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Abstract. We give the relationship between regular continued fractions and Lehner
fractions, using a procedure known as insertion. Starting from the regular continued frac-
tion expansion of any real irrational x, when the maximal number of insertions is applied
one obtains the Lehner fraction of x. Insertions (and singularizations) show how these (and
other) continued fraction expansions are related. We also investigate the relation between
Lehner fractions and the Farey expansion (also known as the full continued fraction), and
obtain the ergodic system underlying the Farey expansion.

1. Introduction. In 1994, J. Lehner [L] showed that every irrational
number x ∈ [1, 2) has a unique continued fraction expansion of the form

b0 +
e1

b1 +
e2

b2 +
.. . +

en

bn +
.. .

= [b0; e1/b1, e2/b2, . . . , en/bn, . . .],(1)

where (bi, ei+1) equals either (1, 1) or (2,−1). We call these continued frac-
tions Lehner fractions or Lehner expansions . Each rational number has two
finite Lehner expansions. Lehner expansions can be generated dynamically
by the map L : [1, 2) → [1, 2) given by

Lx :=

{
1/(2− x), 1 ≤ x < 3/2,

1/(x− 1), 3/2 ≤ x < 2.

Notice that in this expansion for x ∈ [1, 2) one has

(bi, ei+1) =

{
(1, 1) if Li(x) ∈ [3/2, 2),

(2,−1) if Li(x) ∈ [1, 3/2).

Lehner fractions are examples of the so-called semi-regular continued frac-
tion expansions . In general a semi-regular continued fraction expansion
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(SRCF) is a finite or infinite fraction

b0 +
e1

b1 +
e2

b2 +
.. . +

en

bn +
.. .

= [b0; e1/b1, e2/b2, . . . , en/bn, . . .],(2)

with en = ±1; b0 ∈ Z; bn ∈ N, for n ≥ 1, subject to the condition

en+1 + bn ≥ 1 for n ≥ 1,

and with the restriction that in the infinite case

en+1 + bn ≥ 2 infinitely often.

Moreover we demand that en + bn ≥ 1 for n ≥ 1.
Finite truncation in (2) yields the SRCF-convergents

An/Bn := [b0; e1/b1, e2/b2, . . . , en/bn],

where it is always assumed that gcd(An, Bn) = 1. We say that (2) is a
SRCF-expansion of x if

x = lim
n→∞

An

Bn
.

The best known example of a SRCF is the so-called regular continued frac-
tion expansion (RCF); it is well known that every real irrational number x
has a unique RCF-expansion

a0 +
1

a1 +
1

a2 +
.. .

= [a0; a1, a2, . . .],(3)

where a0 ∈ Z is such that x− a0 ∈ [0, 1), and an ∈ N for n ∈ N. Underlying
the RCF is the ergodic system

([0, 1),B, µ, T ),
where B is the collection of Borel subsets of [0, 1), µ is the Gauss measure
on [0, 1), i.e., the measure with density (log 2)−1(1 + x)−1 on [0, 1), and
T : [0, 1) → [0, 1) is defined by

Tx := 1/x− ⌊1/x⌋, x 6= 0; T 0 := 0.

If we put a1 = a1(x) := ⌊1/(x − a0)⌋ and an = an(x) := a1(T
n(x − a0)),

n ≥ 1, then (3) easily follows from the definition of T . It should be noticed
that a rational number has (two) finite RCF-expansions. Denote the RCF-
convergents of a real x by (Pn/Qn)n≥1, and define the mediant convergents
of x by

kPn + Pn−1

kQn +Qn−1
, 1 ≤ k < an+1.
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In Section 2 we will see that the set of Lehner convergents of x equals the set
of RCF-convergents and mediant convergents of x. Perhaps a more appro-
priate name for the Lehner fractions would be the mother of all semi-regular
continued fractions . This becomes transparent with the ideas of singulariza-
tion and insertion, discussed in Section 2.

The map L was implicitly given by J. Lehner [L], and is isomorphic to
the map I : [0, 1) → [0, 1) given by

Ix :=

{
x/(1− x), 0 ≤ x < 1/2,

(1− x)/x, 1/2 ≤ x < 1.

This map was used by Shunji Ito [I] to generate for every x ∈ [0, 1) the
mediant and RCF-convergents of x. However, no semi-regular expansion
was associated with this transformation. Ito studied the ergodic properties
of this transformation, and showed that (1)

([0, 1),B, ν, I)

forms an ergodic system, where ν is an infinite σ-finite invariant measure
for I with density x−1 on [0, 1). Due to this, one immediately finds that

([1, 2),B, ̺, L)

forms an ergodic system, where ̺ is an infinite σ-finite invariant measure
for L with density (x − 1)−1 on [1, 2). Ito’s map is also closely related to
the additive continued fraction, and the Farey shift map. For more details
on this, see [Rich]. The additive continued fraction yields, like the Lehner
fraction, all the RCF- and mediant convergents of any x. In [G], J. Goldman
showed that for any x > 0 the additive continued fraction is related to the
so-called unitary continued fraction expansion of x of the form (2), with
(bi, ei) ∈ {(1, 1), (2,−1)} and b0 = 1. Notice that this continued fraction
expansion (which from now on we will call the Farey expansion (2) of x) is
not a SRCF-expansion of x. The map F generating the Farey expansion
was given implicitly (in the form of an algorithm) in [G], and no dynamical
properties of F were studied. Due to the close relation with the Lehner
fractions we were able to find F in a direct way, show that it is ergodic and
preserves a σ-finite infinite measure with density (x − 1)−1 − (x + 2)−1 on
[−1,∞); see also Section 3.

Ito also obtained the natural extension

([0, 1)× [0, 1],B, ν, I)
(1) All σ-algebras considered are the 1-dimensional or 2-dimensional Lebesgue

σ-algebras on the appropriate space. We will always use the notation B to denote
these various σ-algebras, unless it causes confusion.

(2) In [G], Goldman called this continued fraction the full continued fraction
of x.
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of ([0, 1),B, ν, I). This system was used by Ito to study the distribution
of the sequences of the first and “last” mediants, and by G. Brown and
Q. Yin [BY] to study any sequence of mediant convergents of x of a given
order. This was also done by W. Bosma [B], by using the regular system
T . Brown and Yin needed the Ratio Ergodic Theorem to circumvent the
fact that the invariant measure ν has infinite mass, but Bosma only needed
the ergodicity of T . Applying φ : [0, 1) × [0, 1] → [0, 1) × [0, 1] defined by
φ(x, y) = (x+1, y+1) to Ito’s natural extension ([0, 1)× [0, 1],B, ν, I) yields
([1, 2) × [1, 2],B, ̺̂,L) as a version of the natural extension of the ergodic
system ([0, 1),B, ̺, L) underlying the Lehner fraction. Here L is defined by

L(x, y) =





(
1

2− x
, 2− 1

y

)
, 1 ≤ x < 3/2,

(
1

x− 1
, 1 +

1

y

)
, 3/2 ≤ x < 2,

and ̺̂ has density (2x+ 2y− xy − 3)−2 on [1, 2)× [1, 2]. In Section 3 we will
study another natural extension of ([0, 1),B, ̺, L), which will bring out the
relation between the Lehner fractions and the Farey expansion in an easy
and clear-cut way. In Section 4 we extend some classical results of the RCF
to the Lehner fractions (and the Farey expansion). These results cannot
be obtained from their own underlying ergodic system ([0, 1),B, ̺, L), but
follow easily from that of the regular.

2. Insertions. There are two operations on the sequence of digits of
a SRCF-expansion (2) of any real x, which transform this expansion into
another one: singularization and insertion. In this section we will deal only
with insertions, while singularizations will be discussed in Section 5. See also
[K], which is a general reference for all statements concerning singulariza-
tions and insertions.

An insertion is based upon the identity

A+
1

B + ξ
= A+ 1 +

−1

1 +
1

B − 1 + ξ

.

Let (2) be a SRCF-expansion of x, and suppose that for some n ≥ 0 one has

bn+1 > 1, en+1 = 1.

An insertion is the transformation τn which changes the continued fraction

[b0; e1/b1, . . . , en/bn, 1/bn+1, . . .](4)

into
[b0; e1/b1, . . . , en/(bn + 1),−1/1, 1/(bn+1 − 1), . . .],

which is again a SRCF-expansion of x, with convergents, say, (pk/qk)k≥−1.
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Let (rk/sk)k≥−1 be the sequence of convergents connected with (4). Using
some matrix identities one easily shows that the sequence

(
pk

qk

)
k≥−1

of vectors

is obtained from
(
rk
sk

)
k≥−1

by inserting the term
(
rn+rn−1

sn+sn−1

)
before the nth

term of the latter sequence, i.e.,
(
pk
qk

)

k≥−1

≡
(
r−1

s−1

)
,

(
r0
s0

)
, . . . ,

(
rn−1

sn−1

)
,

(
rn + rn−1

sn + sn−1

)
,

(
rn
sn

)
,

(
rn+1

sn+1

)
, . . .

We leave the proof of the following proposition to the reader.

Proposition 1. Let x ∈ [1, 2) with RCF-expansion (3), i.e., a0 = 1.
Then the following algorithm yields the Lehner expansion (1) of x.

(I) Let n ≥ 0 be the first index for which an+1 > 1. In case n = 0 (i.e.,
a1 > 1) we replace [a0; a1, . . .] by

[2;−1/2, . . . ,−1/2︸ ︷︷ ︸
a1−2 times

,−1/1, 1/1, 1/a2, . . .].

In case n ≥ 1 we replace

[a0; 1, . . . , 1, an+1, . . .]

by

τn+an+1−1(. . . (τn+1(τn([a0; 1; . . . , 1, an+1, . . .])) . . .)

= [a0; 1/1, . . . , 1/2,−1/2, . . . ,−1/2︸ ︷︷ ︸
an+1−2 times

,−1/1, 1/1, 1/an+2, . . .],

where τn is defined as in (4). Denote this new SRCF-expansion of x by
[b0; e1/b1, e2/b2, . . . , en/bn, . . .].

(II) Let m ≥ n + 1 be the first index in this new SRCF-expansion of x
for which em+1 = 1 and bm+1 > 1. Repeat the procedure from (I) for this
new SCRF-expansion with this value of m.

Due to the insertion mechanism it follows that every RCF-convergent or
mediant convergent of x is a Lehner convergent of x.

It is well known that every quadratic irrational x has a RCF-expansion
which is (eventually, i.e., from some point on) periodic. Due to the above
algorithm the following corollary is immediate.

Corollary 1. Let x be a quadratic irrational number. Then the Lehner
expansion of x is (eventually) periodic.

3. Farey expansions. If we define the map L : [1, 2) × [−1,∞) →
[1, 2)× [−1,∞) by

L(x, y) :=
(

e(x)

x− b(x)
,

e(x)

b(x) + y

)
, 1 ≤ x < 2, y ≥ −1,(5)
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where

(b(x), e(x)) :=

{
(2,−1), 1 ≤ x < 3/2,

(1, 1), 3/2 ≤ x < 2,

then L is bijective, apart from a set of Lebesgue measure zero. The first
coordinate map of L is the Lehner map L, while the second coordinate map
yields the “past” of any x ∈ [1, 2) as a Farey expansion. By this we mean
the following. Let x ∈ [1, 2) \Q with Lehner fraction (1), and let

(Tn, Vn) := Ln(x, 0) for n ≥ 0.

Then Vn = [0; en/bn−1, . . . , e1/b0] for n ≥ 1, and V0 = 0. Thus we see that
the second coordinate of L is the inverted Farey map F , and “re-inverting”
shows that F : [−1,∞) → [−1,∞) is given by

F (x) =





−1/x− 2, −1 ≤ x < 0,

0, x = 0,

1/x− 1, x > 0,

i.e., F (x) = f(x)/x− d(x) where

(d(x), f(x)) :=

{
(2,−1), −1 ≤ x < 0,

(1, 1), x ≥ 0.

We have the following theorem.

Theorem 1. The system

([1, 2)× [−1,∞),B, ̺,L)

forms an ergodic system, which is the natural extension of ([1, 2),B, ̺, L).
Here ̺ is a σ-finite, infinite measure, which is invariant under L, with den-
sity (x+ y)−2 on [1, 2)× [−1,∞).

P r o o f. Let π : [1, 2) × [−1,∞) → [1, 2) be the natural projection on
the first coordinate. Then it is easily seen that πL = Lπ, and that for any
measurable set A in [1, 2),

̺(π−1A) = ̺(A× [−1,∞)) = ̺(A).

Further, ̺ is an invariant measure; for this it suffices to show that ̺((a, b)×
(c, d)) = ̺(L((a, b)× (c, d))) for any 1 < a < b < 2 and −1 < c < d < ∞. We
consider two cases.

(I) For 1 < a < b ≤ 3/2, one has

L((a, b)× (c, d)) =

( −1

a− 2
,
−1

b− 2

)
×
( −1

c+ 2
,

−1

d+ 2

)
.
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An easy calculation shows that

̺

(( −1

a− 2
,
−1

b− 2

)
×
( −1

c+ 2
,

−1

d+ 2

))
= log

(
(a+ d)(b + c)

(a+ c)(b + d)

)

= ̺((a, b)× (c, d)).

(II) For 3/2 < a < b < 2, one has

L((a, b)× (c, d)) =

(
1

b− 1
,

1

a− 1

)
×
(

1

d+ 1
,

1

c+ 1

)
.

Again a straightforward calculation shows that

̺(L((a, b)× (c, d))) = log

(
(a+ d)(b + c)

(a+ c)(b+ d)

)
.

Finally, we show that B =
∨

n≥0 Lnπ−1B. To see this, for m,n ≥ 1, the
Farey map F and the Lehner map L we define cylinders Cm = Cm(f1/d1,
f2/d2, . . . , fm/dm) resp. Dn = Dn(b0; e1/b1, . . . , en/) by

Cm(f1/d1, . . . , fm/dm) := {x ∈ [−1,∞);x = [0; f1/d1, . . . , fm/dm, . . .︸︷︷︸
“free”

]}

and

Dn(b0; e1/b1, . . . , en/) := {x ∈ [1, 2);x = [b0; e1/b1, e2/b2, . . . , en/, . . .︸︷︷︸
“free”

]},

where (di, fi) ∈ {(1, 1), (2,−1)} for i = 1, . . . ,m and (bi−1, ei) ∈ {(1, 1),
(2,−1)} for i = 1, . . . , n.

Then

Dn × Cm

= Lm(Dm+n(dm; fm/dm−1, . . . , f2/d1, f1/b0, e1/b1, . . . , en/)× [−1,∞)).

Since the set of all possible cylinders of the form Dn × Cm generates B, this
gives the desired result.

From Theorem 1 the following corollary is immediate.

Corollary 2. The dynamical system ([−1,∞),B, τ, F ) underlying the
Farey expansion is measure preserving. Here τ is a σ-finite, infinite measure,
with density (x+ 1)−1 − (x+ 2)−1 on [−1,∞).

Since natural extensions of a system are isomorphic, the fact that ([1, 2),
B, ̺, L) has two natural extensions, both having the Lehner map as the first
coordinate, and for the second coordinate, one has the (inverted) Lehner
map L and the other the (inverted) Farey map, suggests that L and F must
be isomorphic. We have the following theorem.
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Theorem 2. Let x ∈ [−1,∞) with Farey expansion

x = [0; f1/d1, f2/d2, . . .].

Then the map ξ : [−1,∞) → [1, 2) defined by

ξ(x) = [d1; f1/d2, f2/d3, . . .]

is an isomorphism from ([−1,∞),B, τ, F ) to ([1, 2),B, ̺, L).
P r o o f. Clearly ξ : [−1,∞) \Q → [1, 2) \Q is a bijection, and since

ξ(F (x)) = ξ([0; f2/d2, f3/d3, . . .])

= [d2; f2/d3, f2/d3, . . .]

= L([d1; f1/d2, f2/d3, . . .]) = L(ξ(x)),

we only need to show that ξ is measurable and measure preserving.
For each Farey cylinder Cn = Cn(f1/d1, f2/d2, . . . , fn/dn) as defined

above, ξ(Cn) equals the Lehner cylinder Dn = Dn(d1; f1/d2, f2/d3, . . . , fn/),
so that ξ is clearly measurable. It remains to show that

τ(Cn) = ̺(Dn).

For Dn = Dn(b0; e1/b1, e2/b2, . . . , en/) define

D∗
n := Dn(bn−1; en/bn−2, en−1/bn−3, . . . , e1/).

From the fact that L is measure preserving with respect to ̺ one has

τ(Cn) = ̺([1, 2)× Cn) = ̺(L−n([1, 2)× Cn))

= ̺(D∗
n × [−1,∞))) = ̺(D∗

n).

Furthermore, since L is ̺̂-preserving, one has

̺(D∗
n) = ̺̂(D∗

n × [1, 2)) = ̺̂(Ln(D∗
n × [1, 2)))

= ̺̂([1, 2)×Dn) = ̺(Dn),

and the result follows.

From Theorem 2 one immediately gets the following corollary.

Corollary 3. The dynamical system ([−1,∞),B, τ, F ) is ergodic.

4. Some classical theorems for Lehner fractions and Farey ex-

pansions. In 1935, A. Ya. Khinchin [Kh] obtained the following, classical
results on the means of the RCF-digits of almost all x. His proofs are based
on the Theorem of Gauss–Kuz’min, but easier proofs can be obtained via
the Ergodic Theorem.
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Theorem 3 (A. Ya. Khinchin). Let x be a real irrational number with
RCF-expansion (3). Then almost surely one has

lim
n→∞

n
1

a1
+ . . .+

1

an

= 1.277 . . . ,

lim
n→∞

n
√
a1 . . . an =

∞∏

k=1

(
1 +

1

k(k + 2)

)(log k)/ log 2

= 2.6 . . . ,

lim
n→∞

a1 + . . .+ an
n

= ∞.

Notice that Khinchin’s Theorem 3 plus the concept of insertion provide a
heuristic argument why the Lehner system ([0, 1),B, ̺, L) should be ergodic,
with an infinite, σ-finite invariant measure ̺. After all an insertion before the
digit a > 1 is simply building a tower over the RCF-cylinder corresponding
to this digit. Since the Lehner expansion of a number x is obtained by using
insertion as many times as possible in order to “shrink away” any (regular
digit) a > 1, it follows that the system thus obtained must be ergodic (it
contains the RCF-system ([0, 1),B, µ, T ) as an induced system), but due to
the third statement in Khinchin’s Theorem 3 it must also have infinite mass.

With respect to Khinchin’s result the situation is quite different for the
Lehner expansion; there does not exist a Gauss–Kuz’min Theorem for these
continued fraction expansions, and we cannot apply the Ergodic Theorem
directly using the Lehner map L (or the Ito map I), since the underlying
dynamical system has an invariant measure which is infinite. In spite of
this we will show that for almost all x these means do exist, and equal 2.
By insertion we know that each RCF-digit corresponds to a certain block
of digits of the Lehner fractions, as given in Proposition 1. We have the
following theorem.

Theorem 4. Let x be a real irrational number with RCF-expansion (3)
and Lehner expansion [b0; e1/b1, e2/b2, . . . , en/bn, . . .]. Then for almost all x
one has

lim
n→∞

n
1

b1
+ . . .+

1

bn

= 2,

lim
n→∞

n

√
b1 . . . bn = 2,

lim
n→∞

b1 + . . .+ bn
n

= 2.

P r o o f. Let N ∈ N be sufficiently large. Then there exist unique integers
k and j such that

N = a1 + . . .+ ak + j, where 0 ≤ j < ak+1.
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In Proposition 1 we saw that each RCF-digit ai is replaced by a block of
Lehner digits of length ai, of the form consisting of ai − 1 2’s followed by a
digit 1. Then

1

b1
+ . . .+

1

bN
= k +

1

2

k∑

i=1

(ai − 1) +
j

2
=

N + k

2
.

This implies that
N

1

b1
+ . . .+

1

bN

=
1

1

2

(
1 +

k

N

) .

Since 0 ≤ j < ak+1 it follows that

k

N
≤ 1

1
k

∑k
i=1 ai

,

which tends to zero almost surely due to Khinchin’s Theorem 3, and we find
that

lim
N→∞

N
1

b1
+ . . .+

1

bN

= 2.

Since all digits in the Lehner fraction of any x are either 1 or 2, and one
always has

N
1

b1
+ . . .+

1

bN

≤ N

√
b1 . . . bN ≤ b1 + . . .+ bN

N
≤ 2

(see also pp. 375–377 in [C]), the result follows.

From the above theorem and Theorem 2 we get the following corollary.

Corollary 4. Let x be a real irrational number with RCF-expansion
(3) and Farey expansion [0; f1/d1, f2/d2, . . . , fn/dn, . . .]. Then for almost all
x one has

lim
n→∞

n
1

d1
+ . . .+

1

dn

= 2,

lim
n→∞

n

√
d1 . . . dn = 2,

lim
n→∞

d1 + . . .+ dn
n

= 2.

P r o o f. We give only the proof of the second statement; the other two
are obtained in exactly the same way.

Let K be the set of those x ∈ [1, 2) for which

lim
n→∞

n

√
b0b1 . . . bn−1 = 2,
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where [b0; e1/b1, e2/b2, . . . , en/bn, . . .] is the Lehner expansion of x. Due to
Theorem 4 we see that Kc is a set of measure zero. But then so is ξ−1(Kc).
Now let y ∈ ξ−1(K) with Farey expansion [0; f1/d1, f2/d2, . . . , fn/dn, . . .].
Then for each n ≥ 1 there are as many 2’s among the first n digits of y as
there are among the first n digits of x = ξ(y), i.e.,

lim
n→∞

n

√
d1 . . . dn = lim

n→∞

n

√
b0 . . . bn−1 = 2.

5. Singularizations. In this section we discuss the concept of singular-
ization of a partial quotient. It is based upon the identity

A+
e

1 +
1

B + ξ

= A+ e+
−e

B + 1 + ξ
.

To see the effect of a singularization, let

x = [b0; e1/b1, e2/b2, . . .], bn ∈ N, n > 0; ei ∈ {±1}, i ≥ 1,

be a SRCF-expansion of x. Finite truncation yields the sequence of conver-
gents (rk/sk)k≥−1. Suppose that for some n ≥ 0 one has

bn+1 = 1, en+2 = 1,

i.e.,
[b0; e1/b1, . . .] = [b0; e1/a1, . . . , en/bn, en+1/1,1/bn+2, . . .].

The transformation σn which changes this continued fraction into the con-
tinued fraction

[b0; e1/b1, . . . , en/(bn + en+1),−en+1/(bn+2 + 1), . . .],(6)

which is again a continued fraction expansion of x, with convergents, say
(pk/qk)k≥−1, is called a singularization. One easily shows that the sequence(
pk

qk

)
k≥−1

of vectors is obtained from
(
rk
sk

)
k≥−1

by removing the term
(
rn
sn

)

from the latter. Singularizations, and the underlying ergodic theory of a new
class of continued fractions, have been extensively studied in [K].

By combining the operations of singularization and insertion one can ob-
tain any semi-regular continued fraction expansion. In [K] a whole class
of semi-regular continued fractions was introduced via singularizations only
(some of these SRCF’s were new, some classical—like the continued frac-
tion to the nearest integer), and their ergodic theory was studied (the main
idea in [K] is that the operation of singularization is equivalent to having
an induced map on the natural extension of the RCF). As an example of
combining the operations of singularization and insertion we discuss here
the backward continued fraction.
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Each irrational number x in the interval [0,1) has a unique continued
fraction expansion of the form

1− 1

c1 −
1

c2 −
. . .

= [1;−1/c1,−1/c2, . . .],(7)

where each ci is an integer greater than one. As with the RCF, there is a
naturally defined transformation B : [0, 1) → [0, 1) which acts as the shift on
the continued fraction (7), and which is given by

B(x) :=
1

1− x
−
⌊

1

1− x

⌋
, x 6= 0; B(0) := 0.

The graph of B can be obtained from that of the RCF-map T by reflecting
the latter in the line x = 1/2. It is for this reason that the continued fraction
(7) has been called “backward”. It was shown by A. Rényi [R] that B is
ergodic, and has a σ-finite, infinite invariant measure with density 1/x (see
also the paper by R. L. Adler and L. Flatto [AF]).

As in the case of Proposition 1, we leave the proof of the following propo-
sition to the reader.

Proposition 2. Let x ∈ [0, 1) with RCF-expansion (3), i.e., a0 = 0.
Then the following algorithm yields the backward expansion (7) of x.

(I) If a1 = 1, singularize a1 to arrive at

[1;−1/(a2 + 1), 1/a3, . . .]

as a new SRCF-expansion of x. If a1 > 1, insert −1/1 a1 − 1 times before
a1 to arrive at

[1;−1/2, . . . ,−1/2︸ ︷︷ ︸
a1−2 times

,−1/1, 1/1, 1/a2, . . .]

as a new SRCF-expansion of x. Now singularize 1/1 appearing at the a1th
position of this new continued fraction expansion of x. In either case we find
as SRCF-expansion of x

[1; (−1/2)a1−1,−1/(a2 + 1), 1/a3, . . .],(8)

where (−1/2)a1−1 is an abbreviation of −1/2, . . . ,−1/2︸ ︷︷ ︸
a1−1 times

.

(II) Let m ≥ 1 be the first index in this new SRCF-expansion of x for
which em = 1. Repeat the procedure from (I) for this new SCRF-expansion
with this value of m.

Remark 1. Due to the above insertion/singularization mechanism it
follows that x has as backward expansion

[1; (−1/2)a1−1,−1/(a2 + 2), (−1/2)a3−1,−1/(a3 + 2), . . .](9)
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(see also Aufgabe 3, p. 131, in [Z]). From (9) it also follows easily that
every quadratic irrational number x has an (eventually) periodic backward
expansion.

Again, as for the Lehner fractions, it heuristically follows from Khinchin’s
Theorem 3 and the notion of insertion that the backward continued fraction
map B should be ergodic, with an invariant measure of infinite mass. For the
Lehner fractions it was also intuitively clear that almost surely n

√
b1 . . . bn → 2

as n → ∞, since there are only digits 1 and 2, and “there are very few 1’s
among the 2’s” (due to Khinchin’s Theorem). For the backward continued
fraction clearly such an argument does not exist. We have the following
theorem.

Theorem 5. Let x be a real irrational number with RCF-expansion (3)
and backward expansion (7). Then for almost all x one has

lim
n→∞

n
√
c1 . . . cn = 2.

P r o o f. Let N be a sufficiently large positive integer. Then from (9) we
see that there exist unique integers k ≥ 1 and j, with 0 ≤ j < a2k+1, such
that

N = a1 + a3 + . . .+ a2k−1 + j.

Then

c1 . . . cN = 2
∑

k

i=1
(a2i−1−1)+j−1

k∏

i=1

(a2i + 2),

and therefore

1

N

N∑

i=1

log ci =
log 2

N

( k∑

i=1

a2i−1 − k + j − 1
)
+

1

N

k∑

i=1

log(a2i + 2)

= log 2

(
1− k + 1

∑k
i=1a2i−1 + j

)
+

∑k
i=1 log(a2i + 2)
∑k

i=1a2i−1 + j
.

Since

k + 1
∑k

i=1a2i−1 + j
=

1
1

k+1

∑k
i=1a2i−1 +

j
k+1

→ 0 as N → ∞,

almost surely, and

∑k
i=1 log(a2i + 2)
∑k

i=1a2i−1 + j
→ 0 as N → ∞,

almost surely, we find that for almost all x,

N
√
c1 . . . cN → 2 as N → ∞ a.e.
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Remark 2. Since ci ≥ 2 for all i ≥ 1, it follows that

N
1

c1
+ . . .+

1

cN

≥ 2,

and therefore by Cauchy’s result [C] we have

2 ≤ lim
N→∞

N
1

c1
+ . . .+

1

cN

≤ lim
N→∞

N
√
c1 . . . cN = 2,

i.e.,

lim
N→∞

N
1

c1
+ . . .+

1

cN

= 2 a.e.

The asymptotic behaviour of the third mean

c1 + . . .+ cN
N

is still an open problem. If we write N as in the proof of Theorem 5, an easy
calculation yields

c1 + . . .+ cN
N

= 2 +

∑k
i=1 a2i∑k

i=1 a2i−1 + j
,

where 0 ≤ j < a2k+1. Thus we need to study the behaviour of
∑k

i=1 a2i∑k
i=1 a2i−1

, k ≥ 1.(10)

In (10), the asymptotic behaviour of the numerator as a sequence is the
same as that of the denominator, but one expects that infinitely often the
denominator in (10) is much larger that the numerator, and vice versa. Thus
we are led to believe that almost surely the liminf of (10) equals zero, and
the limsup is infinite. We end the paper with this open question.
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