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Abstract. We study certain symmetries that arise when automorphisms S and T

defined on a Lebesgue probability space (X,F , µ) satisfy the equation ST = T−1S. In an
earlier paper [6] it was shown that this puts certain constraints on the spectrum of T . Here
we show that it also forces constraints on the spectrum of S2. In particular, S2 has to
have a multiplicity function which only takes even values on the orthogonal complement
of the subspace {f ∈ L2(X,F , µ) : f(T 2x) = f(x)}. For S and T ergodic satisfying this
equation further constraints arise, which we illustrate with examples. As an application
of these results we give a general method for constructing weakly mixing rank one maps
T for which T 2 has non-simple spectrum.

0. Introduction. Let S and T be invertible measure preserving transfor-
mations (automorphisms) defined on a Lebesgue probability space (X,F , µ).
It was shown in [6] that if ST = T−1S, where S and T are automorphisms,
then T has an even multiplicity function on the orthogonal complement of
the subspace

H = {f ∈ L2(X,µ) : f(S2) = f}.

In this paper we are interested in the form a conjugating map S between
an ergodic transformation T and its inverse T−1 can take. It is known that
if T has simple spectrum and ST = T−1S, then S2 = I, the identity auto-
morphism [5]. Similar results for finite rank maps are known [7]. Generally,
it is known that S can take any even order, it can be aperiodic or weakly
mixing. We give examples with S and T ergodic but not weakly mixing
and we observe that in this case −1 is necessarily the unique eigenvalue of
both S and T . Our main theorem, which restricts considerably the form the
conjugating map S can take, is:

Theorem 1. If S and T are automorphisms with ST = T−1S, then
S2 has an even multiplicity function on the orthogonal complement of the

subspace

{f ∈ L2(X,µ) : f(T 2) = f}.
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This result is actually a corollary of a more general result concerning
unitary operators on L2-spaces preserving real-valued functions, which we
prove in Section 3. Immediate consequences are that if S2 has simple spec-
trum, then T 2 = I, and if S has simple spectrum and S and T are weakly
mixing, then S2 has a homogeneous spectrum of multiplicity two. Examples
of these different situations are given in Section 4. In particular, we answer
the question (asked in [4]) whether a rank one transformation T can have
the property that its square T 2 has a non-simple spectrum. El Abdalaoui
[2], [3] has shown that almost surely, the powers of the Ornstein rank one
maps have simple spectrum.

I would like to thank Jean-Paul Thouvenot for his interest in this paper.

1. Preliminaries. For a unitary operator U : H → H defined on a
separable Hilbert space H , U is completely determined up to unitary equiv-
alence by a measure σ defined on the unit circle S1, called the maximal

spectral type of U , and a function ̺ : S1 → Z+ ∪ {∞}, called the multiplicity

function. The essential values of this function are the values it takes almost
everywhere with respect to σ (see [8]). An operator U : H → H is said to
have a homogeneous spectrum of multiplicity n if its multiplicity function
takes the constant value n (a.e. σ). U is said to have simple spectrum if
its multiplicity function takes the constant value 1 (a.e. σ). Automorphisms
give rise to unitary operators in the following way: If we define

T̂ : L2(X,µ) → L2(X,µ) by T̂ f(x) = f(Tx), x ∈ X, f ∈ L2(X,µ),

then T̂ is a unitary operator. If for an automorphism T , T̂ has simple spec-
trum, then T is necessarily ergodic.

2. Basic results. Our initial aim is to show that there are severe re-
strictions on the type of automorphism S which can conjugate an ergodic
transformation to its inverse, i.e., we see that the equation ST = T−1S

cannot hold for ergodic T , for certain classes of transformations S. The first
two parts of the following proposition were given in [5] and [6] respectively,
so their proofs are only sketched here.

Proposition 1. Suppose S and T are automorphisms for which ST =
T−1S. Then

(i) If T is ergodic then either S2n = I for some n > 0, or S is aperiodic.

(ii) If S2 and T are ergodic, then S and T are weakly mixing.

(iii) If S is ergodic, then either T n = I for some n ≥ 0, or T is aperiodic.

P r o o f. (i) This proof is similar to that of part (iii).
(ii) Since ST = T−1S where S2 and T are ergodic, we have S2T = TS2.

If K(T ) denotes the Kronecker factor of T , then K(T ) = K(S2). However,
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T has an even multiplicity function (from [6]). But this is impossible if T
has any eigenvalues as T ergodic implies that every eigenvalue is simple, so
K(T ) is trivial and the result follows.

(iii) Suppose that T is not aperiodic and T 6= I. Then there exists n > 0
such that

if An = {x ∈ X : T nx = x} then µ(An) > 0.

Clearly, An is S-invariant, so that since S is ergodic, µ(An) = 1, or T n = I.

The following new result shows a type of duality between the properties
of S and T appearing throughout this paper. This result is analogous to
Proposition 1(ii). Later we give examples of ergodic S and T with ST =
T−1S, but without S2 and T 2 being ergodic.

Theorem 2. If ST = T−1S where S and T 2 are ergodic, then S and T

are weakly mixing.

P r o o f. If we can show that S2 has to be ergodic, then Proposition 1(ii)
will give us our result. Consequently, it suffices to show that −1 is not an
eigenvalue of S. Suppose then that there exists f0 ∈ C⊥, the orthogonal com-

plement of the constant functions, satisfying Ŝf0 = −f0. Then S2f0 = f0.

From Theorem 1, we know that S2 has an even multiplicity function on
the subspace

H⊥ = {f ∈ L2(X,µ) : T̂ 2f = f}⊥ = C⊥,

since T 2 is ergodic.

It follows that there exists g0 ∈ H⊥ for which Ŝ2g0 = g0, with 〈f0, g0〉=0.

Set h0 = g0 + Ŝg0. Then Ŝh0 = h0, and S ergodic implies that h0 =
constant, which must be zero as h0 is in the orthogonal complement of the
constant functions. Consequently, Ŝg0 = −g0 and we have two orthogonal
eigenfunctions corresponding to the eigenvalue −1, contradicting the ergod-
icity of S.

Corollary 1. If S and T are ergodic with ST = T−1S and either S2

or T 2 is ergodic, then both S and T are weakly mixing.

P r o o f. Apply Proposition 1(ii) and Theorem 2.

We now show that for S and T ergodic the only possible eigenvalue is −1.

Lemma 1. Suppose that S and T are ergodic, ST = T−1S and f(Tx) =
λf(x) for f 6= constant. Then f ◦ S2 = f and f ◦ S(x) = −f(x).

P r o o f. Suppose that λ 6= −1. Then

f(Tx) = λf(x) ⇒ f(TSx) = λf(Sx) ⇒ f(ST−1x) = λf(Sx)

⇒ λf(STx) = f(Sx) ⇒ f ◦ S(Tx) = λf ◦ S(x),
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and since T is ergodic, f ◦ S = c · f for some constant c with |c| = 1,
so that f(S2x) = f(x). As in the proof of Theorem 2, this implies that
f(Sx) = −f(x).

If λ = −1, a similar proof works on noting that for f with |f | = 1, f has
to be real-valued taking only the values ±1.

Proposition 2. If ST = T−1S where S and T are ergodic but not

weakly mixing, then −1 is an eigenvalue of both S and T and they have no

other eigenvalues.

P r o o f. By Corollary 1, S2 and T 2 are non-ergodic, so −1 is an eigenvalue
of both of them. Suppose that T has an eigenvalue λ 6= 1 and that f(Tx) =

λf(x), f ∈ C⊥. By Lemma 1, f(Sx) = −f(x). But ŜT̂ f = T̂−1Ŝf , and this

implies λŜf = −T̂−1f , or −λf = −λf , so that λ = λ. Consequently, λ is
real and must be equal to −1.

This shows that −1 is the only eigenvalue of T̂ and that the 1-dimensional
subspaces

{g ∈ L2(X,F , µ) : g(Tx) = −g(x)}, {g ∈ L2(X,F , µ) : g(Sx) = −g(x)}

are equal. Let ζ be the partition of X corresponding to the Kronecker factor
of T (ζ = {A,Ac} where A = f−1(1) and f is the normalized eigenfunction
corresponding to the eigenvalue −1). If Tζ is the factor map, then SζTζ =
T−1

ζ Sζ where Sζ is the corresponding factor of S. Since Sζ is ergodic and
Tζ is weakly mixing, it follows from Theorem 2 that Sζ is weakly mixing,
hence the result.

We shall give an example of the situation where S is prime (i.e., has no
non-trivial factors) and T is weakly mixing. It is known [5] that if T is prime
and ST = T−1S then S2 = I or S is weakly mixing, but no examples of
the latter situation are known and may in fact be impossible. (See Rudolph
[11] or del Junco and Rudolph [9] for definitions and properties of prime
transformations and the notion of minimal self-joinings.) The automorphism
S has the weak closure property if the set {Sn : n ∈ Z} is dense in C(S)
with respect to the weak topology on the set of all automorphisms (Tn → T

if µ(TnA△TA) + µ(T−1
n A△T−1A) → 0 as n → ∞, for each A ∈ F). We

write C(S) = WC(S) when S has the weak closure property.

Note that if S and T are finite rotations with ST = T−1S, then we must
have S2 = T 2 = I, each acting on a two-point space. This is a consequence
of S and T being ergodic but not weakly mixing, so −1 is the only eigenvalue
of each.

Proposition 3. Suppose that S and T are automorphisms satisfying

ST = T−1S. Then
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(i) If S is weakly mixing and prime, then T = I or T is weakly mixing.

(ii) If S is weakly mixing and has minimal self-joinings , then T = I.

(iii) If S is ergodic and S2 has the weak closure property, then S is rigid

and T 2 = I.

In case (i), if S is not weakly mixing, then S is a finite rotation on a

2-point space and S2 = T 2 = I. In case (ii), if S is not weakly mixing, then
S is a finite rotation, S2n = I for some n > 0 and T 2 = I.

P r o o f. (i) The σ-algebra

A = {A ∈ F : TA = A}

is clearly S-invariant since if A ∈ A, then TSA = ST−1A = SA, so SA ∈ A.
Since S is prime, we have either A = F , or A = N , the trivial σ-algebra. In
the former case T = I, and in the latter case, T is ergodic, and since S is
weakly mixing, T is also weakly mixing.

If S were not weakly mixing it would have to be a finite rotation on a
two-point space (since −1 is the only eigenvalue), so S2 = T 2 = I.

(ii) S has minimal self-joinings and S2T = TS2, so T ∈ C(S2) = C(S) =
{Sk : k ∈ Z} (del Junco and Rudolph [9]). Thus T = Sn for some n ∈ Z and

ST = T−1S ⇒ Sn+1 = S−n+1 ⇒ S2n = I.

Now it is known [9] that if S has minimal self-joinings, then S is either
weakly mixing or a finite rotation. If n = 0, then T = I (which is always a
possibility). If n 6= 0, then S2n = I implies that S is a finite rotation with
T 2 = S2n = I.

(iii) As S2 has the weak closure property, C(S2) either is uncountable
or consists only of the powers of S2. But S ∈ C(S2), so the latter cannot
happen. Since T ∈ C(S2) = WC(S2), there is an increasing sequence ni →
∞ such that

T = lim
i→∞

(S2)ni = lim
i→∞

S2ni .

Then

ST = T−1S ⇒ lim
i→∞

S2ni+1 = lim
i→∞

S−2ni+1 ⇒ lim
i→∞

S4ni = I ⇒ T 2 = I.

Part (iii) of the above proposition is applicable when both S and S2

are rank one (for example, as in the following corollary, if S is ergodic with
discrete spectrum and −1 is not an eigenvalue of S).

Corollary 2. Suppose that ST = T−1S, where S has discrete spectrum

and S2 is ergodic. Then T 2 = I.

P r o o f. If S has discrete spectrum with S2 ergodic, then S2 has discrete
spectrum, so has rank one and hence has the weak closure property. The
result follows.
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3. Main theorems. Suppose that ST = T−1S, then notice that T, S ∈
C(S2), the centralizer of S2. However, ST = T−1S 6= TS (unless T 2 = I),
so that C(S2) is non-abelian. It follows that S2 has a non-simple spectrum
in this case. Our main theorem, from which Theorem 1 and Corollary 3
immediately follow, shows that we can deduce much more in this case. We
consider ∞ as an even number.

Theorem 3. Suppose that S, T : L2(X,µ) → L2(X,µ) are unitary op-

erators that preserve real-valued functions and satisfy ST = T−1S. Then in

the orthogonal complement of the subspace

H = {f ∈ L2(X,µ) : T 2(f) = f},

the essential values of the multiplicity function of S2 are even.

P r o o f. In this proof, supp(σf ) denotes the support of a spectral measure
σf with respect to T . It is a (not necessarily closed) subset of the unit circle
S1 in the complex plane.

Let S+ and S− denote the subsets of S1 in the upper and lower half-
planes respectively (excluding ±1), i.e., S1 = S+ ∪ S− ∪ {±1}, disjointly.
Write

H1 = {f ∈ L2(X,µ) : Tf = f} = {f ∈ L2(X,µ) : supp(σf ) ⊆ {1}},

H−1 = {f ∈ L2(X,µ) : Tf = −f} = {f ∈ L2(X,µ) : supp(σf ) ⊆ {−1}},

P1 = {f ∈ L2(X,µ) : supp(σf ) ⊆ S+},

P2 = {f ∈ L2(X,µ) : supp(σf ) ⊆ S−}.

(In each case the spectral measure is with respect to T .) Clearly,

L2(X,µ) = P1 ⊕ P2 ⊕H1 ⊕H−1 = P1 ⊕ P2 ⊕H.

Let f ∈ P1. Then supp(σf ) ⊆ S+ and

〈T nf, f〉 = 〈ST nf, Sf〉 = 〈T−nSf, Sf〉 = 〈Sf, T nSf〉 = 〈T nSf, Sf〉.

We have shown that\
S1

zn dσf (z) =
\
S1

zn dσSf (z) =
\
S1

zn dσSf (z),

and this shows that σSf (A) = σf (A), or Sf ∈ P2.
We now see that P1 and P2 are orthogonal invariant subspaces (with

respect to both T and S2) since if f ∈ P1 then Sf ∈ P2 so that S2f ∈ P1

and σTf = σf (with respect to T ), hence f ∈ P1 ⇒ Tf ∈ P1. Furthermore,

〈S2n(Sf), Sf〉 = 〈S2nf, f〉 ⇒ σSf = σf

(spectral measure now with respect to S2).
The above shows that Z(Sf) ⊥ Z(f) with σSf = σf (with respect to

S2). It is now clear that S2 has an even multiplicity on P1 ⊕ P2 = H⊥ and
the result follows.
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Corollary 3. If S and T are automorphisms satisfying ST = T−1S,
then

(i) If S2 has simple spectrum, then T 2 = I.

(ii) If S has simple spectrum and S and T are weakly mixing, then S2

has a homogeneous spectrum of multiplicity two.

(iii) If S is of rank one with S2 ergodic and T 2 6= I, then S2 has rank

two and maximal spectral multiplicity equal to two.

Corollary 4. For T weakly mixing, T×T is an ergodic transformation

having an even multiplicity function.

P r o o f. Suppose that T is weakly mixing. Then the maps T×T , T ×T−1

and R(x, y) = (y, Tx) are each weakly mixing. Furthermore, R◦ (T ×T−1) =
(T−1 × T ) ◦ R, so that by Theorem 3, R2 = T × T has an even multiplicity
function.

4. Examples. 1. We saw in Corollary 4 that if T is weakly mixing, and
R(x, y) = (y, Tx), then R2 = T × T , so R is weakly mixing. Furthermore,

R ◦ (T × T−1) = (T−1 × T ) ◦R,

and R2 = T × T has an even multiplicity function. It was recently shown
by Ryzhikov [12] (and independently by Ageev [1]) that R(x, y) = (y, Tx)
has simple spectrum for the generic transformation T , so that T × T has a
homogeneous spectrum of multiplicity two in this case. This answered an
important open question of Rokhlin (see [4] for a discussion of these results).

2. If T has minimal self-joinings, then it was shown in [7] that R(x, y) =
(y, Tx) is prime with trivial centralizer (this also follows from the work of
Rudolph [11]). This gives an explicit example of the situation where ST =
T−1S, with S prime and T weakly mixing (just replace S by R and T by
T × T−1).

3. We now give examples of ergodic transformations S and T which are
not weakly mixing, satisfying ST = T−1S. Necessarily, −1 has to be the
unique eigenvalue of both S and T . Simply take S1 and T1 to be weakly
mixing automorphisms and satisfying S1T1 = T−1

1 S1. Take T0 = S0 as
rotations on the two-point space Y = {0, 1}. Let T = T1×T0 and S = S1×S0.
Then clearly S and T have the required property.

We see that it is impossible to find ergodic T for which ST = T−1S

where S is the 2-adic adding machine. Although S2 is not ergodic, if such
a T were to exist, the only allowable eigenvalue for both S and T would be
−1. In fact, if ST = T−1S for T ergodic, having finite uniform rank, S has
to have finite order (from [7]).

4. It is possible to give examples of ergodic transformations S for which
there exists an order n transformation T (for any integer n ≥ 1) satisfying
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ST = T−1S. We illustrate this with the case n = 3. Let σ : Z3 → Z3 be
the automorphism of the cyclic group Z3 = {0, 1, 2}, σ(0) = 0, σ(1) = 2,
σ(2) = 1. Let S0 : X → X be ergodic, and φ : X → Z3 a cocycle for which
the automorphism extension

Sφ,σ : X × Z3 → X × Z3, Sφ,σ(x, g) = (S0x, φ(x) + σ(g)),

is ergodic with respect to the usual product measure µ̃. Define T : X × Z3

→ X ×Z3 by T (x, g) = (x, g+1). It is easily checked that Sφ,σT = T−1Sφ,σ

and T 3 = I.
Theorem 3 now implies that S2

φ,σ has an even multiplicity function on
the orthogonal complement of the subspace

{f ∈ L2(X × Z3, µ̃) : T̂
2(f) = f} = {f ∈ L2(X × Z3, µ̃) : T̂ (f) = f}.

5. Using the construction of Example 4 we can give an example of a
rank one transformation S which is weakly mixing and such that S2 has a
non-simple spectrum. Simply take S to be Sφ,σ satisfying Sφ,σT = T−1Sφ,σ

as in Example 4, where T 3 = I. The construction is started by choosing S0

to be a weakly mixing rank one map for which the cocycle φ is constant on
each of the levels (except for the top level) in the construction of S0. By
modifying the usual construction of rank one weakly mixing Z3-extensions
(e.g., see Oseledets [10]), we can ensure that the automorphism extension
Sφ,σ is weakly mixing and has rank one.

6. If S is ergodic and ST = T−1S where T 2 = I, T 6= I, then T = T−1

and ST = TS. It follows that S is a 2-point extension of some factor map
S0. For example, this holds for (T ×T ) ◦F = F ◦ (T ×T ), where T is weakly
mixing and F is the “flip” map F (x, y) = (y, x). The factor map in this case
is the symmetric cartesian square T 2⊙.

Conversely, if S is an ergodic 2-point extension of S0 and σ is the coor-
dinate interchange map, then Sσ = σ−1S.

7. Here is an example with ST = T−1S, S2 ergodic (in fact, S is mixing),
and T aperiodic, but not ergodic.

Let α ∈ [0, 1) be irrational, and define T : [0, 1)Z → [0, 1)Z by

T (. . . , x−1,
∗
x0, x1, . . .) = (. . . , x−1 − α,

∗

x0 + α, x1 − α, . . .)

(the ∗ denotes the zeroth coordinate). If S is the shift map, it is easy to
verify that ST = T−1S, and that T is aperiodic but not ergodic. Similar
examples can be constructed with both S and T weakly mixing.
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