right)$ which is a solution of $D_{1} u=f$ in U_{1}. Since D_{2} is locally solvable, there exist a neighborhood U_{2} and a distribution $v \in \mathcal{D}^{\prime}\left(U_{2}\right)$ such that $D_{2} v=u$ in U_{2}. Therefore D is locally solvable, for $D v=D_{1} D_{2} v=D_{1} u=f$ in $U_{1} \cap U_{2}$.

Corollary 3.2. (a) If $P(\lambda, \xi)$ is identically zero on some oblique ray of the fan, then D is not locally solvable.
(b) If $P(\lambda, \xi)$ is identically zero on the vertical ray of the fan, i.e. $D=$ $T^{h} D_{1}$, then D is locally solvable if and only if D_{1} is locally solvable.

Proof. (a) By hypothesis $P(\lambda, \xi)$ is divisible by $\xi-(2 m+1) \lambda$, for some $m \in \mathbb{Z}$. Then $D=D_{1} D_{2}$, where $D_{1}=-L+i(2 m+1) T$. Such an operator is not locally solvable (see [6]). By Proposition 3.1, D is not locally solvable.
(b) T^{h} is known to be locally solvable. Indeed, solving the problem $T^{h} w=u$, where $u \in \mathcal{D}^{\prime}(U)$, is equivalent to finding an h th primitive of u in the variable t. Such a primitive always exists (see Theorem IV, Ch. II, Sec. 5 in [8]). The statement follows from Proposition 3.1.

We will therefore restrict our investigation to those operators such that $P(\lambda, \xi)$ does not vanish identically on any ray of the fan.

Theorem 3.3. If P is a homogeneous polynomial, then $D=P(-i T,-L)$ is solvable if and only if $P(\lambda, \xi)$ is not divisible by $\xi-(2 m+1) \lambda$, for some $m \in \mathbb{Z}$. Moreover, in this case D is globally solvable.

Proof. It is well known that if P is a homogeneous polynomial in two variables, then it factors as a product of terms of degree one. Since the operator $-L+i(2 m+1) T$, corresponding to the polynomial $\xi-(2 m+1) \lambda$, is not locally solvable for all $m \in \mathbb{Z}$, the assertion follows from Proposition 3.1.

The last statement is true because D is homogeneous with respect to the dilations δ_{r} on H_{1} defined before.

Let us describe the irreducible unitary representations of H_{n}. For every $\lambda \neq 0$, we have the Schrödinger representation π_{λ}, which is unique up to
equivalence and is defined in the following way. Given $f \in L^{2}\left(\mathbb{R}^{n}\right)$,

$$
\left(\pi_{\lambda}(x, y, t) f\right)(\xi)=e^{-i \lambda(t+2 x \cdot y-4 \xi \cdot y)} f(\xi-x)
$$

To the value $\lambda=0$ there correspond the one-dimensional representations

$$
\pi_{\xi, \eta}(x, y, t)=e^{-i(\xi \cdot x+\eta \cdot y)}
$$

where $\xi, \eta \in \mathbb{R}^{n}$.
Such representations are pairwise inequivalent and every irreducible unitary representation of H_{n} is equivalent to one of them.

The Fourier transform of a function $f \in L^{1}\left(H_{n}\right)$ is the collection of all operators

$$
\pi(f)=\int_{H_{n}} f(x, y, t) \pi(x, y, t) d x d y d t
$$

where π ranges over the set of unitary irreducible representations of H_{n} described above. The inversion formula

$$
\begin{equation*}
f(x, y, t)=\frac{1}{(2 \pi)^{n+1}} \int_{\mathbb{R}} \operatorname{tr}\left(\pi_{\lambda}(f) \pi_{\lambda}(x, y, t)^{*}\right)|\lambda|^{n} d \lambda \tag{9}
\end{equation*}
$$

holds in a dense subspace of $L^{1}\left(H_{n}\right)$, in particular for Schwartz functions. If we choose an othonormal basis of $L^{2}\left(\mathbb{R}^{n}\right)$, we can compute the trace explicitly. Put $n=1$ and fix the normalized Hermite basis $\left\{h_{m}^{\lambda}\right\}_{m \in \mathbb{N}}$ of $L^{2}(\mathbb{R})$, where

$$
h_{m}^{\lambda}(\xi)=\frac{|\lambda|^{1 / 4}}{2^{(m-1) / 2} \sqrt{m!} \pi^{1 / 4}} \phi_{m}(\sqrt{|\lambda|} \xi)
$$

with $\phi_{m}(\xi)=D_{\lambda}^{m} e^{-2 \xi^{2}}$ and $D_{\lambda}=\frac{1}{2}(d / d \xi-4 \lambda \xi)$. In this basis, (9) can be rewritten as

$$
\begin{equation*}
f(x, y, t)=\frac{1}{(2 \pi)^{n+1}} \sum_{m} \int_{\mathbb{R}}\left\langle\pi_{\lambda}(f) h_{m}^{\lambda}, \pi_{\lambda}(x, y, t) h_{m}^{\lambda}\right\rangle|\lambda|^{n} d \lambda, \tag{10}
\end{equation*}
$$

where the inner product is taken in $L^{2}(\mathbb{R})$.
We have

$$
\varphi_{\lambda, m}(v)=\left\langle\pi_{\lambda}(v) h_{m}^{\lambda}, h_{m}^{\lambda}\right\rangle,
$$

where $v=(x, y, t)$. If we put $\widehat{g}(\lambda, m, n)=\left\langle\pi_{\lambda}(g) h_{m}^{\lambda}, h_{n}^{\lambda}\right\rangle$ for all $g \in \mathcal{S}\left(H_{1}\right)$, then

$$
\widehat{g}(\lambda, m, m)=\int_{H_{1}} \varphi_{\lambda, m}(v) g(v) d v
$$

Therefore, since $\left\|\varphi_{\lambda, m}\right\|_{\infty}=1$ for all m and λ,

$$
\begin{equation*}
|\widehat{g}(\lambda, m, m)| \leq\|g\|_{L^{1}\left(H_{1}\right)} . \tag{11}
\end{equation*}
$$

Let f be a Schwartz function on H_{1} and assume that $D u=f$. By formally applying the Fourier transform to both sides, we get

$$
\begin{equation*}
\pi_{\lambda}(D u) h_{m}^{\lambda}=\pi_{\lambda}(f) h_{m}^{\lambda} \tag{12}
\end{equation*}
$$

If V is a left invariant vector field, we have

$$
\begin{equation*}
\pi_{\lambda}(V u)=-\pi_{\lambda}(u) d \pi_{\lambda}(V) \tag{13}
\end{equation*}
$$

Take D as in (8). By (13) we get

$$
\begin{equation*}
\pi_{\lambda}(D u)=\pi_{\lambda}(u) d \pi_{\lambda}\left({ }^{t} D\right) \tag{14}
\end{equation*}
$$

Moreover,

$$
d \pi_{\lambda}(T) h_{m}^{\lambda}=-i \lambda h_{m}^{\lambda}, \quad d \pi_{\lambda}(L) h_{m}^{\lambda}=-(2 m+1)|\lambda| h_{m}^{\lambda} .
$$

Therefore

$$
\begin{aligned}
d \pi_{\lambda}\left({ }^{t} D\right) h_{m}^{\lambda} & =d \pi_{\lambda}(P(i T,-L)) h_{m}^{\lambda}=P\left(d \pi_{\lambda}(i T), d \pi_{\lambda}(-L)\right) h_{m}^{\lambda} \\
& =P(\lambda,|\lambda|(2 m+1)) h_{m}^{\lambda}
\end{aligned}
$$

and, by (14),
(15) $\quad \pi_{\lambda}(D u) h_{m}^{\lambda}=\pi_{\lambda}(u) P(\lambda,|\lambda|(2 m+1)) h_{m}^{\lambda}$.

Formula (15) can be viewed as an analogue of the identity

$$
\begin{equation*}
(p(-i \partial) u)^{\wedge}(\xi)=p(\xi) \widehat{u}(\xi) \tag{16}
\end{equation*}
$$

holding on \mathbb{R}^{n} for a differential operator with constant coefficients. The polynomial $p(\xi)$ appearing in (16) is called the symbol of the operator $p(-i \partial)$. For this reason we call $P(\lambda, \xi)$ the symbol of D.

From (12) and (15) it follows that

$$
\pi_{\lambda}(D u) h_{m}^{\lambda}=\pi_{\lambda}(u) P(\lambda,|\lambda|(2 m+1)) h_{m}^{\lambda}=\pi_{\lambda}(f) h_{m}^{\lambda}
$$

therefore

$$
\begin{equation*}
\pi_{\lambda}(u) h_{m}^{\lambda}=\frac{\pi_{\lambda}(f) h_{m}^{\lambda}}{P(\lambda,|\lambda|(2 m+1))} . \tag{17}
\end{equation*}
$$

From the inversion formula (10) and from (17) we get the following formal expression for u :

$$
\begin{aligned}
u(v) & =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}} \sum_{m=0}^{\infty} \frac{\left\langle\pi_{\lambda}(f) h_{m}^{\lambda}, \pi_{\lambda}(v) h_{m}^{\lambda}\right\rangle}{P(\lambda,|\lambda|(2 m+1))}|\lambda| d \lambda \\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}} \sum_{m=0}^{\infty} \int_{H_{1}} f(w) \frac{\left\langle\pi_{\lambda}(w) h_{m}^{\lambda}, \pi_{\lambda}(v) h_{m}^{\lambda}\right\rangle}{P(\lambda,|\lambda|(2 m+1))} d w|\lambda| d \lambda \\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}} \sum_{m=0}^{\infty} \int_{H_{1}} f(w) \frac{\left\langle h_{m}^{\lambda}, \pi_{\lambda}\left(w^{-1} v\right) h_{m}^{\lambda}\right\rangle}{P(\lambda,|\lambda|(2 m+1))} d w|\lambda| d \lambda \\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}} \sum_{m=0}^{\infty} \int_{H_{1}} \frac{f(w) \varphi_{-\lambda, m}\left(w^{-1} v\right)}{P(\lambda,|\lambda|(2 m+1))} d w|\lambda| d \lambda \\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}} \sum_{m=0}^{\infty} \frac{f * \varphi_{-\lambda, m}(v)}{P(\lambda,|\lambda|(2 m+1))}|\lambda| d \lambda .
\end{aligned}
$$

Therefore, if we can define

$$
K(v)=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}} \sum_{m=0}^{\infty} \frac{\varphi_{-\lambda, m}(v)}{P(\lambda,|\lambda|(2 m+1))}|\lambda| d \lambda
$$

as a distribution, it follows that $u=f * K$, so that a fundamental solution of D is the tempered distribution defined by

$$
\begin{align*}
\langle K, g\rangle & =\frac{1}{(2 \pi)^{2}} \iint_{H_{1}} \sum_{m=0}^{\infty} \frac{\varphi_{-\lambda, m}(v) g(v)}{P(\lambda,|\lambda|(2 m+1))}|\lambda| d \lambda d v \tag{18}\\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}} \sum_{m=0}^{\infty} \frac{\widehat{g}(-\lambda, m, m)}{P(\lambda,|\lambda|(2 m+1))}|\lambda| d \lambda,
\end{align*}
$$

for all $g \in \mathcal{S}\left(H_{1}\right)$. Note that only the radial coefficients $\widehat{g}(-\lambda, m, m)$ occur in this formula, so K is radial.

For a generic polynomial $P,(18)$ does not converge absolutely in general. The series may not converge, and the integral has singularities when the algebraic curve defined by $P(\lambda, \xi)=0$ intersects the Heisenberg fan. Thus, we are going to face our problem by considering separately different cases, according to the mutual position of the algebraic curve $P(\lambda, \xi)=0$ and the fan. For each case, we define a fundamental solution of D, modifying (18) in a suitable way, in order to get a well defined tempered distribution.

As we have already said above in this section, we are reduced to considering algebraic curves $P(\lambda, \xi)=0$ that intersect each ray of the fan in at most finitely many points.
4. First case: no intersections. The simplest situation occurs when $P(\lambda, \xi)$ is never zero on F. To solve this problem we use the following fact (see [7], Appendix A, Example 2.7).

Lemma 4.1. If $P \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and $P(x)>0$ for all $x \in \mathbb{R}^{n}$, then there exist $C>0$ and $N \in \mathbb{N}$ such that

$$
P(x)>C\left(1+|x|^{2}\right)^{-N} \quad \forall x \in \mathbb{R}^{n} .
$$

A consequence of this lemma is the following
LEMMA 4.2. If $P \in \mathbb{C}[x, y]$ and $P(x, y) \neq 0$ in the closed domain of the plane defined by $y \geq|x|(2 m+1)$, then in this region we have the estimate

$$
|P(x, y)|>C\left(1+x^{2}+y^{2}\right)^{-N}
$$

for some $C>0$ and $N \in \mathbb{N}$.
Proof. By changing coordinates we can reduce to the case $P(x, y) \neq 0$ in the first quarter of the plane. Therefore assume that for all $x \geq 0, y \geq 0$ we have $|P(x, y)|>0$.

If $P(x, y)=P_{1}(x, y)+i P_{2}(x, y)$ with $P_{1}(x, y), P_{2}(x, y) \in \mathbb{R}[x, y]$, then $|P(x, y)|=\sqrt{P_{1}(x, y)^{2}+P_{2}(x, y)^{2}}$ and $Q(x, y)=P_{1}(x, y)^{2}+P_{2}(x, y)^{2} \in$ $\mathbb{R}[x, y]$. Since Q is positive for all $x \geq 0$ and $y \geq 0$, the polynomial $R(x, y)=$ $Q\left(x^{2}, y^{2}\right)$ is positive for all $(x, y) \in \mathbb{R}^{2}$.

By Lemma 4.1 there exist $C_{1}>0$ and $N \in \mathbb{N}$ such that

$$
R(x, y)>C_{1}\left(1+x^{2}+y^{2}\right)^{-N}
$$

For $x \geq 0$ and $y \geq 0, Q(x, y)=R(\sqrt{x}, \sqrt{y})$, therefore

$$
Q(x, y)>C_{1}(1+x+y)^{-N}>C_{2}\left(1+x^{2}+y^{2}\right)^{-N / 2}
$$

and so

$$
|P(x, y)|>C\left(1+x^{2}+y^{2}\right)^{-N / 4}
$$

Consider an operator D whose symbol P is such that $P(\lambda, \xi)=0$ defines an algebraic curve that does not intersect F, i.e. $P(\lambda,|\lambda|(2 m+1)) \neq 0$ for all $m \in \mathbb{N}, \lambda \in \mathbb{R}$ and $P(0, \xi) \neq 0$ for all $\xi>0$.

ThEOREM 4.3. Take $D=P(-i T,-L)$ such that $P(\lambda, \xi)$ is not zero on F. Define the distribution K by

$$
\langle K, g\rangle=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}} \sum_{m=0}^{\infty} \frac{\widehat{g}(-\lambda, m, m)}{P(\lambda,|\lambda|(2 m+1))}|\lambda| d \lambda, \quad g \in \mathcal{S}\left(H_{1}\right)
$$

where the integral on the right-hand side is absolutely convergent. Then K is a fundamental solution of D.

Proof. The algebraic curve $P(\lambda, \xi)=0$ in the λ, ξ plane has a finite number of connected components (see [3], Theorems 2.3.6 and 2.4.5). Since it does not intersect F, there exists an integer $k \in \mathbb{N}$ such that $P(\lambda, \xi) \neq 0$ in the closed region defined by $\xi \geq(2 k+1)|\lambda|$.

By Lemma 4.2, for all $m \geq k$ one has

$$
|P(\lambda,|\lambda|(2 m+1))|>C\left(1+\lambda^{2}(2 m+1)^{2}\right)^{-N}
$$

for some $C>0$ and $N \in \mathbb{N}$. Moreover, for fixed $m<k$, we define

$$
\mu_{m}=\min _{\lambda \in \mathbb{R}}|P(\lambda,|\lambda|(2 m+1))|>0
$$

Let M be a positive constant such that $M<\min \left\{\mu_{m}: m=1, \ldots, k-1\right\}$. Hence $|P(\lambda,|\lambda|(2 m+1))|>M$ for $m<k$. Putting these two estimates together shows that there exist a positive constant C and a natural number N such that

$$
\begin{equation*}
|P(\lambda,|\lambda|(2 m+1))|>C\left(1+\lambda^{2}(2 m+1)^{2}\right)^{-N} \tag{19}
\end{equation*}
$$

for every m.

Since the symbol of ${ }^{t} D$ is $P(-\lambda,|\lambda|(2 m+1))$, it follows from (15) that, for all $g \in \mathcal{S}\left(H_{1}\right)$,

$$
\pi_{\lambda}(g) h_{m}^{\lambda}=\frac{\pi_{\lambda}\left({ }^{t} D g\right) h_{m}^{\lambda}}{P(-\lambda,|\lambda|(2 m+1))},
$$

whence

$$
\begin{equation*}
\pi_{-\lambda}(g) h_{m}^{\lambda}=\frac{\pi_{-\lambda}\left({ }^{t} D g\right) h_{m}^{\lambda}}{P(\lambda,|\lambda|(2 m+1))} \tag{20}
\end{equation*}
$$

and, recalling (11),
(21) $\quad|\widehat{g}(-\lambda, m, m)|=\frac{\left|\left({ }^{t} D g\right)^{\wedge}(-\lambda, m, m)\right|}{|P(\lambda,|\lambda|(2 m+1))|} \leq C \frac{\left\|{ }^{t} D g\right\|_{L^{1}}}{|P(\lambda,|\lambda|(2 m+1))|}$.

Set $A=I+L^{2}$; then ${ }^{t} A=A$ and, by replacing D with A^{N+2} in (20), we get

$$
\begin{aligned}
\langle K, g\rangle & =\frac{1}{(2 \pi)^{2}} \sum_{m=0}^{\infty} \int_{\mathbb{R}} \frac{\widehat{g}(-\lambda, m, m)|\lambda|}{P(\lambda,|\lambda|(2 m+1))} d \lambda \\
& =\frac{1}{(2 \pi)^{2}} \sum_{m=0}^{\infty} \int_{\mathbb{R}} \frac{\left(A^{N+2} g\right)^{\wedge}(-\lambda, m, m)}{\left(1+\lambda^{2}(2 m+1)^{2}\right)^{N+2}} \cdot \frac{|\lambda|}{P(\lambda,|\lambda|(2 m+1))} d \lambda .
\end{aligned}
$$

Moreover, by (19), we get

$$
\begin{aligned}
|\langle K, g\rangle| & \leq \frac{\left\|A^{N+2} g\right\|_{L^{1}}}{(2 \pi)^{2}} \sum_{m=0}^{\infty} \int_{\mathbb{R}} \frac{|\lambda| \cdot|P(\lambda,|\lambda|(2 m+1))|^{-1}}{\left(1+\lambda^{2}(2 m+1)^{2}\right)^{N+2}} d \lambda \\
& \leq C\left\|A^{N+2} g\right\|_{L^{1}} \sum_{m=0}^{\infty} \int_{\mathbb{R}} \frac{|\lambda|\left(1+\lambda^{2}(2 m+1)^{2}\right)^{N}}{\left(1+\lambda^{2}(2 m+1)^{2}\right)^{N+2}} d \lambda \\
& \leq C\left\|A^{N+2} g\right\|_{L^{1}} \sum_{m=0}^{\infty} \int_{\mathbb{R}} \frac{|\lambda|}{\left(1+\lambda^{2}(2 m+1)^{2}\right)^{2}} d \lambda \\
& \leq 2 C\left\|A^{N+2} g\right\|_{L^{1}} \sum_{m=0}^{\infty} \frac{1}{(2 m+1)^{2}} \int_{0}^{\infty} \frac{t}{\left(1+t^{2}\right)^{2}} d t \\
& \leq C^{\prime}\left\|A^{N+2} g\right\|_{L^{1}} \leq C^{\prime \prime}\|g\|_{(n)}
\end{aligned}
$$

where $\|\cdot\|_{(n)}$ is a continuous Schwartz norm. Therefore K is a tempered distribution. Let us show that it is a fundamental solution. We verify that $D K=\delta$, by testing both sides of the identity on a Schwartz function f and applying (20):

$$
\begin{aligned}
\langle D K, f\rangle & =\left\langle K,{ }^{t} D f\right\rangle=\frac{1}{(2 \pi)^{2}} \sum_{m} \int_{\mathbb{R}} \frac{\left({ }^{t} D f\right)^{\wedge}(-\lambda, m, m)|\lambda|}{P(\lambda,|\lambda|(2 m+1))} d \lambda \\
& =\frac{1}{(2 \pi)^{2}} \sum_{m} \int_{\mathbb{R}} \frac{\left\langle\pi_{-\lambda}\left({ }^{t} D f\right) h_{m}^{\lambda}, h_{m}^{\lambda}\right\rangle}{P(\lambda,|\lambda|(2 m+1))}|\lambda| d \lambda
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(2 \pi)^{2}} \sum_{m} \int_{\mathbb{R}}\left\langle\pi_{-\lambda}(f) h_{m}^{\lambda}, h_{m}^{\lambda}\right\rangle|\lambda| d \lambda \\
& =\frac{1}{(2 \pi)^{2}} \sum_{m} \int_{\mathbb{R}}\left\langle\pi_{-\lambda}(f) h_{m}^{\lambda}, \pi_{-\lambda}(0,0,0) h_{m}^{\lambda}\right\rangle|\lambda| d \lambda \\
& =\frac{1}{(2 \pi)^{2}} \sum_{m} \int_{\mathbb{R}}\left\langle\pi_{\lambda}(f) h_{m}^{\lambda}, \pi_{\lambda}(0,0,0) h_{m}^{\lambda}\right\rangle|\lambda| d \lambda \\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}} \operatorname{tr}\left(\pi_{\lambda}(f) \pi_{\lambda}(0,0,0)^{*}\right)|\lambda| d \lambda=f(0,0,0)
\end{aligned}
$$

Therefore a solution of the problem $D u=f$ is

$$
u(x, y, t)=(f * K)(x, y, t)
$$

5. Second case: a finite number of intersections, all away from the vertical ray. We now turn to the case in which the algebraic curve $P(\lambda, \xi)=0$ intersects the Heisenberg fan in a finite number of points, all of them belonging to the oblique rays and different from the origin.

Let us begin, for simplicity, by assuming that $\left\{(\lambda, \xi) \in \mathbb{R}^{2}: P(\lambda, \xi)=0\right\}$ intersects the fan with multiplicity $h \geq 1$ in one single point, lying on the k th ray. We can assume that this point has the form $(\alpha,|\alpha|(2 k+1))$, with $\alpha>0$. Therefore, there exists a polynomial $Q(\lambda)$ such that, for $\lambda \geq 0$, $P(\lambda,|\lambda|(2 k+1))=(\lambda-\alpha)^{h} Q(\lambda)$ and $Q(\lambda) \neq 0$; for $\lambda<0, P(\lambda,|\lambda|(2 k+1))$ $\neq 0$. Moreover, $P(\lambda,|\lambda|(2 m+1)) \neq 0$ for $m \neq k$ and $\lambda \in \mathbb{R}$.

Given a C^{∞} function $\varphi(x)$, define

$$
R_{h, \alpha}(\varphi(x))=\varphi(x)-\sum_{j=0}^{h-1} \frac{\varphi^{(j)}(\alpha)}{j!}(x-\alpha)^{j}
$$

If $g(x)$ is a rational function with a pole of order h at α and I is an interval containing α, then

$$
\varphi \mapsto \int_{I} R_{h, \alpha}(\varphi) g(x) d x
$$

is a well defined distribution, which is a modified version of Hadamard's finite part (see [8], Ch. 2, Sec. 2, Example 2).

Note that

$$
\begin{equation*}
R_{h, \alpha}\left((x-\alpha)^{h} g(x)\right)=(x-\alpha)^{h} g(x) \tag{22}
\end{equation*}
$$

Theorem 5.1. Consider $D=P(-i T,-L)$ and suppose that P is as above. Then D has a fundamental solution $K \in \mathcal{S}^{\prime}\left(H_{1}\right)$, defined as follows: for all $g \in \mathcal{S}\left(H_{1}\right)$,

$$
\langle K, g\rangle=\frac{1}{(2 \pi)^{2}} \sum_{m=0}^{\infty}\left\langle K_{m}, g\right\rangle
$$

where

$$
\begin{aligned}
\left\langle K_{m}, g\right\rangle & =\int_{\mathbb{R}} \frac{\widehat{g}(-\lambda, m, m)|\lambda|}{P(\lambda,|\lambda|(2 m+1))} d \lambda \quad \text { for } m \neq k, \\
\left\langle K_{k}, g\right\rangle & =\int_{\mathbb{R} \backslash[0,2 \alpha]} \frac{\widehat{g}(-\lambda, k, k)|\lambda|}{P(\lambda,|\lambda|(2 k+1))} d \lambda+\int_{0}^{2 \alpha} \frac{R_{h, \alpha}(\widehat{g}(-\lambda, k, k))|\lambda|}{P(\lambda,|\lambda|(2 k+1))} d \lambda .
\end{aligned}
$$

Proof. All of the integrals converge absolutely. For all $m \neq k$ and for all $\lambda \in \mathbb{R}, P(\lambda,|\lambda|(2 m+1)) \neq 0$, so we can argue as in the proof of Theorem 4.3 to show that

$$
\left|\sum_{m}\left\langle K_{m}, g\right\rangle\right| \leq C\|g\|_{(N)}, \quad \text { for some } N \gg 0
$$

If $m=k$, we have

$$
\begin{aligned}
\left\langle K_{k}, g\right\rangle= & \int_{\mathbb{R} \backslash[0,2 \alpha]} \frac{\widehat{g}(-\lambda, k, k)|\lambda|}{P(\lambda,|\lambda|(2 k+1))} d \lambda \\
& +\int_{H_{1}}^{2 \alpha} \int_{0}^{2 \alpha}\left[\frac{d^{h}}{d \lambda^{h}} \varphi_{-\lambda, k}(v)\right]_{\lambda=\xi} \frac{|\lambda| g(v)}{h!Q(\lambda)} d \lambda d v,
\end{aligned}
$$

where ξ is strictly between α and λ. The first term is absolutely convergent because again $P(\lambda,|\lambda|(2 k+1)) \neq 0$ in $\mathbb{R} \backslash[0,2 \alpha]$. If we apply estimate (5) to the derivatives of the functions $\varphi_{-\lambda, m}(v)$ we can show that also the second integral is absolutely convergent, so we deduce that K is a tempered distribution. Let us show that it is a fundamental solution of D. Using (22) we have

$$
\begin{aligned}
\left\langle K_{k},{ }^{t} D f\right\rangle= & \int_{\mathbb{R} \backslash[0,2 \alpha]} \widehat{f}(-\lambda, k, k)|\lambda| d \lambda \\
& +\int_{0}^{2 \alpha} \frac{R_{h, \alpha}(P(\lambda,|\lambda|(2 k+1)) \widehat{f}(-\lambda, k, k))}{P(\lambda,|\lambda|(2 k+1))}|\lambda| d \lambda \\
= & \int_{\mathbb{R} \backslash[0,2 \alpha]} \widehat{f}(-\lambda, k, k)|\lambda| d \lambda \\
& +\int_{0}^{2 \alpha} \frac{P(\lambda,|\lambda|(2 k+1)) \widehat{f}(-\lambda, k, k)}{P(\lambda,|\lambda|(2 k+1))}|\lambda| d \lambda \\
= & \int_{\mathbb{R}} \widehat{f}(-\lambda, k, k)|\lambda| d \lambda .
\end{aligned}
$$

Therefore

$$
\left\langle K,{ }^{t} D f\right\rangle=\frac{1}{(2 \pi)^{2}} \sum_{m=0}^{\infty} \int_{\mathbb{R}} \widehat{f}(-\lambda, m, m)|\lambda| d \lambda=f(0,0,0)
$$

This result extends in an obvious way to those operatos $D=P(-i T,-L)$ such that $P(\lambda, \xi)=0$ intersects the fan with finite multiplicity in finitely many points, all of them belonging to the oblique rays and different from the origin.

Corollary 5.2. Let $D=P(-i T,-L)$ be such that $P(\lambda,|\lambda|(2 m+1))=0$ only at finitely many points, say $\left(\lambda_{j, h},\left|\lambda_{j, h}\right|\left(2 m_{j}+1\right)\right), j=1, \ldots, r, h=$ $1, \ldots, r_{j}$, each of them lying on the curve $\xi=|\lambda|\left(2 m_{j}+1\right)$ and having multiplicity $\mu_{j, h}$. Suppose also that $P(0, \xi) \neq 0$ for all $\xi \geq 0$. Let $I_{j, h}$ be intervals centered at $\lambda_{j, h}$ such that $I_{j, h} \cap I_{j, h^{\prime}}=\emptyset$ if $h \neq h^{\prime}$. Then D has a fundamental solution

$$
\langle K, g\rangle=\frac{1}{(2 \pi)^{2}}\left(\sum_{j=1}^{r}\left\langle K_{m_{j}}, g\right\rangle+\sum_{m \notin\left\{m_{1}, \ldots, m_{r}\right\}}\left\langle K_{m}, g\right\rangle\right), \quad g \in \mathcal{S}\left(H_{1}\right)
$$

where

$$
\begin{aligned}
\left\langle K_{m}, g\right\rangle= & \int_{\mathbb{R}} \frac{\widehat{g}(-\lambda, m, m)|\lambda|}{P(\lambda,|\lambda|(2 m+1))} d \lambda \quad \text { if } m \notin\left\{m_{1}, \ldots, m_{r}\right\} \\
\left\langle K_{m_{j}}, g\right\rangle= & \int_{\bigcup_{I_{j, h}}} \frac{R_{\mu_{j, h}, \lambda_{j, h}}\left(\widehat{g}\left(-\lambda, m_{j}, m_{j}\right)\right)|\lambda|}{P\left(\lambda,|\lambda|\left(2 m_{j}+1\right)\right)} d \lambda \\
& +\int_{\mathbb{R} \backslash \bigcup}^{I_{j, h}} \frac{\widehat{g}\left(-\lambda, m_{j}, m_{j}\right)|\lambda|}{P\left(\lambda,|\lambda|\left(2 m_{j}+1\right)\right)} d \lambda
\end{aligned}
$$

6. Third case: intersection in the origin. The last case we examine concerns the kind of singularity occurring in the distribution (18) when P vanishes at the origin. We consider an operator $D=P(-i T,-L)$ where P is a polynomial with complex coefficients, having only a finite number of zeros on the fan, one of them being the origin and no other lying on the vertical ray.

We are able to find a fundamental solution of D only if we add a technical hypothesis: we must suppose that the homogeneous part of minimum degree (say k) of D contains a term of the form $a L^{k}$, with $a \neq 0$. The symbol of D is therefore a polynomial of the form

$$
\begin{equation*}
P(\lambda, \xi)=c_{\bar{\alpha}} \xi^{k}+\sum_{|\alpha|=k, \alpha \neq \bar{\alpha}} c_{\alpha} \xi^{\alpha_{1}} \lambda^{\alpha_{2}}+\sum_{|\alpha|>k} c_{\alpha} \xi^{\alpha_{1}} \lambda^{\alpha_{2}} \tag{23}
\end{equation*}
$$

$\bar{\alpha}=(k, 0), c_{\alpha} \in \mathbb{C}$ and $c_{\bar{\alpha}}=-a$. This includes the case $D=L^{k}$, considered in [1].

We will need the following lemma.
Lemma 6.1. Suppose $P \in \mathbb{C}[x, y], P(x, y) \neq 0$ for all $x, y \geq 0,(x, y) \neq$ $(0,0)$. Then there exist a positive constant C and $N \in \mathbb{N}$ such that
(24)

$$
\begin{aligned}
& |P(x, y)|>C\left(1+x^{2}+y^{2}\right)^{-N} \\
& \sqrt{x^{2}+y^{2}} \geq 1
\end{aligned}
$$

Proof. Define $Q(x, y)=P(x+1 / \sqrt{2}, y)$. Then $Q(x, y) \neq 0$ for all $x \geq 0$, $y \geq 0$, therefore by Lemma 4.2 we have the estimate

$$
|Q(x, y)|>C_{1}\left(1+x^{2}+y^{2}\right)^{-N_{1}}
$$

for all $x \geq 0, y \geq 0$. Hence

$$
|P(x, y)|=|Q(x-1 / \sqrt{2}, y)|>C_{2}\left(1+x^{2}+y^{2}\right)^{-N_{1}}
$$

for all $x \geq 1 / \sqrt{2}, y \geq 0$. In the same way we can show that there exist $C_{3}>0$ and $N_{2} \in \mathbb{N}$ such that, for all $x \geq 0, y \geq 1 / \sqrt{2}$,

$$
|P(x, y)|>C_{3}\left(1+x^{2}+y^{2}\right)^{-N_{2}}
$$

If we take $C=\max \left(C_{2}, C_{3}\right)$ and $N=\min \left(N_{1}, N_{2}\right)$, we get the estimate (24) for all $x, y \geq 0$ with $\sqrt{x^{2}+y^{2}} \geq 1$.

We begin with the case where the origin is the only zero.
Theorem 6.2. Suppose that

$$
P(\lambda, \xi)=c_{\bar{\alpha}} \xi^{k}+\sum_{|\alpha|=k, \alpha \neq \bar{\alpha}} c_{\alpha} \xi^{\alpha_{1}} \lambda^{\alpha_{2}}+\sum_{|\alpha|>k} c_{\alpha} \xi^{\alpha_{1}} \lambda^{\alpha_{2}}, \quad c_{\alpha} \in \mathbb{C}, c_{\bar{\alpha}} \neq 0
$$

and that $P(\lambda,|\lambda|(2 m+1)) \neq 0$ for all $\lambda \neq 0, m \in \mathbb{N}$. Define the distribution K, for all $g \in \mathcal{S}\left(H_{1}\right)$, by

$$
\begin{align*}
\langle K, g\rangle= & \frac{1}{(2 \pi)^{2}} \sum_{m=0}^{\infty}\left\{\int_{|\lambda| \geq \delta /(2 m+1)} \frac{\widehat{g}(-\lambda, m, m)|\lambda|}{P(\lambda,|\lambda|(2 m+1))} d \lambda\right. \tag{25}\\
& \left.+\int_{|\lambda|<\delta /(2 m+1)} \frac{R_{k+N_{m}-1,0}(\widehat{g}(-\lambda, m, m))|\lambda|}{P(\lambda,|\lambda|(2 m+1))} d \lambda\right\}
\end{align*}
$$

where $N_{m} \in \mathbb{N}$ is zero except for finitely many $m \in \mathbb{N}$ and δ is a suitable positive constant. Then K is a fundamental solution of $D=P(-i T,-L)$.

Proof. Let σ be a positive constant. On the line $\xi=\lambda / \sigma, P(\lambda, \xi)$ takes the value

$$
P_{\sigma}(\xi)=P(\sigma \xi, \xi)=\xi^{k}\left(c_{\bar{\alpha}}+\sum_{|\alpha|=k, \alpha \neq \bar{\alpha}} c_{\alpha} \sigma^{\alpha_{2}}\right)+\sum_{|\alpha|>k} c_{\alpha} \sigma^{\alpha_{2}} \xi^{|\alpha|}
$$

Note that $c_{\bar{\alpha}}+\sum_{|\alpha|=k, \alpha \neq \bar{\alpha}} c_{\alpha} \sigma^{\alpha_{2}}$ tends to $c_{\bar{\alpha}}$ as $\sigma \rightarrow 0$. Therefore, if σ is small enough, the quantity $\left|c_{\bar{\alpha}}+\sum_{|\alpha|=k, \alpha \neq \bar{\alpha}} c_{\alpha} \sigma^{\alpha_{2}}\right|$ is not zero and can be bounded from below by a positive constant. Thus, there exists σ_{0} such that for all $\sigma \leq \sigma_{0},\left|c_{\bar{\alpha}}+\sum_{|\alpha|=k, \alpha \neq \bar{\alpha}} c_{\alpha} \sigma^{\alpha_{2}}\right| \geq C_{1}>0$.

Since

$$
\sum_{|\alpha|>k} c_{\alpha} \sigma^{\alpha_{2}} \xi^{|\alpha|}=o\left(\xi^{k}\right) \quad \text { as } \xi \rightarrow 0,
$$

if ξ is small enough, then $\sum_{|\alpha|>k} c_{\alpha} \sigma^{\alpha_{2}} \xi^{|\alpha|}$ is negligible with respect to ξ^{k}. Therefore there exists $\delta_{0}>0$ such that if $\xi \leq \delta_{0}$ and $\sigma \leq \sigma_{0}$, then

$$
\left|P_{\sigma}(\xi)\right| \geq\left.\left|C_{1}\right| \xi\right|^{k}-\left.\left|\sum_{|\alpha|>k} c_{\alpha} \sigma^{\alpha_{2}} \xi^{|\alpha|}\right|\left|\geq C_{2}\right| \xi\right|^{k}
$$

Thus, in the triangle

$$
\mathcal{E}=\left\{(\lambda, \xi) \in \mathbb{R}^{2}:|\lambda| / \sigma_{0} \leq \xi \leq \delta_{0}\right\}
$$

we have $|P(\lambda, \xi)| \geq C \xi^{k}$.
Hence,

$$
\begin{equation*}
|P(\lambda,|\lambda|(2 m+1))| \geq C(2 m+1)^{k} \lambda^{k} \tag{26}
\end{equation*}
$$

for all $m \geq 1 /\left(2 \sigma_{0}\right)-1 / 2$ and all λ such that $|\lambda| \leq \delta_{0} \sigma_{0}$.
For finitely many $m<1 /\left(2 \sigma_{0}\right)-1 / 2$, it may happen that the sum $c_{\bar{\alpha}}+\sum_{|\alpha|=k, \alpha \neq \bar{\alpha}} c_{\alpha} /(2 m+1)^{\alpha_{2}}$ is zero. Therefore, for all $m<1 /\left(2 \sigma_{0}\right)-1 / 2$, there exist $N_{m} \in \mathbb{N}$ and $\delta_{1}>0$ such that, if $|\lambda|<\delta_{1}$, then

$$
\begin{equation*}
|P(\lambda,|\lambda|(2 m+1))|>M \lambda^{k+N_{m}} . \tag{27}
\end{equation*}
$$

Put $\delta=\min \left(\sigma_{0}, \delta_{0}, \delta_{1}\right)$ and let us show that K in (25) is a tempered distribution. Note that

$$
\langle K, g\rangle=\frac{1}{(2 \pi)^{2}} \sum_{m=0}^{\infty}\left(I_{m}^{1}+I_{m}^{2}\right)
$$

where

$$
\begin{aligned}
I_{m}^{1}= & \int_{|\lambda| \geq \delta /(2 m+1)} \frac{\widehat{g}(-\lambda, m, m)|\lambda|}{P(\lambda,|\lambda|(2 m+1))} d \lambda \\
I_{m}^{2}= & \int_{|\lambda|<\delta /(2 m+1)}\left[\frac{d^{k+N_{m}-1}}{d \lambda^{k+N_{m}-1}} \widehat{g}(-\lambda, m, m)\right]_{\lambda=\lambda_{m}} \\
& \times \frac{\lambda^{k+N_{m}-1}|\lambda|}{\left(k+N_{m}-1\right)!P(\lambda,|\lambda|(2 m+1))} d \lambda
\end{aligned}
$$

and λ_{m} in I_{m}^{2} is a value between 0 and λ, for all m.
Take $m<1 /\left(2 \sigma_{0}\right)-1 / 2$. Then I_{m}^{1} is absolutely convergent because $P(\lambda,|\lambda|(2 m+1)) \neq 0$ for all λ such that $|\lambda| \geq \delta /(2 m+1)$. By estimate (27) we get

$$
\begin{array}{r}
\left|\frac{d^{k+N_{m}-1}}{d \lambda^{k+N_{m}-1}} \varphi_{-\lambda, m}(v)\right|_{\lambda=\lambda_{m}} \frac{|\lambda|^{k+N_{m}}}{\left(k+N_{m}-1\right)!|P(\lambda,|\lambda|(2 m+1))|} \\
\leq C_{m}\left\|\frac{d^{k+N_{m}-1}}{d \lambda^{k+N_{m}-1}} \varphi_{-\lambda, m}\right\|_{\infty} \leq C
\end{array}
$$

SO

$$
\left|\frac{d^{k+N_{m}-1}}{d \lambda^{k+N_{m}-1}} \widehat{g}(-\lambda, m, m)\right|_{\lambda=\lambda_{m}} \frac{|\lambda|^{k+N_{m}}}{\left(k+N_{m}-1\right)!|P(\lambda,|\lambda|(2 m+1))|} \leq C\|g\|_{1}
$$

Therefore the integrals occurring in K, corresponding to $m<1 /\left(2 \sigma_{0}\right)-1 / 2$, are absolutely convergent.

Consider now the infinitely many terms in K labeled by $m \geq 1 /\left(2 \sigma_{0}\right)$ $1 / 2$. Recall that $N_{m}=0$ for such m. By applying (7) to the derivatives of $\varphi_{-\lambda, m}(v)$, and (26) to the polynomial P, we get

$$
\begin{aligned}
\int_{|\lambda|<\delta /(2 m+1)} & \left|\frac{d^{k-1}}{d \lambda^{k-1}} \varphi_{-\lambda, m}(v)\right|_{\lambda=\lambda_{m}} \frac{|\lambda|^{k}}{(k-1)!|P(\lambda,|\lambda|(2 m+1))|} d \lambda \\
& \leq \int_{|\lambda|<\delta /(2 m+1)} \frac{C_{1}(m+1)^{k-1}\left(|t|+\left(x^{2}+y^{2}\right)\right)^{k-1}}{(2 m+1)^{k}} d \lambda \\
& \leq \frac{C_{2}\left(|t|+\left(x^{2}+y^{2}\right)\right)^{k-1}}{(m+1)^{2}}
\end{aligned}
$$

It follows that, for all $m \geq 1 /\left(2 \sigma_{0}\right)-1 / 2$,

$$
\begin{aligned}
\left|I_{m}^{2}\right| & \leq \frac{C_{2}}{(m+1)^{2}} \int_{H_{1}}\left(|t|+\left(x^{2}+y^{2}\right)\right)^{k-1}|g(x, y, t)| d x d y d t \\
& =\frac{C_{2}}{(m+1)^{2}}\left\|\left(|t|+\left(x^{2}+y^{2}\right)\right)^{k-1} g\right\|_{1} \leq \frac{C_{3}}{(m+1)^{2}}\|g\|_{(N)},
\end{aligned}
$$

for some $N \gg 0$.
By hypothesis, estimate (24) holds for P. Let $h=N$ be the exponent appearing in (24) and $A=-L\left(I+L^{2}\right)^{h+1}$. Then, by (21), we have

$$
\begin{aligned}
& \left.\quad \int_{|\lambda| \geq \delta /(2 m+1)} \frac{\widehat{g}(-\lambda, m, m)|\lambda|}{P(\lambda,|\lambda|(2 m+1))} d \lambda \right\rvert\, \\
& \quad \leq \int_{|\lambda| \geq \delta /(2 m+1)} \frac{\left\|^{t} A g\right\|_{1}|\lambda|}{|\lambda|(2 m+1)\left|1+\lambda^{2}(2 m+1)^{2}\right|^{h+1}|P(\lambda,|\lambda|(2 m+1))|} d \lambda \\
& \quad \leq \frac{C_{1}\left\|^{t} A g\right\|_{1}}{2 m+1} \int_{|\lambda| \geq \delta /(2 m+1)} \frac{d \lambda}{\left|1+\lambda^{2}(2 m+1)^{2}\right|} \\
& \quad \leq \frac{C_{1}}{(2 m+1)^{2}}\left\|^{t} A g\right\|_{1} \int_{|t| \geq \delta} \frac{d t}{1+t^{2}} \leq \frac{C_{2}}{(2 m+1)^{2}}\left\|^{t} A g\right\|_{1} .
\end{aligned}
$$

Therefore $K \in \mathcal{S}^{\prime}\left(H_{1}\right)$. Let us show that it is a fundamental solution of D :

$$
\begin{aligned}
\left\langle K,{ }^{t} D f\right\rangle= & \langle K, P(-i T,-L) f\rangle \\
= & \frac{1}{(2 \pi)^{2}} \sum_{m=0}^{\infty}\left\{\int_{|\lambda| \geq \delta /(2 m+1)} \widehat{f}(-\lambda, m, m)|\lambda| d \lambda\right. \\
& \left.+\int_{|\lambda|<\delta /(2 m+1)} \frac{R_{k+N_{m}-1,0}\left(\left({ }^{t} D f\right)^{\wedge}(-\lambda, m, m)\right)|\lambda|}{P(\lambda,|\lambda|(2 m+1))} d \lambda\right\} \\
= & \frac{1}{(2 \pi)^{2}} \sum_{m=0}^{\infty}\left\{\int_{|\lambda| \geq \delta /(2 m+1)} \widehat{f}(-\lambda, m, m)|\lambda| d \lambda\right. \\
& \left.+\int_{|\lambda|<\delta /(2 m+1)} \frac{R_{k+N_{m}-1,0}(P(\lambda,|\lambda|(2 m+1)) \widehat{f}(-\lambda, m, m))|\lambda|}{P(\lambda,|\lambda|(2 m+1))} d \lambda\right\} \\
= & \frac{1}{(2 \pi)^{2}} \sum_{m=0}^{\infty} \int \widehat{\mathbb{R}} \widehat{f}(-\lambda, m, m)|\lambda| d \lambda=f(0,0,0)
\end{aligned}
$$

since

$$
\begin{aligned}
& \frac{R_{k+N_{m}-1,0}(P(\lambda,|\lambda|(2 m+1)) \widehat{f}(-\lambda, m, m))}{P(\lambda,|\lambda|(2 m+1))} \\
&=\frac{P(\lambda,|\lambda|(2 m+1)) \widehat{f}(-\lambda, m, m)}{P(\lambda,|\lambda|(2 m+1))}
\end{aligned}
$$

Putting together the results obtained up to now, we can generalize Theorem 6.2, allowing $P(\lambda, \xi)$ to have zeros on F also outside the origin.

ThEOREM 6.3. Suppose $P(\lambda, \xi)$ has the form (23) and let $P(\lambda, \xi)$ vanish on F only at the origin and at finitely many points, $\left(\lambda_{j},\left|\lambda_{j}\right|\left(2 m_{j}+1\right)\right), j=$ $1, \ldots, r$, with multiplicity μ_{j}. Choosing a sufficiently small positive constant δ, let I_{j} be intervals centered at λ_{j} such that

$$
I_{j} \cap\left(-\frac{\delta}{2 m_{j}+1}, \frac{\delta}{2 m_{j}+1}\right)=\emptyset
$$

and $I_{j} \cap I_{j^{\prime}}=\emptyset$ if $m_{j}=m_{j^{\prime}}$. Put also

$$
B_{m}=\mathbb{R} \backslash\left[\left(-\frac{\delta}{2 m_{j}+1}, \frac{\delta}{2 m_{j}+1}\right) \cup \bigcup_{m=m_{j}} I_{j}\right]
$$

Define the distribution K, for all $g \in \mathcal{S}\left(H_{1}\right)$, by

$$
\begin{aligned}
\langle K, g\rangle= & \frac{1}{(2 \pi)^{2}} \sum_{m=0}^{\infty}\left\{\int_{B_{m}} \frac{\widehat{g}(-\lambda, m, m)|\lambda| d \lambda}{P(\lambda,|\lambda|(2 m+1))}\right. \\
& \left.+\int_{|\lambda|<\delta /(2 m+1)} \frac{R_{k+N_{m}-1,0}(\widehat{g}(-\lambda, m, m))|\lambda| d \lambda}{P(\lambda,|\lambda|(2 m+1))}\right\}
\end{aligned}
$$

$$
+\frac{1}{(2 \pi)^{2}} \sum_{j=1}^{r} \int_{I_{j}} \frac{R_{\mu_{j}, \lambda_{j}}\left(\widehat{g}\left(-\lambda, m_{j}, m_{j}\right)\right)|\lambda| d \lambda}{P\left(\lambda,|\lambda|\left(2 m_{j}+1\right)\right)}
$$

where $N_{m}=0$ except for finitely many $m \in \mathbb{N}$. Then K is a fundamental solution of D.

REFERENCES

[1] C. Benson, A. H. Dooley and G. Ratcliff, Fundamental solutions for powers of the Heisenberg sub-laplacian, Illinois J. Math. 37 (1993), 455-476.
[2] C. Benson, J. Jenkins, G. Ratcliff and T. Worku, Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math. 71 (1996), 305-328.
[3] J. Bochnak, M. Coste et M.-F. Roy, Géométrie Algébrique Réelle, Ergeb. Math. Grenzgeb. 12, Springer, Berlin, 1987.
[4] W. Chang, Invariant differential operators and P-convexity of solvable Lie groups, Adv. Math. 46 (1982), 284-304.
[5] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, 1953.
[6] G. B. Folland and E. M. Stein, Estimates for the $\bar{\partial}_{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522.
[7] L. Hörmander, Analysis of Linear Partial Differential Operators II, Springer, Berlin, 1983.
[8] L. Schwartz, Théorie des distributions. Tome I, Hermann, Paris, 1957.
[9] E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math. 69 (1982), 209-216.
[10] G. Szegő, Orthogonal Polynomials, Colloq. Publ. 23, Amer. Math. Soc., 1975.

Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi, 24
10129 Torino, Italy
E-mail: gorelli@calvino.polito.it

