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Abstract. We present a simple proof of the theorem which says that for a series
of extensions of differential fields K ⊂ L ⊂ M , where K ⊂ M is Picard–Vessiot, the
extension K ⊂ L is Picard–Vessiot iff the differential Galois group GalLM is a normal
subgroup of GalKM . We also present a proof that the probability function Erf(x) is not
an elementary function.

1. Introduction. Let (K,∂) be a differential field with algebraically
closed field of constants C = CK = ker ∂ of zero characteristic. Here K is an
algebraic field (with +, ×, 0, 1) and the derivation ∂ satisfies the Leibniz
rule. It is useful to think about K as some field of multi-valued holomorphic
functions of x ∈ C (with singularities) with ∂ = d/dx and C = C; e.g. the
field C(x) of rational functions. We shall also use the notation ∂a = a′.
Analogously one defines a differential ring R (usually over some differential
field) and a differential ideal.

Let

D = ∂n + an−1∂
n−1 + . . .+ a0

be a linear differential operator with coefficients in K and let y1, . . . , yn be
solutions of the equation Dy = 0 (in some large field K̃). By the Picard–

Vessiot extension K ⊂ M associated with D we understand the differential
field M = K〈y1, . . . , yn〉 (the field generated by yi’s and their derivatives)
provided that the following conditions hold:

(i) the field M does not contain new constants, CM = CK = C;

(ii) yi are linearly independent over the field of constants.
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The latter means that the Wronskian

W =W (y1, . . . , yn) = det
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is nonzero (in M).

The differential Galois group GalK M of an extension K ⊂ M (Picard–
Vessiot or not) is the group of automorphisms of the differential field M
which are the identity on K.

The differential Galois group of the Picard–Vessiot extension K ⊂M is
identified with a subgroup of the group GL(V,C) = GL(n,C), where V is
the space of solutions of the equation Dy = 0. Indeed, let yi, i = 1, . . . , n,
be a basis of solutions and let σ ∈ GalK M . Each element σyj is a solution
and is expressed as a linear combination of yi’s, σyi =

∑
j yjdji, where the

elements dji ∈ M are given by the Cramer formula dji = W1/W2 and W1,
W2 are the Wroński determinants of suitable systems of n solutions. Both
Wronskians satisfy the same differential equation W ′ + an−1W = 0. Thus
the derivative of their ratio is equal to zero, dji ∈ C. Note also that the
matrix from GalK M ⊂ GL(n,C) acts from the right on (y1, . . . , yn).

There is a theorem (of Kolchin) about the existence and uniqueness of
the Picard–Vessiot extension. Let us recall its construction, following the
book of Magid [Mag].

We take the differential ring K[X] = K ⊗C C[X] of regular functions on
X = GL(n,C) with values in the field K. We have K[X] = K[u11, . . . , un1,
u12, . . . , unn, W

−1], where uij are formal variables with derivatives u′ij =
ui,j+1 and u′in = −an−1uin− . . .− a0ui1 and W =W (u1, . . . , un), ui = ui1.
Let I ⊂ K[X] be some maximal differential ideal (over K). The following
two algebraic results are proven in [Mag].

Proposition 1. Let I ⊂ K[X] be a maximal (under inclusion) differen-
tial ideal. Then the ideal I is prime.

P r o o f. Let R = K[X]/I; we have to show that the ring R does not
contain zero divisors.

Assume that ab = 0 for a, b∈R \ 0. Then the identities (ab)′b = a′b2 +
abb′ = a′b2 show that a′b2 = 0. Generally a(k)bk+1 = 0. Take the differential
ideal I1 = (a, a′, . . .) of R. For any e ∈ I1 we have ebm = 0 for some m. If
all bm 6= 0, I1 would be a proper ideal, because 1 · bm 6= 0 and hence 1 6∈ I1.
This contradicts the maximality of I.

Therefore any zero divisor (e.g. b or a) is nilpotent. In particular, an = 0
for some minimal n and the formula nan−1a′ = 0 shows that a′ is also a
zero divisor (and also nilpotent). Repeating this, we see that a(j) are all
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nilpotent zero divisors. Thus a generates an ideal I2 consisting of nilpotent
elements. Because the latter does not contain 1, it should be proper.

Proposition 2. Let R be a differential integral domain finitely generated

over a differential field K (with algebraically closed field of constants of

zero characteristic) and without proper differential ideals. Then the field of

quotients Q(R) does not contain new constants, CM = CK = C.

P r o o f. (a) Firstly we notice that the elements from CM \ CK cannot
be algebraic over K. This follows from the fact that the differentiation in
K extends uniquely to algebraic elements. If d ∈ K \K satisfies a minimal
algebraic equation p(d) = dr + ar−1d

r−1 + . . . + a0, p(x) ∈ K[x], then
d′ = −p′(d)/ dp

dx (d), where p
′(x) = a′r−1x

r−1 + . . . + a′0. Thus d
′ = 0 implies

p ∈ C[x] and d ∈ C.

(b) Next, we have CM ⊂ R. Indeed, for any d = f/g ∈ CM , f, g ∈ R,
consider the ideal of denominators of d, J = {h ∈ R : hd ∈ R}. It is a
nonzero differential ideal, because g ∈ J and h′d = (hd)′ ∈ R for h ∈ J . By
assumption, R does not contain proper differential ideals (i.e. 6= 0, R). Thus
J = R, which means that d = 1 · d ∈ R.

(c) Here we show that for any d ∈ CM there exists an element c ∈ C
such that d − c is not invertible in R. Then the ideal (d − c)R is different
from R and therefore it is zero. Thus d = c ∈ C.

We use some methods from algebraic geometry. We replace the field
K (of coefficients) by its algebraic closure K and the ring R (over K) by
R = R⊗K (over K). We shall prove that the element d⊗ 1− c⊗ 1 ∈ R is
not invertible for some c ∈ C. Then, of course, also the element d − c will
be nonunit in R.

The element d ⊗ 1 (which we still denote by d) can be treated as a
regular function on the space Y = specK R of maximal ideals of the ring R,
d : Y → K. Here Y is an affine algebraic variety (equipped with the Zariski
topology) and d is a morphism of algebraic varietes (see [Bor, Ch. AG, 5.2]).
The image Z = d(Y ) is a constructible set, i.e. a finite union of sets Zi such
that Zi are open in their closures Zi (see [Bor, Ch. AG, 10.1]). This result
(of Chevalley) implies that Z contains a dense open subset of its closure Z.
We have two possibilities: Z 6= K or Z = K.

In the first case Z is finite, which means that the function d(·) takes
a finite number of values. Because Y is irreducible (as R is an integral
domain), it is connected and d(·) ≡ const. But then d would belong to K,
which contradicts (a).

In the second case Z is Zariski open (equal to K \{finite set}) and there
exists a point c ∈ C ∩ Z. The variety Yc = d−1(c) is a proper (i.e. 6= ∅, Y )
subvariety of Y corresponding to the proper ideal (d− c) = (d− c)R = {f ∈
R : f |Yc

= 0}. Thus d− c is nonunit in R.
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One defines the Picard–Vessiot extension as M = Q(K[X]/I).

Remark 1. When we have a ring of regular functions on an affine al-
gebraic variety over an algebraically closed field of characteristic zero, its
maximal prime ideals are in one-to-one correspondence with the points of
the variety (they define the closed points in the spectrum of the ring). In the
case of a differential ring the situation is not so clear. Firstly, the underlying
fields usually are not algebraically closed (e.g. C(x)) and the assumption
that the ideal is closed with respect to the differentiation is sometimes a
serious restriction.

Example 1. Consider the above construction of M = Q(K[X]/I) in the
case of the differential operator ∂2 + (1/x)∂ (adjoining of lnx). We have
the C(x)-ring C(x)[X] = C(x)[u11, u12, u21, u22, (u11u22 − u12u21)

−1], and
the ideal I = (u11 − 2, u12, u22 − 3/x) is a prime differential ideal, which is
maximal. Any ideal containing I should be associated with a C(x)-point in
the variety GL(2,C(x)), i.e. with a C(x)-value of u21. Because u′21 = 3/x
and 3/x has no rational primitive, there are no such C(x)-points.

Example 2. Consider the extension of K = C(x) by means of the equa-
tion 2xy′ = y. We have X = C

∗, K[X] = C(x)[u, u−1] and the ideal I can
be chosen as (u2 − x). Due to the fact that C(x) is not algebraically closed,
the ideal I is maximal. If K is the algebraic closure of K (i.e. the field of all
algebraic functions of x), then the ideal K⊗I is no longer prime or maximal
in K[X]. Its zero set consists of the two points {±√

x} ⊂ C(x) ∗.

The representation of the Picard–Vessiot extension in the form M =
Q(K[X]/I) is useful in the description of the Galois group G = GalK M . Of
course, GalK M acts on X = GL(n,C) by right multiplication. This induces
an action of G on the ring C[X] and also on the ring K[X] = K ⊗ C[X]
(with trivial action on the first factor).

The above action of G on K[X] coincides with the action of G on the ele-
ments [u1], . . . , [un] (the cosets in K[X]/I of ui = ui,1), treated as solutions
of the equation Dy = 0 in M . This shows that

GalK M = {σ ∈ X : σ(I) = I}
and that G ⊂ X is defined as the zero set of some system of algebraic
functions. G is a linear algebraic group (see [Kol] and [Mag]).

Consider our above examples. In the case of the equation xy′′ + y′ = 0
and an element σ =

(
p q
r s

)
∈ GL(2,C), the preservation of the ideal I means

that σ should preserve the algebraic variety
{(

2 a(x)
0 3/x

)
: a(x) ∈ C(x)

}
. This

leads to p = s = 1, r = 0, i.e. G ≃ C.

In the case of the equation 2xy′ = y we find G ≃ Z/2Z.
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In what follows we shall also use the following property of Picard–Vessiot
extensions, the normality.

Proposition 3. If K ⊂ M is a Picard–Vessiot extension and G is its

Galois group, then MG = K, i.e. the set of elements from M which are fixed

under the action of G coincides with the subfield K.

P r o o f. We follow [Mag]. It is enough to show that for any x ∈ M \K
there is an element σ from G such that σ(x) 6=x. Take the modelM=Q(R),
R = K[X]/I (as above). We have x = a/b, a, b ∈ R; so x belongs to the
ring R[b−1]. It is easy to see that R[b−1] does not contain proper differential
ideals (like R); thus we can take the Picard–Vessiot extension in the form
M = Q(R[b−1]). Then Q(R[b−1]) contains the subspace V of solutions of
Dy = 0.

We consider the differential algebra S = R[b−1]⊗K R[b−1] ⊂ M ⊗K M .
Put

z = x⊗ 1− 1⊗ x ∈ S.

Because x 6∈ K, we have z′ 6= 0 and zj 6= 0, j = 1, 2, . . . (if zn = 0 for a
minimal n, then 0 = nzn−1z′ 6= 0). Take the differential ring Sz = {v/zi :
v ∈ R, i ≥ 0}, one of its maximal prime ideals J and the quotient Sz/J .
Note that the element [z/1] is nonzero in Sz/J .

We have two fields of quotients M = Q(R[b−1]) and N = Q(Sz/J),
both without new constants (see Proposition 2). The two maps w 7→ w ⊗ 1
and w 7→ 1 ⊗ w define two embeddings σ1 and σ2 of M into N . Moreover,
σ1(M) = σ2(M), because this equality holds for the vector spaces σ1(V ) =
σ2(V ) which equal the space of solutions of the equation Dy = 0 in N (by
counting the dimensions over C). So, σ = σ−1

1 σ2 is an automorphism of M .
Because σ1(x)− σ2(x) = [z/1] 6= 0, we have σ(x) 6= x.

(In the same way the uniqueness of the Picard–Vessiot extension is
proved in [Mag].)

Consider a series of extensions of differential fields K ⊂ L ⊂M and such
that K ⊂M is Picard–Vessiot. Then, of course, the extension L ⊂M is also
Picard–Vessiot (being with the same fields of constants and generated by
the same solutions of the differential equation with coefficients in K ⊂ L).
The Galois group H = GalLM forms a subgroup of G.

Moreover, it is also clear that if K ⊂ L is a Picard–Vessiot extension,
then the subfield L is preserved by the elements from G. The latter easily
implies that the Galois group H is a normal subgroup of G. One of the aims
of this paper is the proof of the following result.

Theorem 1. If K ⊂ L ⊂ M , K ⊂ M is Picard–Vessiot with Galois

group G and the Galois group H = GalLM is a normal subgroup of G, then
the extension K ⊂ L is also Picard–Vessiot.
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We could not find any theorem of this form in [Kap] and [Kol]; it is only
proven that if H is a normal subgroup of G, then the extension K ⊂ L
is normal (i.e. LH = K) and GalK L = G/H. One proof of this theorem
is given in [Mag]. In the next section we present a new proof based on
some ideas from [Mag] and on the above construction of the Picard–Vessiot
extension.

Finally, in the third section we shall present a proof of the fact that the
function

Erf(x) =

x\
0

e−t2 dt

is not elementary.
Recall that an extension K ⊂ M of differential fields is elementary iff

there is a chain of extensions K = K0 ⊂ K1 ⊂ . . . ⊂ Kr = M such that
each Ki+1 = Ki〈zi〉 where zi is of one of the following types:

(i) it is a logarithm of an element from Ki, i.e. z
′

i = a′i/ai, ai ∈ Ki;
(ii) it is an exponent of an element from Ki, i.e. z

′

i = a′izi, ai ∈ Ki;
(iii) it is algebraic over Ki, i.e. satisfies an equation

∑m
j=0 ajz

j = 0,
aj ∈ Ki.

If K = C(x), then the elements ofM are called the elementary functions.
We have taken this definition from the books of Ritt [Rit] and Davenport

[Dav]; as far as we know, it is the standard definition. In the book of
Magid [Mag] there is another definition of “elementary functions”: they are
defined as elements of an extension M = C(x)(ln(x − x1), . . . , ln(x − xm);
z1, . . . , zn), where the zj are either algebraic over Kj = C(x, z1, . . . , zj−1) or
are exponents over Kj .

Magid [Mag] has proved that the Galois group GalK M of such an ex-
tension K = C(x) ⊂ M must be abelian, whereas the Galois group of the
extension K ⊂ K〈Erf〉 is isomorphic to the nonabelian group of affine diffeo-
morphisms of the complex line. Thus Erf cannot be elementary in Magid’s
sense.

However, it is widely known that Erf is not elementary in the sense used
already by Liouville [Lio] (see also [Rit]), but it is impossible to find the
proof of this fact in the literature. In fact, this proof is not very complicated
and uses one result of Liouville.

2. Proof of Theorem 1. The main idea relies on the following con-
struction. Assume that we have a finitely generated K-algebra T (with-
out divisors of zero) consisting of elements t such that the linear space
span{σt : σ ∈ G = GalK M} (over C) is finite-dimensional. We also assume
that T is G-invariant and its field of quotients Q(T ) is equal to M . The
algebra K[X]/I is a good example.
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Take TH = {t ∈ T : Ht = {t}}, the set of invariants of the action of the
normal subgroup H. The normality of H means that for any τ ∈ H, σ ∈ G
and s ∈ TH we have σ−1τσs = s, or τ(σs) = (σs). This shows that any
σ ∈ G preserves the subdomain TH , σ(TH) = TH . Thus TH is a finitely
generated G-invariant subalgebra and the restriction of the action of G to
TH coincides with the action of the quotient group G/H on TH . We claim
that:

TH is generated (over K) by solutions of a linear differential equation

with coefficients in K.
Indeed, take a finite-dimensional subspace V1 ⊂ TH over C which gen-

erates TH as a K-algebra and which is G/H-invariant. Let z1, . . . , zm be a
basis of V1; its Wronskian W (z1, . . . , zm) ∈ K \ 0. Then any element z from
V satisfies the equation D1z = 0, where

D1 =W (∂, z1, . . . , zn)/W (z1, . . . , zm).

The coefficients of this operator are ratios of determinants which behave in
the same way under the action of the group G.

By Proposition 3 we find that the coefficients of D1 belong to K. Thus
TH = K[V1], where V1 is the space of solutions of a linear differential equa-
tion with coefficients in K.

If we knew that L = MH = Q(TH) (i.e. that the field of invariants of
H in M is the field of quotients of the domain of invariants in T ), then we
would have the proof of the Picard–Vessiot property of K ⊂ L

Lemma 1. If we choose T = K[X]/I, where X = GL(n,C) and I is a

maximal prime ideal , then

MH = Q(TH).

P r o o f. Take any f ∈MH \ 0. We shall represent it as a ratio of invari-
ants from T . Let J = {t ∈ T : tf ∈ T} ⊂ T be the ideal of denominators
of f . Since f is H-invariant, J is H-stable (HJ = J). Let s ∈ J \ 0. The
elements τs, τ ∈ H generate a finite-dimensional space Z (over C). Choose
a basis s1, . . . , sp of Z and let w = W (z1, . . . , zp) be the Wroński determi-
nant. Expansion of this determinant with respect to the first row shows
that w ∈ J .

We have the property τw = det(τ |Z) ·w, which means that w is a semi-

invariant with weight χ = det |Z . The weight is a character of the algebraic
group H, i.e. an algebraic homomorphism from H to GL(1, C) = C∗.

Let t = wf . It belongs to T (because w ∈ J) and is a semi-invariant with
the same weight as w. So, we have the representation of f as the ratio of
semi-invariants, f = t/w. Assume that we can find a nonzero semi-invariant
u with weight χ−1. Then we would have the desired representation of f as
a ratio of invariants f = (tu)/(wu).
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To show that such a u exists, we study in detail the representation of
the group H in the space T .

In fact, we consider the group H/H0, where H0 =
⋂

ω Kerω is the
intersection of kernels of all characters of H (it is a normal subgroup of
H). Because ω|[H,H] = {1}, the group H/H0 is abelian. It is isomorphic
to (H/H0)s × (H/H0)u (see [Bor, Ch. 1, Theorem 4.7]), where (H/H0)s is
a semisimple group (product of finite cyclic groups and a torus (C∗)l) and
(H/H0)u is a unipotent group (isomorphic to the additive group Cq). But
there are no nontrivial characters on the unipotent group (H/H0)u (there are
only transcendental ones, like a 7→ ea). This means that H/H0 = (H/H0)s
is reductive and any its representation in a vector space V is diagonalizable.
(The reader can prove himself that any algebraic homomorphism from the
torus C∗, or from the cyclic group Z/pZ, to the unipotent group of upper
triangular matrices is trivial.) The space is split into weight subspaces
V =

⊕
ω Vω.

The natural spaces where the group H/H0 acts are C[H/H0] and
C[G/H0]; moreover H acts on C[G]. We claim that

C[G]1/χ 6= 0.

Indeed, because the homomorphism H/H0 → G/H0 is injective and
the homomorphism G → G/H0 is surjective, the restriction C[G/H0] →
C[H/H0] is surjective and the homomorphism C[G/H0] → C[G] is an em-
bedding. But of course C[H/H0]1/χ 6= 0 and hence C[G]1/χ 6= 0.

Recall that we have the K-algebra T = K[X]/I, where I is a maximal
prime differential ideal. Denote also by K the algebraic closure of K. We
shall use the following.

Lemma 2. There is a canonical H-equivariant isomorphism T = K ⊗
(K[X]/I) ≃ K ⊗ C[G].

Lemma 2 allows us to finish the proof of Theorem 1. The group H acts
on the second factors in the above tensor products. Thus the component
C[G]1/χ gives the nonzero component K ⊗ C[G]1/χ. We have T 1/χ = K ⊗
T1/χ = K ⊗ C[G]1/χ 6= 0 and hence T1/χ 6= 0.

Proof of Lemma 2. We begin with Example 1: with the initial field
K = C(x), the equation 2xy′ = y, the ring K[X] = C(x)[u, u−1] and the
ideal I = (u2−x). HereG = {±1} and IG = {f ∈ C[X] : f |G = 0} = (u2−1)
is not a prime ideal in C[X]. Also the ideal C(x)⊗ I = (u−√

x, u+
√
x) is

not prime in C(x)[X]. In fact, we have C(x)⊗ I = C(x)⊗ IG, which implies
the equality from Lemma 2. The reader can check that in Example 2 with
adjoining lnx, Lemma 2 is also true.

If the field K were algebraically closed, then the ideal I ⊂ K[X] would
define its set of zeros AK = A(I) = {a ∈ XK : f(a) = 0, f ∈ I}, a
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subset of the variety XK = GL(X,K) defined over the field K. The ring of
regular functions on AK would be K[A] = K[X]/I. The variety AK would
be irreducible (because I is prime). If K is not algebraically closed, then we
introduce the ideal I = K ⊗ I ⊂ K[X] with the set of zeros AK ⊂ XK , and
the ring K[X]/I consists of regular functions on AK .

Recall the definition of the Galois group G from the introduction. It
consists of σ ∈ X such that σI = I. This gives σI = I (when acting on
K[X]), which means that G acts on XK leaving the variety AK invariant.
The action of G = GC on AK is naturally prolonged to an action of the
group GK on AK .

The ideal corresponding to the subvariety GK ⊂ XK is equal to IG =
K ⊗ IG, where IG ⊂ C[X] is the ideal of C-valued functions vanishing on
G ⊂ X. Thus the statement of Lemma 2 means that the ring of regular
functions on AK is isomorphic to the ring of regular functions on GK and
this isomorphism commutes with the action of the group H.

The action of GK on XK is effective (i.e. the stabilizer of any point is the
trivial subgroup of G). This means that AK is a union of whole orbits, each
of them isomorphic to GK . We have to show that AK consists of exactly
one orbit.

Suppose that AK = BK ∪CK ∪ . . . where BK , CK , . . . are disjoint orbits
and BK 6= AK . The ideal I is strictly contained in the larger ideal IB (of
functions vanishing on BK). There is an isomorphism ψ : IG → IB, which
is defined over the field C (because the group G is defined over C). The
ideal I forms an extension of the ideal I (over K) and the ideal IB is also
an extension of the ideal IB = ψ(K ⊗ IG) ⊂ K[X], IB = K ⊗ IB. The ideal
IB is differential (because algebraic extensions uniquely define extensions
of the differentiation) and strictly contains the maximal differential ideal I.
This gives a contradiction.

Remark 2. Magid in his proof uses for the ring T the set of elements
in M which satisfy some linear differential equation. He also obtains the
identity K ⊗ T = K[X].

Singer [Sin] was also working in this direction.

Example 3 (An extension which is not Picard–Vessiot). The example is
K = C(x) ⊂M = K〈ln(1 + ex)〉.

Indeed, we have K ⊂ K(ex) ⊂ M , where K ⊂ L = K(ex) is Picard–
Vessiot with Galois group C

∗ and L ⊂ M is Picard–Vessiot with Galois
group C. If K ⊂M were Picard–Vessiot, then its Galois group should be a
semidirect product of C∗×C. On the other hand, the elements ofM , treated
as multi-valued functions, should have singular sets invariant with respect
to the action of the Galois group. This means that any automorphism of M
should be of the form ln(1 + ex) 7→ ln(1 + ex) + a.



182 H. ŻO lA̧DEK

3. The probability function is not elementary

Theorem of Liouville ([Lio]). If K ⊂M is an elementary extension

and an element F ∈M has derivative in K, then

F = g +
∑

ci lnhi

with g, hj ∈ K and ci ∈ C.

The proof of this theorem is not as difficult as it seems at first sight. It
uses induction with respect to the length of the chain K = K0 ⊂ K1 ⊂ . . . ⊂
Kr =M (where Kj+1 = Kj〈zj〉 and zj are either algebraic or exponents or
logarithms). Note that if some expression contains an exponential function
or an algebraic function (in a rational way), then the derivative of this
expression also contains this exponential or this algebraic function. If such
an expression contains a logarithm in a nonlinear way, then its derivative
also contains this logarithm. For the details of the proof we refer the reader
to the book of Ritt [Rit].

We apply this theorem to the probability function

Erf(x) =

x\
e−t2 dt.

Here we put K = C(x,W ), W = e−x2

.
Suppose that the function Erf is elementary. Then we should have

Erf(x) = g(x,W ) +
∑

ci lnhi(x,W )

where g is a rational function and the hi are polynomials. Consider the
singularities of the components lnhi, i.e. zeros of hi(x, e

−x2

). If x0 is such a

zero and we have hi = (x−x0)mi h̃i(x), h̃i(x0) 6= 0, then we find a logarithmic
singularity Erf ∼ (

∑
cimi) ln(x−x0). Because Erf is an entire function, we

get
∑
cimi = 0. Thus we can write

∑
ci lnhi = lnh(x), where h(x) is a

nonvanishing function of exponential growth of rank 2 at infinity (because
hi ∼ exp(const ·|x|2)). This means that lnh is a polynomial of degree at
most 2.

We have reduced the proof to showing that Erf is not a rational func-
tion of x and W . Suppose that Erf(x) = P (x,W )/Q(x,W ), where P =
an(x)W

n + . . . and Q =Wm + . . . are polynomials in W . Then differentia-
tion gives Q2W = (P ′

x − 2xWP ′

W )Q− P (Q′

x − 2xWQ′

W ) or

W 2m+1 + . . . = [a′n + 2(m− n)xan]W
m+n + . . .

Consider three cases:

(i) n < m+ 1. Then W 2m+1 has no counterpart.
(ii) n = m + 1. Then we get a′n − 2xan = 1. This equation has only

integer solutions; so an(x) should be a polynomial, an(x) = brx
r + . . . We

see that this is impossible.
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(iii) n > m+1. Then a′n = 2(n−m)xan, or an = const · e2(n−m)x2

is not
a polynomial.
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