ON THE ALGEBRA OF CONSTANTS
 of polynomial derivations in two variables

JANUSZ ZIELIŃSKI (TORUŃ)

Abstract

Let d be a k-derivation of $k[x, y]$, where k is a field of characteristic zero. Denote by \widetilde{d} the unique extension of d to $k(x, y)$. We prove that if $\operatorname{ker} d \neq k$, then $\operatorname{ker} \widetilde{d}=$ $(\operatorname{ker} d)_{0}$, where $(\operatorname{ker} d)_{0}$ is the field of fractions of ker d.

1. Introduction. Let k be a field of characteristic zero. Let $k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring in n variables over k and let d be a k-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$. Denote by $k\left[x_{1}, \ldots, x_{n}\right]^{d}$ the ring of constants (the kernel) of d and let \widetilde{d} be the unique extension of d to the quotient field $\left(k\left[x_{1}, \ldots, x_{n}\right]\right)_{0}=k\left(x_{1}, \ldots, x_{n}\right)$ of $k\left[x_{1}, \ldots, x_{n}\right]$. It is well known ([1] 8.1.5) that if d is locally nilpotent then $k\left(x_{1}, \ldots, x_{n}\right)^{\tilde{d}}=\left(k\left[x_{1}, \ldots, x_{n}\right]^{d}\right)_{0}$. However if we do not assume that d is locally nilpotent, this equality is not valid even for the polynomial ring in two variables. Indeed, consider the derivation d defined by

$$
d(x)=x, \quad d(y)=y .
$$

Obviously, $k[x, y]^{d}=k$. But $k(x, y)^{\tilde{d}} \neq k$ because $x / y \in k(x, y)^{\tilde{d}}$. It turns out that in the polynomial ring in two variables the equality $\left(k[x, y]^{d}\right)_{0}=$ $k(x, y)^{\tilde{d}}$ holds under an additional assumption.

Theorem. Let d be a k-derivation of $k[x, y]$. If $k[x, y]^{d} \neq k$, then $\left(k[x, y]^{d}\right)_{0}=k(x, y)^{\widetilde{d}}$.

This theorem (for $k=\mathbb{R}$) appears in the paper of S . Sato [2]. The proof given there is incorrect, because the formula for $\operatorname{deg}_{y} h$ (see the second line on page 14 in [2]) does not hold in some cases. The aim of this note is to give a complete proof of the Theorem.
2. Proof of Theorem. Let us set $d=f \partial / \partial x+g \partial / \partial y$ for polynomials $f, g \in k[x, y]$. If at least one of the elements f, g is zero, then the proof is

[^0]straightforward, because then it is easy to compute $k[x, y]^{d}$ and $k(x, y)^{\widetilde{d}}$. We may assume that f and g are both nonzero polynomials.

Since $k[x, y]^{d} \neq k$, the transcendence degree of $k(x, y)^{\widetilde{d}}$ over k is greater or equal to 1 . By the condition $d \neq 0$, this transcendence degree equals 1 . Hence, by the Lüroth Theorem, $k(x, y)^{\widetilde{d}}=k(\theta)$ for some $\theta \in k(x, y) \backslash k$. Let us set $\theta=F / G$ for relatively prime elements F, G of $k[x, y]$. Since $k(\theta)=k(1 / \theta)$, we may assume that $\operatorname{deg}_{y} F \geq \operatorname{deg}_{y} G$, where $\operatorname{deg}_{y} F$ denotes the degree of F with respect to y. By the condition $k[x, y]^{d} \neq k$, there exists an element $h \in k[x, y]^{d} \backslash k$. Then we have $\operatorname{deg}_{y} h>0$ and $\operatorname{deg}_{x} h>0$ because, if $\operatorname{deg}_{y} h=0$, we have $h \in k[x]$. Hence we have $d(h)=f(x, y) \partial h / \partial x=0$ and $\partial h / \partial x=0$. Therefore $h \in k$ and we have a contradiction. In the same way, we have $\operatorname{deg}_{x} h>0$. Let

$$
\begin{aligned}
& F=f_{n} y^{n}+f_{n-1} y^{n-1}+\ldots+f_{0} \\
& G=g_{m} y^{m}+g_{m-1} y^{m-1}+\ldots+g_{0}
\end{aligned}
$$

where $n=\operatorname{deg}_{y} F, m=\operatorname{deg}_{y} G$ and $f_{i}, g_{j} \in k[x]$ for $i=1, \ldots, n$ and $j=1, \ldots, m$. Now, let us consider two cases.

CASE 1: $n=m$ and $\operatorname{deg}_{x} f_{n}=\operatorname{deg}_{x} g_{n}=r$. Then let $f_{n}=c_{r} x^{r}+\ldots+c_{0}$ and $g_{n}=d_{r} x^{r}+\ldots+d_{0}$ where $c_{i}, d_{i} \in k$ for $i=1, \ldots, r$. Consider the element $\theta-c_{r} / d_{r}$. It is not equal to zero, because $\theta \notin k$. Obviously $\theta-c_{r} / d_{r}=H / G$, where H is the polynomial in $k[x, y]$ equal to $F-\left(c_{r} / d_{r}\right) G$. Then H and G are relatively prime, because F and G are relatively prime. We also see that either $\operatorname{deg}_{y} H<\operatorname{deg}_{y} G$ or they are equal but coefficients of the highest power of y in H and G are polynomials in $k[x]$ of different degrees. Then we put $\theta^{\prime}=1 /\left(\theta-c_{r} / d_{r}\right)$ instead of θ and we are in the following second case.

CASE 2: $n>m$, or $n=m$ but $\operatorname{deg}_{x} f_{n} \neq \operatorname{deg}_{x} g_{n}$. Since $h \in k[x, y]^{d} \subseteq$ $k(x, y)^{\widetilde{d}}=k(\theta)$, we can write

$$
h=\frac{\sum_{i=0}^{t} a_{i} \theta^{i}}{\sum_{i=0}^{s} b_{i} \theta^{i}}=\frac{\sum_{i=0}^{t} a_{i}\left(\frac{F}{G}\right)^{i}}{\sum_{i=0}^{s} b_{i}\left(\frac{F}{G}\right)^{i}}=\frac{\sum_{i=0}^{t} a_{i} G^{t-i} F^{i}}{\sum_{i=0}^{s} b_{i} G^{s-i} F^{i}} G^{s-t}
$$

for $a_{i}, b_{i} \in k$ and $a_{t} \neq 0, b_{s} \neq 0$. We proceed to show that in this case we have

$$
\operatorname{deg}_{y} h=(t-s)\left(\operatorname{deg}_{y} F-\operatorname{deg}_{y} G\right)=(t-s)(n-m)
$$

It is clear that $\operatorname{deg}_{y} G^{s-t}=-(t-s) m$ and it is sufficient to prove that $\operatorname{deg}_{y}\left(\sum_{i=0}^{t} a_{i} G^{t-i} F^{i}\right)=t n$ and $\operatorname{deg}_{y}\left(\sum_{i=0}^{s} b_{i} G^{s-i} F^{i}\right)=s n$. Assume, without loss of generality, that the degree of $\sum_{i=0}^{t} a_{i} G^{t-i} F^{i}$ is not equal to $t n$. If $n>m$ then each term of the form $G^{t-i} F^{i}$ has a different degree with respect to y. Since the highest degree (equal to $n t$) has $G^{0} F^{t}$ and $a_{t} \neq 0$, the equality $\operatorname{deg}_{y}\left(\sum_{i=0}^{t} a_{i} G^{t-i} F^{i}\right)=t n$ holds. Hence, we may assume that
$n=m$ and $\operatorname{deg}_{x} f_{n} \neq \operatorname{deg}_{x} g_{n}$. Obviously, $\operatorname{deg}_{y}\left(\sum_{i=0}^{t} a_{i} G^{t-i} F^{i}\right) \leq t n$. If the inequality is strict, then it follows easily that the coefficient of $y^{n t}$ equals 0 . Therefore $\sum_{i=0}^{t} a_{i} g_{n}^{t-i} f_{n}^{i}=0$. Since $\operatorname{deg}_{x} f_{n} \neq \operatorname{deg}_{x} g_{n}$, all polynomials of the form $g_{n}^{t-i} f_{n}^{i}$ have different degrees. Since at least one of the elements a_{1}, \ldots, a_{t} is nonzero, it follows that the above sum cannot be equal to 0 . This proves the formula for $\operatorname{deg}_{y} h$. Because $\operatorname{deg}_{y} h>0$, we get $n>m$ and $t>s$.

The equality $h(x, y) G^{t-s}\left(\sum_{i=0}^{s} b_{i} G^{s-i} F^{i}\right)=\sum_{i=0}^{t} a_{i} G^{t-i} F^{i}$ implies that the polynomial

$$
a_{t} F^{t}+\sum_{i=0}^{t-1}\left(a_{i} G^{t-i-1} F^{i}\right) G
$$

is divisible by G and hence F^{t} is divisible by G. But $(G, F)=1$, so we have $G \in k$ and $\theta \in k[x, y]$. This completes the proof.

Let us end the paper with the following question. Let d be a k-derivation of the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$. Assume that the transcendence degree of $k\left[x_{1}, \ldots, x_{n}\right]^{d}$ is equal to $n-1$. Is it true that $k\left(x_{1}, \ldots, x_{n}\right)^{\widetilde{d}}=$ $\left(k\left[x_{1}, \ldots, x_{n}\right]^{d}\right)_{0}$? A positive answer to this question would be a natural generalization of the Theorem. Note (for example [1] 7.1.1) that for any nonzero k-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$ the transcendence degree of $k\left[x_{1}, \ldots, x_{n}\right]^{d}$ is less than or equal to $n-1$.

REFERENCES

[1] A. Nowicki, Polynomial Derivations and Their Rings of Constants, N. Copernicus University Press, Toruń, 1994.
[2] S. Sato, On the ring of constants of a derivation of $\mathbb{R}[x, y]$, Rep. Fac. Engrg. Oita Univ. 39 (1999), 13-16.

Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: ubukrool@mat.uni.torun.pl

[^0]: 2000 Mathematics Subject Classification: Primary 12H05; Secondary 13B25.
 Supported by KBN Grant 2 PO3A 01716.

