AVERAGE CONVERGENCE RATE OF THE FIRST RETURN TIME

Abstract

The convergence rate of the expectation of the logarithm of the first return time R_{n}, after being properly normalized, is investigated for ergodic Markov chains. I. Kontoyiannis showed that for any $\beta>0$ we have $\log \left[R_{n}(x) P_{n}(x)\right]=o\left(n^{\beta}\right)$ a.s. for aperiodic cases and A. J. Wyner proved that for any $\varepsilon>0$ we have $-(1+\varepsilon) \log n \leq$ $\log \left[R_{n}(x) P_{n}(x)\right] \leq \log \log n$ eventually, a.s., where $P_{n}(x)$ is the probability of the initial n-block in x. In this paper we prove that $E\left[\log R_{(L, S)}-(L-1) h\right]$ converges to a constant depending only on the process where $R_{(L, S)}$ is the modified first return time with block length L and gap size S. In the last section a formula is proposed for measuring entropy sharply; it may detect periodicity of the process.

1. Introduction. Convergence of the logarithm of first return time normalized by the block length has recently been investigated in relation to data compression methods such as Ziv-Lempel algorithms [17], [18]. For each sample sequence $x=\left(\xi_{1}, \xi_{2}, \ldots\right)$ from an ergodic stationary information source, define $P_{n}(x)$ to be the probability of the initial n-block in x, i.e., $P_{n}(x)=\operatorname{Pr}\left(x_{1} \ldots x_{n}\right)$. The classical Shannon-Breiman-McMillan Theorem states that $-\left(\log P_{n}\right) / n$ converges to measure-theoretic entropy h in L^{1} and almost surely. Define

$$
R_{n}(x)=\min \left\{j \geq 1: \xi_{1} \ldots \xi_{n}=\xi_{j+1} \ldots \xi_{j+n}\right\}
$$

Kac's Lemma [2] states that $E\left[R_{n} \mid a_{1} \ldots a_{n}\right]=1 / \operatorname{Pr}\left(a_{1} \ldots a_{n}\right)$.
LEMMA 1.1. $E\left[R_{n}\right]=E\left[1 / P_{n}\right]=$ the number of n-blocks with positive probability.

Proof. Let \mathcal{P}_{n} be the partition according to the first n-blocks. Note that

$$
E\left[R_{n}\right]=\sum_{B \in \mathcal{P}_{n}, \operatorname{Pr}(B)>0} E\left[R_{n} \mid B\right] \operatorname{Pr}(B)=\sum_{B \in \mathcal{P}_{n}, \operatorname{Pr}(B)>0} 1,
$$

[^0]which equals the number of n-blocks B with positive probability. Similarly,
$$
E\left[\frac{1}{P_{n}}\right]=\sum_{B \in \mathcal{P}_{n}, \operatorname{Pr}(B)>0} E\left[\left.\frac{1}{P_{n}} \right\rvert\, B\right] \operatorname{Pr}(B)=\sum_{B \in \mathcal{P}_{n}, \operatorname{Pr}(B)>0} \frac{1}{\operatorname{Pr}(B)} \operatorname{Pr}(B)
$$
and we obtain the same number.

Observe that $E\left[R_{n}\right]$ is an integer. This suggests that $R_{n}(x)$ is close to $1 / P_{n}(x)$, hence we expect that $\left(\log R_{n}\right) / n$ converges to entropy h in a suitable sense. It may be viewed in the following way: According to the Asymptotic Equipartition Property the number of typical subsets is approximately equal to $2^{n h}$ in the nth stage. Because of ergodicity a generic orbit would visit almost all the typical subsets, hence we conjecture that the return time $R_{n}(x)$ for almost every starting point x would be approximately equal to $2^{n h}$. This is indeed the case. Conventionally a slightly modified definition for the first return time is used. It was proved that $\left(\log R_{n}\right) / n$ converges to entropy in probability by Wyner and Ziv [16] and almost surely by Ornstein and Weiss [9]. See [13] for a related result. For a comprehensive introduction to the subject consult Shields [11] and the references therein. Recently several interesting results have been obtained regarding convergence rates by other investigators for R_{n} and related concepts such as the longest match-length, waiting time and redundancy rate, etc. See [1], [4], [5], [7], [12], [15].

In this article we define a modified first return time for estimating entropy for a Markov chain and obtain a very sharp estimate of the convergence rate of its average and propose an algorithm for estimating the entropy for a Markov chain. Since the formula contains a correction terms it approximates the entropy very well. See the last section for simulations.

A Markov chain with a stochastic matrix $P=\left(p_{i j}\right)_{0 \leq i, j \leq k-1}$ is the set of all sample paths on symbols $\{0,1, \ldots, k-1\}$ with $\operatorname{Pr}\left(x_{s+1}=j \mid x_{s}=i\right)=p_{i j}$. The probability of the cylinder set $\left[b_{1}, \ldots, b_{n}\right]=\left[b_{1}, \ldots, b_{n}\right]_{1, \ldots, n}$ or the initial n-block $b_{1} \ldots b_{n}$ is given by $\pi_{b_{1}} p_{b_{1} b_{2}} \ldots p_{b_{n-1} b_{n}}$. The entropy of the Markov chain is equal to $h=-\sum_{i, j} \pi_{i} p_{i j} \log p_{i j}$.

Throughout the paper we assume that P is irreducible, i.e., for every (i, j) there exists $n=n(i, j)>0$ such that $\left(P^{n}\right)_{i, j}>0$. For $0 \leq i \leq k-1$, the period of a state i, denoted by $\operatorname{Per}(i)$, is the greatest common divisor of those integers $n \geq 1$ for which $\left(P^{n}\right)_{i i}>0$. The period of P is the greatest common divisor of the numbers $\operatorname{Per}(i)$ that are finite. If P is irreducible, then all the states have the same period, so the period of P is the period of any of its states. A matrix is aperiodic if it has period 1. If P is aperiodic, then there exists $n>0$ satisfying $\left(P^{n}\right)_{i, j}>0$ for every (i, j). For the details, consult p. 125 in [6]. Let $\pi=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{k-1}\right), \sum_{i} \pi_{i}=1, \pi_{i}>0$, be the unique left eigenvector corresponding to the simple eigenvalue 1 , which is
called the Perron-Frobenius eigenvector. Put

$$
H_{0}=-\sum_{i=0}^{k-1} \pi_{i} \log \pi_{i}
$$

If P is aperiodic, then all the eigenvalues other than 1 have modulus less than 1. The irreducibility of P implies the ergodicity of the Markov chain, and the aperiodicity gives the mixing property.

DEFINITION 1.2. Given an integer $S \geq 0$ and a block size L, the modified first return time $R_{(L, S)}$ is defined by

$$
R_{(L, S)}(x)=\min \left\{j \geq 1: \xi_{1} \ldots \xi_{L}=\xi_{j(L+S)+1} \ldots \xi_{j(L+S)+L}\right\} .
$$

Definition 1.3. For $0<r<1$, define

$$
v(r) \equiv r \sum_{i=1}^{\infty}(1-r)^{i-1} \log i
$$

Put $r=2^{-L}$. Then the expectation of $\log R_{(L, S)}$ equals $v(r)$ in the case of the Bernoulli $(1 / 2,1 / 2)$-shift. Note that

$$
\begin{aligned}
\lim _{r \rightarrow 0+}[v(r)+\log r] & =\lim _{s \rightarrow 1-}[v(1-s)+\log (1-s)] \\
& =\sum_{i=1}^{\infty}\left(\ln \frac{i+1}{i}-\frac{1}{i}\right) / \ln 2=-\gamma / \ln 2=-0.832746 \ldots
\end{aligned}
$$

where $\gamma=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n}(1 / i)-\ln n\right)$ is Euler's constant. Hence the expectation of $\log R_{(L, 0)}$ is approximately equal to $L-\gamma / \ln 2$ for large L.

In this paper we investigate the speed of convergence of the average of $\log R_{(L, S)}$ to entropy after being properly normalized. The case of Bernoulli processes was solved by Maurer [8]. His algorithm corresponds to $R_{(L, S)}$ for $S=0$. He showed that the speed is asymptotically proportional to $1 / L$ and conjectured that a similar result would hold for Markov chains. In Section 2 we prove the conjecture for Markov chains using the modified algorithm given in Definition 1.2. The dependence on the past memory decreases exponentially, hence the odd-numbered blocks become almost independent of each other as the gap between the neighboring blocks increases.

In his Ph.D. thesis [14] A. J. Wyner discovered that for a stationary aperiodic Markov chain with entropy h we have a second order limit law:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\frac{\log R_{n}-n h}{\sigma \sqrt{n}} \leq \alpha\right)=\Phi(\alpha)
$$

where

$$
\Phi(\alpha)=\int_{-\infty}^{\alpha} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x \quad \text { and } \quad \sigma^{2}=\lim _{n \rightarrow \infty} \frac{\operatorname{Var}\left(-\log P_{n}(x)\right)}{n}
$$

I. Kontoyiannis ([4], Corollary 1) showed that for any $\beta>0$,

$$
\log \left[R_{n}(x) P_{n}(x)\right]=o\left(n^{\beta}\right)
$$

almost surely for ergodic Markov chains where $P_{n}(x)$ is the probability of the initial n-block in x. Later A. J. Wyner ([15], Corollary B5) proved that for any $\varepsilon>0$,

$$
-(1+\varepsilon) \log n \leq \log \left[R_{n}(x) P_{n}(x)\right] \leq \log \log n
$$

eventually, almost surely for ergodic Markov chains. Note that

$$
\begin{aligned}
E\left[\log \operatorname{Pr}\left(x_{1} \ldots x_{L}\right)\right] & =\sum \pi_{a_{1}} p_{a_{1} a_{2}} \ldots p_{a_{n-1} a_{n}} \log \left(\pi_{a_{1}} p_{a_{1} a_{2}} \ldots p_{a_{n-1} a_{n}}\right) \\
& =\sum_{i} \pi_{i} \log \pi_{i}+(L-1) \sum_{i, j} \pi_{i} p_{i j} \log p_{i j} \\
& =-H_{0}-(L-1) h,
\end{aligned}
$$

where the first sum is taken over all L-blocks $a_{1} \ldots a_{L}$. Hence from the above we have

$$
-(1+\varepsilon) \log n \leq E\left[\log R_{n}\right]-(n-1) h-H_{0} \leq \log \log n
$$

approximately for large n and we expect that the corresponding result would hold for $R_{(L, S)}$. On the other hand, Kac's Lemma implies that

$$
\begin{aligned}
E\left[R_{n} P_{n}\right] & =\sum_{B \in \mathcal{P}_{n}} E\left[R_{n} P_{n} \mid B\right] \operatorname{Pr}(B)=\sum_{B \in \mathcal{P}_{n}} E\left[R_{n} \mid B\right] P_{n}(B) \operatorname{Pr}(B) \\
& =\sum_{B \in \mathcal{P}_{n}} \frac{1}{\operatorname{Pr}(B)} P_{n}(B) \operatorname{Pr}(B)=\sum_{B \in \mathcal{P}_{n}} P_{n}(B)=1,
\end{aligned}
$$

hence

$$
\log E\left[R_{n} P_{n}\right]=0
$$

Therefore we have

$$
-(1+\varepsilon) \log n \leq E\left[\log R_{n}\right]-(n-1) h-H_{0} \leq 0
$$

for large n. This answers Maurer's question for Markov chains. In fact we prove a sharp estimate of the convergence rate for expectation:

Theorem. (i) If P is aperiodic, then

$$
\lim _{L, S \rightarrow \infty} E\left[\log R_{(L, S)}-(L-1) h\right]-H_{0}=-\frac{\gamma}{\ln 2}
$$

(ii) If P has period $m>1$, then choose any $m^{\prime} \geq 1$ such that $m^{\prime} \mid m$. Let $\left(L_{k}, S_{k}\right), k=1,2,3, \ldots$, be a sequence of pairs of positive integers such that $m^{\prime}=\operatorname{gcd}\left(L_{k}+S_{k}, m\right)$ and $L_{k}, S_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Then

$$
\lim _{k \rightarrow \infty} E\left[\log R_{\left(L_{k}, S_{k}\right)}-\left(L_{k}-1\right) h\right]-H_{0}=-\frac{\gamma}{\ln 2}-\log m^{\prime} .
$$

Preliminary computer simulations indicate that the divisibility condition may be indispensable in this formulation. Another possible application of the theorem other than estimating entropy is that we may tell whether a given ergodic Markov chain is mixing or not by checking the presence of the term $\log m^{\prime}$ in the collected data from the source when we have a priori knowledge of entropy. Since m is an integer we would find it easily by taking the integer that best represents the experimental data.
2. Proof of the Theorem. The following facts will be needed:

FACT 2.1 ([3], p. 71). Assume that P is aperiodic. There exist constants c and $0<d<1$ such that for any nonnegative vector \vec{v} with $\|\vec{v}\|_{1}=1$ we have

$$
\left\|\vec{v} P^{n}-\vec{\pi}\right\|_{\infty} \leq c d^{n}
$$

FACT $2.2([6])$. Assume that P has period $m>1$. The set of symbols $\{0,1, \ldots, k-1\}$ is decomposed into a disjoint union $\{0,1, \ldots, k-1\}=$ $\bigcup_{t=0}^{m-1} K_{t}$ such that if $i \in K_{t}$ then $\left(\overrightarrow{e_{i}} P\right)_{j}=0$ if $j \notin K_{t+1}$, where $K_{m} \equiv$ K_{0}. After a reordering of coordinates, P^{m} has square matrices $P^{(t)}$ of size $\left|K_{t}\right| \times\left|K_{t}\right|$ on its diagonal. In other words, $\left(P^{(t)}\right)_{i j}=\left(P^{m}\right)_{i j}$ for $i, j \in K_{t}$, after a renaming of indices. Each $P^{(t)}$ is irreducible and aperiodic. We let $\vec{\pi}^{(t)}$ denote the Perron-Frobenius eigenvector of $P^{(t)}$. Note that $\vec{\pi}=$ $(1 / m)\left(\vec{\pi}^{(0)}, \ldots, \vec{\pi}^{(m-1)}\right)$. By Fact 1 there exist constants $c^{(t)}$ and $d^{(t)}$ such that for any nonnegative $\left|K_{t}\right|$-dimensional vector $\vec{v}^{(t)}$ with $\left\|\vec{v}^{(t)}\right\|_{1}=1$,

$$
\left\|\vec{v}^{(t)}\left(P^{(t)}\right)^{n}-\pi^{(t)}\right\|_{\infty} \leq c^{(t)}\left(d^{(t)}\right)^{n}
$$

Proof of the Theorem. (i) Aperiodic case. Put $C_{P}=c / \min _{i} \pi_{i}$ and suppose S is large enough so that $d^{S+1} C_{P}<1$ where c and d are the constants obtained in Fact 2.1. Let T denote the left shift on the Markov chain defined by $T\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$. For arbitrary blocks $a_{1} \ldots a_{L}$ and $b_{1} \ldots b_{L}$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\left[b_{1} \ldots b_{L}\right] \cap T^{-(L+S)}\left[a_{1} \ldots a_{L}\right]\right) \\
& \quad=\pi_{b_{1}} p_{b_{1} b_{2}} \ldots p_{b_{L-1} b_{L}}\left(e_{b_{L}} P^{S+1}\right)_{a_{1}} p_{a_{1} a_{2}} \ldots p_{a_{L-1} a_{L}}
\end{aligned}
$$

where $\overrightarrow{e_{i}}$ is the i th unit row vector. Hence

$$
\begin{aligned}
\mid \operatorname{Pr}\left(\left[b_{1} \ldots b_{L}\right]\right. & \left.\cap T^{-(L+S)}\left[a_{1} \ldots a_{L}\right]\right)-\operatorname{Pr}\left(b_{1} \ldots b_{L}\right) \operatorname{Pr}\left(a_{1} \ldots a_{L}\right) \mid \\
& =\pi_{b_{1}} p_{b_{1} b_{2}} \ldots p_{b_{L-1} b_{L}}\left|\left(e_{b_{L}} P^{S+1}\right)_{a_{1}}-\pi_{a_{1}}\right| p_{a_{1} a_{2}} \ldots p_{a_{L-1} b_{L}} \\
& \leq \operatorname{Pr}\left(b_{1} \ldots b_{L}\right) \operatorname{Pr}\left(a_{1} \ldots a_{L}\right) d^{S+1} c / \pi_{b_{1}} \\
& \leq \operatorname{Pr}\left(b_{1} \ldots b_{L}\right) \operatorname{Pr}\left(a_{1} \ldots a_{L}\right) d^{S+1} \cdot C_{P}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Pr}\left(a_{1} \ldots a_{L}\right) & \left(1-d^{S+1} C_{P}\right) \\
& \leq \operatorname{Pr}\left(x_{L+S+1} \ldots x_{L+S+L}=a_{1} \ldots a_{L} \mid x_{1} \ldots x_{L}=b_{1} \ldots b_{L}\right) \\
& \leq \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right) .
\end{aligned}
$$

Put $a_{1}^{(0)} \ldots a_{L}^{(0)}=a_{1}^{(i)} \ldots a_{L}^{(i)}=a_{1} \ldots a_{L}$. Then

$$
\begin{aligned}
\operatorname{Pr}\left(R_{(L, S)}=i \mid x_{1} \ldots x_{L}\right. & \left.=a_{1} \ldots a_{L}\right) \\
& =\sum_{a_{1}^{(i-1)} \ldots a_{L}^{(i-1)} \neq a_{1} \ldots a_{L}} \ldots \sum_{a_{1}^{(1)} \ldots a_{L}^{(1)} \neq a_{1} \ldots a_{L}} \prod_{j=1}^{i} A_{j}
\end{aligned}
$$

where

$$
A_{j}=\operatorname{Pr}\left(x_{L+S+1} \ldots x_{L+S+L}=a_{1}^{(j)} \ldots a_{L}^{(j)} \mid x_{1} \ldots x_{L}=a_{1}^{(j-1)} \ldots a_{L}^{(j-1)}\right)
$$

because A_{j} is equal to the probability of $x_{j(L+S)+1} \ldots x_{j(L+S)+L}=a_{1}^{(j)} \ldots a_{L}^{(j)}$ given the condition $x_{(j-1)(L+S)+1} \ldots x_{(j-1)(L+S)+L}=a_{1}^{(j-1)} \ldots a_{L}^{(j-1)}$. Hence

$$
\begin{aligned}
\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1-d^{S+1} C_{P}\right) \cdot U_{1} & \leq \operatorname{Pr}\left(R_{(L, S)}=i \mid x_{1} \ldots x_{L}=a_{1} \ldots a_{L}\right) \\
& \leq \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right) \cdot U_{1}
\end{aligned}
$$

where

$$
U_{1}=\sum_{a_{1}^{(i-1)} \ldots a_{L}^{(i-1)} \neq a_{1} \ldots a_{L}} \ldots \sum_{a_{1}^{(1)} \ldots a_{L}^{(1)} \neq a_{1} \ldots a_{L}} \prod_{j=1}^{i-1} A_{j} .
$$

Since

$$
\begin{aligned}
& \sum_{a_{1}^{(i-1)} \ldots a_{L}^{(i-1)} \neq a_{1} \ldots a_{L}} A_{i-1} \\
& \quad=1-\operatorname{Pr}\left(x_{L+S+1} \ldots x_{L+S+L}=a_{1} \ldots a_{L} \mid x_{1} \ldots x_{L}=a_{1}^{(i-2)} \ldots a_{L}^{(i-2)}\right),
\end{aligned}
$$

the sum is bounded by $1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right)$ and $1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right) \times$ $\left(1-d^{S+1} C_{P}\right)$. Hence

$$
\begin{aligned}
\operatorname{Pr}\left(a_{1}\right. & \left.\ldots a_{L}\right)\left(1-d^{S+1} C_{P}\right)\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right)\right) U_{2} \\
& \leq \operatorname{Pr}\left(R_{(L, S)}=i \mid x_{1} \ldots x_{L}=a_{1} \ldots a_{L}\right) \\
& \leq \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right)\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1-d^{S+1} C_{P}\right)\right) U_{2}
\end{aligned}
$$

where

$$
U_{2}=\sum_{a_{1}^{(i-2)} \ldots a_{L}^{(i-2)} \neq a_{1} \ldots a_{L}} \ldots \sum_{a_{1}^{(1)} \ldots a_{L}^{(1)} \neq a_{1} \ldots a_{L}} \prod_{j=1}^{i-2} A_{j} .
$$

Inductively we have

$$
\begin{aligned}
& \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1-d^{S+1} C_{P}\right)\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right)\right)^{i-1} \\
& \quad \leq \operatorname{Pr}\left(R_{(L, S)}=i \mid x_{1} \ldots x_{L}=a_{1} \ldots a_{L}\right) \\
& \quad \leq \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right)\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1-d^{S+1} C_{P}\right)\right)^{i-1}
\end{aligned}
$$

Hence
$\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1-d^{S+1} C_{P}\right) \sum_{i=1}^{\infty}\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right)\right)^{i-1} \log i$

$$
\begin{aligned}
& \leq E\left[\log R_{(L, S)} \mid x_{1} \ldots x_{L}=a_{1} \ldots a_{L}\right] \\
& \leq \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right) \sum_{i=1}^{\infty}\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1-d^{S+1} C_{P}\right)\right)^{i-1} \log i .
\end{aligned}
$$

Let v be the function in Definition 1.3. The average over all L-blocks $a_{1} \ldots a_{L}$ is bounded by

$$
\begin{aligned}
E\left[v \left(P_{L}(x)(1\right.\right. & \left.\left.\left.+d^{S+1} C_{P}\right)\right)\right] \frac{1-d^{S+1} C_{P}}{1+d^{S+1} C_{P}} \\
& \leq E\left[\log R_{(L, S)}\right] \leq E\left[v\left(P_{L}(x)\left(1-d^{S+1} C_{P}\right)\right)\right] \frac{1+d^{S+1} C_{P}}{1-d^{S+1} C_{P}}
\end{aligned}
$$

Multiplying by $\left(1+d^{S+1} C_{P}\right) /\left(1-d^{S+1} C_{P}\right)$ and subtracting $L h$ we have

$$
E\left[v\left(P_{L}(x)\left(1+d^{S+1} C_{P}\right)\right)\right]-L h \leq E\left[\log R_{(L, S)}\right] \frac{1+d^{S+1} C_{P}}{1-d^{S+1} C_{P}}-L h
$$

or

$$
\begin{align*}
E\left[v\left(P_{L}(x)\left(1+d^{S+1} C_{P}\right)\right)\right. & \left.+\log \left(P_{L}(x)\left(1+d^{S+1} C_{P}\right)\right)\right] \tag{2.1}\\
& -E\left[\log P_{L}(x)+L \cdot h\right]-\log \left(1+d^{S+1} C_{P}\right) \\
\leq & E\left[\log R_{(L, S)}\right] \frac{1+d^{S+1} C_{P}}{1-d^{S+1} C_{P}}-L h
\end{align*}
$$

and similarly from the second inequality
(2.2) $\quad E\left[\log R_{(L, S)}\right] \frac{1-d^{S+1} C_{P}}{1+d^{S+1} C_{P}}-L h$

$$
\begin{aligned}
\leq & E\left[v\left(P_{L}(x)\left(1-d^{S+1} C_{P}\right)\right)+\log \left(P_{L}(x)\left(1-d^{S+1} C_{P}\right)\right)\right] \\
& -E\left[\log P_{L}(x)+L h\right]-\log \left(1-d^{S+1} C_{P}\right) .
\end{aligned}
$$

Recall that $v(r)+\log r$ converges to $-\gamma / \ln 2$ as $r \downarrow 0$. For any small $\delta>0$ there exists L_{0} such that if $L \geq L_{0}$ then $P_{L}(x)\left(1+d^{S+1} C_{P}\right) \leq \delta$. Hence we see that the function

$$
v\left(P_{L}(x)\left(1+d^{S+1} C_{P}\right)\right)+\log \left(P_{L}(x)\left(1+d^{S+1} C_{P}\right)\right)
$$

is uniformly bounded for such L by taking

$$
r=P_{L}(x)\left(1+d^{S+1} C_{P}\right) .
$$

The Lebesgue Dominated Convergence Theorem implies that

$$
\lim _{L \rightarrow \infty} E\left[v\left(P_{L}(x)\left(1+d^{S+1} C_{P}\right)\right)+\log \left(P_{L}(x)\left(1+d^{S+1} C_{P}\right)\right)\right]=-\gamma / \ln 2
$$

Recall that $E\left[\log P_{L}(x)+L h\right]=-H_{0}+h$.
As L goes to infinity, (2.1) implies
$-\frac{\gamma}{\ln 2}+H_{0}-h-\log \left(1+d^{S+1} C_{P}\right) \leq \lim _{L \rightarrow \infty}\left(E\left[\log R_{(L, S)}\right] \frac{1+d^{S+1} C_{P}}{1-d^{S+1} C_{P}}-L h\right)$
and similarly (2.2) implies
$\lim _{L \rightarrow \infty}\left(E\left[\log R_{(L, S)}\right] \frac{1-d^{S+1} C_{P}}{1+d^{S+1} C_{P}}-L h\right) \leq-\frac{\gamma}{\ln 2}+H_{0}-h-\log \left(1-d^{S+1} C_{P}\right)$.
Since $d^{S+1} C_{P} \rightarrow 0$ as $S \rightarrow \infty$, we have

$$
\lim _{L, S \rightarrow \infty}\left(E\left[\log R_{(L, S)}\right]-L h\right)=-\gamma / \ln 2+H_{0}-h
$$

(ii) Periodic case. Take L_{k}, S_{k} satisfying the given conditions. We will write L, S for simplicity of notation. Then $\operatorname{Pr}\left(R_{(L, S)}=i\right)=0$ if i is not a multiple of $m / m^{\prime} \equiv m_{0}$.

Recall Fact 2.2. Put $C_{P}=\max _{t} c^{(t)} / \min _{i} \pi_{i}$ and $d=\max _{t} d^{(t)}$. Choose S large enough so that $d^{\beta} C_{P}<m$ where $\beta=\left[\left(m_{0}(S+L)-L+1\right) / m\right]$, the greatest integer that does not exceed $\left(m_{0}(S+L)-L+1\right) / m$. Put $m_{0}(S+L)-L+1=\beta m+r$, where $0 \leq r<m$. Consider $a_{1} \ldots a_{L}$ and $b_{1} \ldots b_{L}$ with positive probability. Suppose $b_{L} \in K_{t}$ for some t; then

$$
\left(e_{b_{L}} P^{r}\right)_{i}=0 \quad \text { if } i \notin K_{t+r}
$$

First consider the case when a_{i}, b_{i} are contained in the same component for every $i=1, \ldots, L$. Since $m_{0}(L+S) \equiv 0 \quad(\bmod m)$, we have $L-1 \equiv-r$ $(\bmod m)$ and $b_{1} \in K_{t-(L-1)}=K_{t+r}$ and $a_{1} \in K_{t+r}$. Hence by Fact 2.2,

$$
\begin{aligned}
\left|\left(e_{b_{L}} P^{m_{0}(S+L)-L+1}\right)_{a_{1}}-m \vec{\pi}_{a_{1}}\right| & =\left|\left(\left(e_{b_{L}} P^{r}\right) P^{m \beta}\right)_{a_{1}}-m \vec{\pi}_{a_{1}}\right| \\
& =\left|\left(v^{(t+r)}\left(P^{(t+r)}\right)^{\beta}\right)_{a_{1}}-\vec{\pi}_{a_{1}}^{(t+r)}\right| \\
& \leq c^{(t+r)}\left(d^{(t+r)}\right)^{\beta},
\end{aligned}
$$

where $v^{(t+r)}$ is a $\left|K_{t+r}\right|$-dimensional vector such that

$$
\left(v^{(t+r)}\right)_{i}=\left(e_{b_{L}} P^{r}\right)_{i} \quad \text { if } i \in K_{t+r} .
$$

Then

$$
\begin{aligned}
& \left|\operatorname{Pr}\left(\left[b_{1} \ldots b_{L}\right] \cap T^{-m_{0}(L+S)}\left[a_{1} \ldots a_{L}\right]\right)-m \operatorname{Pr}\left(b_{1} \ldots b_{L}\right) \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\right| \\
& \quad=\pi_{b_{1}} p_{b_{1} b_{2}} \ldots p_{b_{L-1} b_{L}}\left|\left(e_{b_{L}} P^{m_{0}(S+L)-L+1}\right)_{a_{1}}-m \pi_{a_{1}}\right| p_{a_{1} a_{2}} \ldots p_{a_{L-1} b_{L}} \\
& \quad=\pi_{b_{1}} p_{b_{1} b_{2}} \ldots p_{b_{L-1} b_{L}}\left|\left(\left(e_{b_{L}} P^{r}\right) P^{\beta m}\right)_{a_{1}}-m \pi_{a_{1}}\right| p_{a_{1} a_{2}} \ldots p_{a_{L-1} b_{L}} \\
& \quad \leq \operatorname{Pr}\left(b_{1} \ldots b_{L}\right) \operatorname{Pr}\left(a_{1} \ldots a_{L}\right) c^{(t+r)}\left(d^{(t+r)}\right)^{\beta} / \pi_{a_{1}} \\
& \quad \leq \operatorname{Pr}\left(b_{1} \ldots b_{L}\right) \operatorname{Pr}\left(a_{1} \ldots a_{L}\right) d^{\beta} C_{P}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Pr}\left(b_{1} \ldots b_{L}\right) \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)(m & \left.-d^{\beta} C_{P}\right) \\
& \leq \operatorname{Pr}\left(\left[b_{1} \ldots b_{L}\right] \cap T^{-m_{0}(L+S)}\left[a_{1} \ldots a_{L}\right]\right) \\
& \leq \operatorname{Pr}\left(b_{1} \ldots b_{L}\right) \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(m+d^{\beta} C_{P}\right) .
\end{aligned}
$$

Next, if a_{i} and b_{i} are not contained in the same component for some i, then

$$
\begin{aligned}
\operatorname{Pr}\left(\left[b_{1} \ldots b_{L}\right]\right. & \left.\cap T^{-m_{0}(L+S)}\left[a_{1} \ldots a_{L}\right]\right) \\
= & \pi_{b_{1}} p_{b_{1} b_{2}} \ldots p_{b_{L-1} b_{L}}\left(e_{b_{L}} P^{m_{0}(S+L)-L+1}\right)_{a_{1}} p_{a_{1} a_{2}} \ldots p_{a_{L-1} b_{L}} \\
\leq & \pi_{b_{1}} p_{b_{1} b_{2}} \ldots p_{b_{i-1} b_{i}}\left(e_{b_{i}} P^{m_{0}(S+L)}\right)_{a_{i}} p_{a_{i} a_{i+1}} \ldots p_{a_{L-1} b_{L}}=0
\end{aligned}
$$

since $\left(e_{i} P^{m}\right)_{j}=0$ if $j \notin K_{i}$ for all $i \in K_{i}$. Hence we have

$$
\begin{aligned}
& \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(m-d^{\beta} C_{P}\right)\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{\beta} C_{P}\right)\right)^{i-1} \\
& \quad \leq \operatorname{Pr}\left(R_{(L, S)}=m_{0} i \mid x_{1} \ldots x_{L}=a_{1} \ldots a_{L}\right) \\
& \quad \leq \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(m+d^{\beta} C_{P}\right)\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1-d^{\beta} C_{P}\right)\right)^{i-1}
\end{aligned}
$$

and $\operatorname{Pr}\left(R_{(L, S)}=j \mid x_{1} \ldots x_{L}=a_{1} \ldots a_{L}\right)=0$ for all $j \nmid m_{0}$. Now we proceed as before.
3. Comparison of $\log R_{(L, S)}$ and $\log R_{L}$. In this section we compare averages and variances of $\log R_{(L, S)}$ and $\log R_{L}$. The notations are the same as in Section 2. Sometimes we write $P_{L}(x)$ to denote $\operatorname{Pr}\left(x_{1} \ldots x_{L}\right)$. As before we have

$$
\begin{aligned}
& \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1-d^{S+1} C_{P}\right)\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right)\right)^{i-1} \\
& \leq \operatorname{Pr}\left(R_{(L, S)}=i \mid x_{1} \ldots x_{L}=a_{1} \ldots a_{L}\right) \\
& \quad \leq \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right)\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1-d^{S+1} C_{P}\right)\right)^{i-1} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1-d^{S+1} C_{P}\right) \sum_{i=1}^{\infty}\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right)\right)^{i-1} i \\
& \quad \leq E\left[R_{(L, S)} \mid x_{1} \ldots x_{L}=a_{1} \ldots a_{L}\right] \\
& \quad \leq \operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1+d^{S+1} C_{P}\right) \sum_{i=1}^{\infty}\left(1-\operatorname{Pr}\left(a_{1} \ldots a_{L}\right)\left(1-d^{S+1} C_{P}\right)\right)^{i-1} i .
\end{aligned}
$$

Put

$$
w(r)=r \sum_{i=1}^{\infty}(1-r)^{i-1} i, \quad 0<r<1
$$

Then $w(r)=1 / r$. Hence averaging over all L-blocks $a_{1} \ldots a_{L}$ we obtain

$$
\begin{aligned}
& E\left[w\left(P_{L}(x)\left(1+d^{S+1} C_{P}\right)\right)\right] \frac{1-d^{S+1} C_{P}}{1+d^{S+1} C_{P}} \\
& \leq E\left[R_{(L, S)}\right] \leq E\left[w\left(P_{L}(x)\left(1-d^{S+1} C_{P}\right)\right)\right] \frac{1+d^{S+1} C_{P}}{1-d^{S+1} C_{P}}
\end{aligned}
$$

hence

$$
E\left[\frac{1}{P_{L}(x)}\right] \frac{1-d^{S+1} C_{P}}{\left(1+d^{S+1} C_{P}\right)^{2}} \leq E\left[R_{(L, S)}\right] \leq E\left[\frac{1}{P_{L}(x)}\right] \frac{1+d^{S+1} C_{P}}{\left(1-d^{S+1} C_{P}\right)^{2}}
$$

Recall that $E\left[1 / P_{L}\right]=E\left[R_{L}\right]$ by Lemma 1.1. Thus

$$
E\left[R_{L}\right] \frac{1-d^{S+1} C_{P}}{\left(1+d^{S+1} C_{P}\right)^{2}} \leq E\left[R_{(L, S)}\right] \leq E\left[R_{L}\right] \frac{1+d^{S+1} C_{P}}{\left(1-d^{S+1} C_{P}\right)^{2}}
$$

and we conclude that for sufficiently large S there is not much difference between $E\left[R_{L}\right]$ and $E\left[R_{(L, S)}\right]$.

4. Estimation of entropy

4.1. Aperiodic case. Since $E\left[\log R_{(L, S)}-(L-1) h\right]$ is close to $-\gamma / \ln 2+H_{0}$ for sufficiently large L and S, it is recommended that we should approximate the entropy by the formula

$$
h_{(L, D, S)} \equiv \frac{E\left[\log R_{(L+D, S)}\right]-E\left[\log R_{(L, S)}\right]}{D}
$$

for any integer $D>0$.
Example 4.1. Consider the Markov chain associated with the aperiodic matrix

$$
P=\left(\begin{array}{ccc}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 4 & 0 & 3 / 4 \\
1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

and initial vector $\vec{\pi}=(10 / 23,6 / 23,7 / 23)$. Note that $h=1.16815951 \ldots$ The ergodicity of the Markov chain enables us to apply the Birkhoff Ergodic Theorem and we estimate $E\left[\log R_{(L, S)}\right]$ by taking the average of $\log R_{(L, S)}$ over 10,000 sample paths $x, T^{L} x, \ldots, T^{9999 L} x$, which are obtained by shifting L times to reduce the correlation among the sample values of $\log R_{(L, S)}$. We used a pseudorandom number generator in Fortran 90 to generate a sequence x. Here the sample size is rather large to demonstrate the accuracy of the theoretical prediction and in practical applications a sample of small
size will do. The test result is given in Table 1, where Error and S.E.M. denotes $h_{(L, D, S)}-h$ and the standard error mean of $h_{(L, D, S)}$ respectively.

The error $h_{(L, D, S)}-h$ is similar to or less than the size of S.E.M.

Table 1. Test result for Example 4.1

		$S=10$				$S=5$		
L	D	$h_{(L, D, S)}$			Error	S.E.M.	$h_{(L, D, S)}$	
7	1	1.11888	-0.04928	0.03230	1.14740	-0.02076	0.03199	
7	2	1.17008	0.00192	0.01618	1.17964	0.01148	0.01633	
7	3	1.17913	0.01097	0.01082	1.16996	0.00180	0.01094	
7	4	1.16273	-0.00543	0.00827	1.16359	-0.00457	0.00839	
7	5	1.16677	-0.00139	0.00670	1.16994	0.00178	0.00676	
8	1	1.22128	0.05312	0.03328	1.21188	0.04372	0.03295	
8	2	1.20925	0.04109	0.01691	1.18124	0.01308	0.01686	
8	3	1.17734	0.00918	0.01138	1.16899	0.00083	0.01126	
8	4	1.17875	0.01059	0.00858	1.17558	0.00742	0.00856	
9	1	1.19723	0.02907	0.03393	1.15060	-0.01756	0.03374	
9	2	1.15538	-0.01278	0.01732	1.14754	-0.02062	0.01723	
9	3	1.16457	-0.00359	0.01152	1.16346	-0.00470	0.01149	

4.2. Periodic case. It is recommended that we should approximate the entropy by the formula

$$
h_{(L, D, S)} \equiv \frac{E\left[\log R_{(L+D, S)}\right]-E\left[\log R_{(L, S)}\right]}{D}
$$

for any integer $D>0$ that is a multiple of the period of the chain.
Example 4.2. Consider the Markov chain associated with the periodic matrix

$$
P=\left(\begin{array}{ccccc}
0 & 0 & 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 / 4 & 3 / 4 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
3 / 4 & 1 / 4 & 0 & 0 & 0
\end{array}\right)
$$

and initial vector $\vec{\pi}=(1 / 4,1 / 12,7 / 48,3 / 16,1 / 3)$. Its period is $m=3$. Note that $h=0.58803255 \ldots$. We test this example by the same method as before. The test result is given in Table 2 and Table 3 for $m \mid D$ and $m \nmid D$ respectively.

Table 2. Test result for Example 4.2

		$S=7$			$S=5$		
L	D	$h_{(L, D, S)}$	Error	S.E.M.	$h_{(L, D, S)}$	Error	S.E.M.
10	3	0.57920	-0.00883	0.01030	0.58531	-0.00272	0.01027
10	6	0.57540	-0.01263	0.00534	0.58072	-0.00731	0.00530
10	9	0.57996	-0.00807	0.00374	0.57883	-0.00920	0.00368
11	3	0.57013	-0.01791	0.01056	0.56322	-0.02482	0.01066
11	6	0.58144	-0.00659	0.00537	0.57941	-0.00863	0.00545
12	3	0.59832	0.01028	0.01092	0.58483	-0.00320	0.01097
12	6	0.58883	0.00080	0.00557	0.58418	-0.00385	0.00556
13	3	0.57161	-0.01642	0.01103	0.57613	-0.01190	0.01097
13	6	0.58034	-0.00769	0.00568	0.57559	-0.01244	0.00572

Table 3. Test result for Example 4.2 with inadequate D

		$S=7$			$S=5$		
L	D	$h_{(L, D, S)}$	Error	S.E.M.	$h_{(L, D, S)}$	Error	S.E.M.
10	1	-0.99516	-1.58319	0.03147	2.18021	1.59218	0.03144
10	2	0.57029	-0.01774	0.01549	1.37486	0.78683	0.01558
11	1	2.13574	1.54771	0.03166	0.56950	-0.01853	0.03169
11	2	1.36637	0.77834	0.01612	-0.21214	-0.80017	0.01632
12	1	0.59701	0.00898	0.03203	-0.99378	-1.58181	0.03209
12	2	-0.21268	-0.80071	0.01617	0.56007	-0.02796	0.01655

REFERENCES

[1] A. Dembo and I. Kontoyiannis, The asymptotics of waiting times between stationary processes, allowing distortion, Ann. Appl. Probab. 9 (1999), 413-429.
[2] ' M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 (1947), 1002-1010.
[3] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Springer, New York, 1976.
[4] I. Kontoyiannis, Asymptotic recurrence and waiting times for stationary processes, J. Theoret. Probab. 11 (1998), 795-811.
[5] I. Kontoyiannis, P. H. Algoet, Yu. M. Suhov and A. J. Wyner, Nonparametric entropy estimation for stationary processes and random fields, with applications to English text, IEEE Trans. Inform. Theory 44 (1998), 1319-1327.
[6] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, 1995.
[7] G. Louchard and W. Szpankowski, On the average redundancy rate of the Lempel-Ziv code, IEEE Trans. Inform. Theory 43 (1997), 2-8.
[8] U. Maurer, A universal statistical test for random bit generators, J. Cryptology 5 (1992), 89-105.
[9] D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inform. Theory 39 (1993), 78-83.
[10] C. Shannon, The mathematical theory of communication, Bell Sys. Tech. J. 27 (1948), 379-423 and 623-656.
[11] P. C. Shields, The Ergodic Theory of Discrete Sample Paths, Grad. Stud. Math. 13 Amer. Math. Soc., 1996.
[12] W. Szpankowski, Asymptotic properties of data compression and suffix trees, IEEE Trans. Inform. Theory 39 (1993), 1647-1659.
[13] F. M. J. Willems, Universal data compression and repetition times, ibid. 35 (1989), 54-58.
[14] A. J. Wyner, Strong matching theorems and applications to data compression and statistics, Ph.D. thesis, Stanford Univ., 1993.
[15] -, More on recurrence and waiting times, Ann. Appl. Probab., to appear.
[16] A. J. Wyner and J. Ziv, Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression, IEEE Trans. Inform. Theory 35 (1989), 1250-1258.
[17] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, ibid. 23 (1977), 337-343.
[18] —, —, Compression of individual sequences via variable rate coding, ibid. 24 (1978), 530-536.

Department of Mathematics
Korea Advanced Institute of Science and Technology
Taejon, South Korea
E-mail: choe@euclid.kaist.ac.kr
surper@math.kaist.ac.kr

Received 11 June 1999;
(3775)
revised 18 January 2000

[^0]: 2000 Mathematics Subject Classification: Primary 94A17; Secondary 60J10
 Key words and phrases: the first return time, Markov chain, Wyner-Ziv-OrnsteinWeiss theorem, entropy, data compression, period of an irreducible matrix.

 Research supported by the Ministry of Information and by Communication and by GARC-SRC-KOSEF.

