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Abstract. We investigate the properties of the entropy and conditional entropy of
measurable partitions of unity in the space of essentially bounded functions defined on a
Lebesgue probability space.

Introduction. The entropy theory of dynamical systems has been en-
riched by introducing in [1] the concept of the entropy of a doubly stochastic
(DS) operator acting on the Banach space of essentially bounded functions
defined on a Lebesgue probability space. It is shown there that this entropy
is an extension of the Kolmogorov–Sinai (KS) entropy, i.e. the entropy de-
fined in [1] of any Koopman operator associated with a measure-preserving
transformation is equal to the entropy of this transformation. It seems that
the theory of the former entropy will be more difficult than that of the
KS-entropy.

In this note we investigate the properties of the entropy and conditional
entropy of measurable partitions of unity which form the basis of the entropy
theory of DS-operators. Interesting definitions of these concepts with some
properties are given in [1]. Among other things, we sharpen and generalize
these results.

First, we observe that the entropy of a partition of unity is subinvariant
with respect to any DS-operator and that its invariance for all partitions
forces the DS-operator to be a Koopman operator. The subinvariance allows
us to define the mean entropy of a partition of unity with respect to any
DS-operator and we show that it coincides with the definition given in [1]
for Koopman operators.

Applying natural absolutely continuous measures associated with a mea-
surable partition of unity, we give a definition of the conditional entropy
which is simpler than that given in [1] and reduces to it under natural
assumptions. Our definition allows us to obtain new properties of the condi-
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tional entropy. Among our properties there are generalizations of properties
(a), (d)–(f) of Lemma 1 of [1] to arbitrary partitions of unity.

Applying a result of A. Iwanik ([2]) we show that the entropy of a DS-
operator is an invariant with respect to a natural conjugacy relation for
DS-operators.

The first author would like to acknowledge his debt to A. Iwanik for
fruitful discussions concerning DS-operators.

Result. Let (X,B, µ) be a Lebesgue probability space. For any f ∈
L1(X,µ) we put

Ef =
\
X

f dµ.

Let P denote the set of all finite measurable partitions of unity in
L∞(X,µ), i.e. Φ = {ϕ1, . . . , ϕm} ∈ P iff ϕi ∈ L∞(X,µ), ϕi ≥ 0, 1 ≤ i ≤ m
and ϕ1 + . . .+ ϕm = 1.

If Φ, Ψ ∈ P, Φ = {ϕ1, . . . , ϕm}, Ψ = {ψ1, . . . , ψn} then the join of Φ and
Ψ is the following partition of unity:

Φ ∨ Ψ = {ϕiψj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Let P+ denote the subset of P consisting of Φ = {ϕ1, . . . , ϕm} with all
ϕi strictly positive.

We say that Φ = {ϕ1, . . . , ϕm} is induced by a measurable partition P =
{P1, . . . , Pm} of X if ϕi = χPi , 1 ≤ i ≤ m.

For Φ ∈ P we denote by |Φ| the number of elements of Φ.
First we recall the definition of the entropy of Φ ∈ P (cf. [1]) expressing

it by the well known function

η(t) =

{

−t log t, t ∈ (0,∞),
0, t = 0.

We have

(1) η(st) = sη(t) + tη(s), s, t ∈ [0,∞).

The entropy of Φ ∈ P is the number

ε(Φ) =
∑

ϕ∈Φ

ε(ϕ) where ε(ϕ) = εµ(ϕ) = η(Eϕ) − E(η ◦ ϕ).

Now we introduce the definition of the conditional entropy of one parti-
tion of unity with respect to another. Our definition is simpler than that in
[1] and reduces to it under natural assumptions.

Let ψ ∈ L∞(X,µ) be such that 0 ≤ ψ ≤ 1 and ψ 6= 0. Let µψ be
the measure absolutely continuous with respect to µ, defined by dµψ =
(Eψ)−1ψdµ. We denote by Eψ the integration operator with respect to µψ.
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Let εψ(ϕ) = εµψ (ϕ), and let

ε(ϕ |ψ) =

{

E(ψ)εψ(ϕ), ψ 6= 0,
0, ψ = 0.

Now for Φ, Ψ ∈ P we define, in the same way as in [1], the conditional

entropy of Φ with respect to Ψ by

ε(Φ |Ψ) =
∑

ϕ∈Φ

∑

ψ∈Ψ

ε(ϕ |ψ).

An easy calculation shows that

ε(ϕ |ψ) = −E(ϕψ) log
E(ϕψ)

E(ψ)
+ E(ϕψ logϕ), ϕ ∈ P+, ψ ∈ P+,

i.e. one obtains the definition of the conditional entropy in [1].

Properties of entropy and conditional entropy

Proposition 1. For any Φ ∈ P we have

0 ≤ ε(Φ) ≤ log |Φ|.

The equality ε(Φ) = 0 holds iff every ϕ ∈ Φ is a constant , and ε(Φ) = log |Φ|
iff Φ is induced by a partition of X and Eϕ = |Φ|−1, ϕ ∈ Φ.

P r o o f. The inequality ε(Φ)≥0 has been shown in [1]. It is an immediate
consequence of the Jensen inequality. Let now ε(Φ) = 0 and ϕ ∈ Φ, i.e.
η(Eϕ) = E(η ◦ ϕ). For a ∈ R we define Aa = {ϕ < a} and

c = inf{a ∈ R : µ(Aa) = 1}.

Let ε > 0 be arbitrary. It is enough to show that

(2) µ(c− ε ≤ ϕ < c+ ε) = 1.

Obviously µ(Ac+ε) = 1 and µ(ϕ ≥ c− ε) > 0. Now we check that the strict
concavity of η implies that µ(ϕ ≥ c− ε) = 1, i.e. (2) is satisfied.

Define A = Ac−ε, B = X \A and ED = EχD ,D ∈ B.

Suppose, on the contrary, that µ(A) > 0. Since µ(B) > 0 we have

η(Eϕ) = η(µ(A)EAϕ+ µ(B)EBϕ)

> µ(A)η(EAϕ) + µ(B)η(EBϕ) = E(η ◦ ϕ),

which is a contradiction, i.e. (2) is satisfied.

The inequality ε(Φ) ≤ log |Φ| easily follows from the Jensen inequality:

ε(Φ) ≤ |Φ|
∑

ϕ∈Φ

1

|Φ|
η(Eϕ) ≤ |Φ|η

(

1

|Φ|

)

= log |Φ|.
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If ε(Φ) = log |Φ| then

E
(

∑

ϕ∈Φ

η ◦ ϕ
)

=
∑

ϕ∈Φ

η(Eϕ) − log |Φ| ≤ 0,

i.e. E(η ◦ ϕ) = 0, ϕ ∈ Φ. Hence, every ϕ ∈ Φ admits only the values 0 or 1,
i.e. Φ is induced by a partition of X and so

ε(Φ) =
∑

ϕ∈Φ

η(Eϕ).

Therefore, the equality ε(Φ) = log |Φ| and the strict concavity of η imply
Eϕ = |Φ|−1, ϕ ∈ Φ.

From Proposition 1 we get at once the following

Corollary. For every Φ, Ψ ∈ P we have ε(Φ |Ψ) ≥ 0, and ε(Φ |Ψ) = 0
iff for any ϕ ∈ Φ,ψ ∈ Ψ the function ϕ is constant on the set {ψ > 0}.

It follows quite easily that if Φ = {ϕ1, . . . , ϕn} then ε(Φ |Φ) = 0 iff there
exists a measurable partition {B1, . . . , Bk} of X and a partition {J1, . . . , Jk}
of {1, . . . , n} such that for any 1 ≤ l ≤ k there exists i ∈ Jl such that

ϕi = ciχBl with
∑

i∈Jl

ci = 1.

Definition 1. An operator D : L∞(X,µ) → L∞(X,µ) is said to be
doubly stochastic (DS) if it is linear, positive, D1 = 1 and E ◦D = E.

The well known examples of doubly stochastic operators are the Koop-
man operators and the conditional expectation operators.

For Φ = {ϕ1, . . . , ϕm} ∈ P we put, as in [1],

DΦ = {Dϕ1, . . . ,Dϕm}.

We shall use the following inequality of Jensen type for DS-operators.

Jensen inequality. If D is a DS-operator in L∞(X,µ) and η : R → R

is concave then for any f ∈ L∞(X,µ) we have

η(Df) ≥ D(η ◦ f).

This can be proved in exactly the same way as the corresponding in-
equality for conditional expectations (cf. for example [3], II 47).

Proposition 2. For any Φ ∈ P we have ε(DΦ) ≤ ε(Φ). If the equality

ε(DΦ) = ε(Φ) holds for every Φ ∈ P then D is a Koopman operator.

P r o o f. The above inequality is an immediate consequence of the Jensen
inequality for DS-operators.
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Now suppose that ε(DΦ) = ε(Φ) for every Φ ∈ P. Since ε(ϕ) ≥ ε(Dϕ),
ϕ ∈ Φ, the above equality implies that

(3) ε(ϕ) = ε(Dϕ), ϕ ∈ Φ.

Substituting in (3) ϕ = χA, A ∈ B, one obtains E(η(DχA)) = 0. Hence,
DχA admits only two values 0 or 1, i.e. it is a characteristic function and
so D is a Koopman operator.

Proposition 3. For every Φ, Ψ ∈ P we have

ε(Φ |Ψ) =
∑

ϕ∈Φ

∑

ψ∈Ψ

η(E(ϕψ)) −
∑

ψ∈Ψ

η(Eψ) −
∑

ϕ∈Φ

E(η(ϕ)).

P r o o f. Applying (1), we get

ε(ϕ |ψ) = E(ψ)εψ(ϕ)

= E(ψ)

[

η

(

E(ϕψ)

E(ψ)

)

−
E(η(ϕ)ψ)

E(ψ)

]

= E(ψ)

[

1

E(ψ)
η(E(ϕψ)) + η

(

1

Eψ

)

E(ϕψ) −
E(η(ϕ)ψ)

E(ψ)

]

= η(E(ϕψ)) −
η(E(ψ))E(ϕψ)

E(ψ)
− E(η(ϕ)ψ)

for any ϕ ∈ Φ, ψ ∈ Ψ . Summing over all ϕ ∈ Φ and ψ ∈ Ψ one obtains the
desired result.

A connection between the entropies ε(DΦ |DΨ) and ε(Φ |Ψ), Φ, Ψ ∈ P,
is very important in developing the entropy theory for DS-operators.

It is well known that if D is a Koopman operator induced by a transfor-
mation of X which preserves µ then these entropies are equal.

Now we want to give examples which show that, in general, there is no
connection between them.

Example 1. Let D be the integration operator E and let Φ, Ψ ∈ P be
such that ε(Φ |Ψ) > 0. Then ε(DΦ |DΨ) = 0 < ε(Φ |Ψ).

Example 2. Let T be an ergodic transformation of a Lebesgue space and
let P = {A,B} be a measurable partition of X. Let D = 1

2
(I+UT ) where I

is the identity operator and let Φ = {χA, χB}. Then DΦ = {ψ1, ψ2} where
ψ1 = 1

2
(χA+χT−1A) and ψ2 = 1

2
(χB+χT−1B). Applying Proposition 3, one

has ε(Φ |Φ) = 0 while ε(DΦ |DΦ) > 0 except in the trivial case when ψi is
constant on the set ψi > 0, i = 1, 2.

Proposition 4. For every Φ, Ψ,Λ ∈ P we have

ε(Φ ∨ Ψ |Λ) = ε(Φ |Λ) + ε(Ψ |Λ ∨ Ψ).
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P r o o f. It follows from Proposition 3 that

ε(Φ ∨ Ψ |Λ) =
∑

ϕ,ψ,λ

η(E(ϕψλ)) −
∑

λ

η(E(λ)) −
∑

ϕ,ψ

E(η(ϕψ)),(4)

ε(Φ |Λ) =
∑

ϕ,λ

η(E(ϕλ)) −
∑

λ

η(E(λ)) −
∑

ϕ

E(η(ϕ)),(5)

ε(Ψ |Λ ∨ Φ) =
∑

ϕ,ψ,λ

η(E(ϕψλ)) −
∑

ϕ,λ

η(E(ϕλ)) −
∑

ψ

E(η(ψ)),(6)

where the summations are taken over all ϕ ∈ Φ, ψ ∈ Ψ, and λ ∈ Λ.
Combining (4)–(6) and applying (1) one obtains the desired result.

Substituting, in Proposition 4, Λ consisting of the function λ ≡ 1 one
gets at once the following

Corollary. For every Φ, Ψ ∈ P,

ε(Φ ∨ Ψ) = ε(Φ) + ε(Ψ |Φ).

As we have seen, in general ε(Φ |Φ) > 0, i.e. ε(Φ∨Φ) > ε(Φ) by the above
Corollary. The asymptotic behaviour of the sequence εn = ε(Φ1 ∨ . . .∨Φn),
Φn = Φ, n ≥ 1, is not clear from the definition. However, we have εn = o(n),
n ≥ 1 (see below).

The fact that ε(Φ |Φ) > 0 for some Φ ∈ P implies that one cannot
equip P with a metric analogous to the Rokhlin metric and so one has no
useful approximation results as in the classical entropy theory (cf. [4]). An
interesting approximation result for the conditional entropy is contained in
the proof of the main theorem of [1].

Proposition 5. For every Φ ∈ P and δ > 0 there exists Ψ ∈ P induced

by a partition of X such that ε(Φ |Ψ) < δ.

An idea of the proof is given in [1]. It seemed to us that some details of
it could be useful to the reader and therefore we give the proof.

P r o o f. Let Φ = {ϕ1, . . . , ϕn} and let λ > 0 be such that

|x− x′| < λ, x, x′ ∈ [0, 1] ⇒ |η(x)− η(x′)| <
δ

2n
.

Let Q = {Q0, . . . , Qr−1} be a partition of [0, 1) where Qi = [i/r, (i + 1)/r),
0 ≤ i ≤ r − 1, r > 1/λ. We consider the partition P of X defined by

P = ϕ−1

1 (Q) ∨ . . . ∨ ϕ−1
n (Q)

and we denote by Ψ ∈ P the partition induced by P . We claim that for any
A ∈ P ,

(7) εχA(ϕi) = η(EAϕi)− EA(η(ϕi)) < δ/n, 1 ≤ i ≤ n,

where EA has the same meaning as in the proof of Proposition 1.
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We have

A = {ik/r ≤ ϕk < (ik + 1)/r, 1 ≤ k ≤ n}

where 0 ≤ ik < r − 1, 1 ≤ k ≤ n. Hence,

0 ≤ EAϕk − ik/r < 1/r < λ

and so

(8) |η(EAϕk)− η(ik/r)| < δ/(2n).

In the same way, for x ∈ A one has

|η(ϕk(x))− η(ik/r)| < δ/(2n)

and therefore

(9) |EA(η(ϕk))− η(ik/r)| < δ/(2n).

Combining (9) with (10) one obtains

|η(EAϕk)− EAη(ϕk)| < δ/n.

By the Jensen inequality the last difference is non-negative, i.e. one gets (8).
Thus,

ε(Φ |Ψ) =
n
∑

i=1

∑

A∈P

µ(A)εχA(ϕi) < δ.

Proposition 6. For every Φ, Ψ,Λ ∈ P we have

ε(Φ |Ψ ∨ Λ) ≤ ε(Φ |Λ).

P r o o f. We have

ε(Φ |Ψ ∨ Λ) =
∑

ϕ,ψ,λ

E(ψλ)εψλ(ϕ)

=
∑

ϕ,ψ,λ

E(ψλ)(η(Eψλ(ϕ)) − Eψλ(η(ϕ)))

=
∑

ϕ,λ

E(λ)
∑

ψ

E(ψλ)

E(λ)
η(Eψλ(ϕ)) −

∑

ϕ

E(η(ϕ)).

Applying the Jensen inequality and (1) one obtains

∑

ϕ,λ

E(λ)
∑

ψ

E(ψλ)

E(λ)
η(Eψλ(ϕ)) ≤

∑

ϕ,λ

E(λ)η

(

∑

ψ

E(ψλ)

E(λ)
Eψλ(ϕ)

)

=
∑

ϕ,λ

E(λ)η

(

E(ϕλ)

E(λ)

)
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=
∑

ϕ,λ

E(λ)

[

1

E(λ)
η(E(ϕλ)) + η

(

1

E(λ)

)

E(ϕλ)

]

=
∑

ϕ,λ

η(E(ϕλ)) −
∑

λ

η(E(λ)).

Applying now Proposition 3 we have

ε(Φ |Ψ ∨ Λ) ≤
∑

ϕ,λ

η(E(ϕλ)) −
∑

λ

η(E(λ)) −
∑

ϕ

E(η(ϕ)) = ε(Φ |Λ).

Corollary 1. For every Φ, Ψ ∈ P we have ε(Φ |Ψ) ≤ ε(Φ), and equality

holds iff Φ and Ψ are uncorrelated , i.e.

E(ϕψ) = E(ϕ)E(ψ)

for all φ ∈ Φ and ψ ∈ Ψ .

P r o o f. The above inequality is an obvious consequence of Proposition 6.

If Φ and Ψ are uncorrelated then we obtain at once the desired equality
by Proposition 3 and (1).

Now suppose that ε(Φ |Ψ)=ε(Φ). Using the inequality and the concavity
of η, it follows from a straightforward computation that

ε(ϕ) =
∑

ψ∈Ψ

E(ψ)εψ(ϕ), ϕ ∈ Φ,

i.e.

η(E(ϕ)) =
∑

ψ∈Ψ

E(ψ)η

(

E(ϕψ)

E(ψ)

)

and so

η
(

∑

ψ∈Ψ

E(ψ)E(ϕ)
)

=
∑

ψ∈ψ

E(ψ)η

(

E(ϕψ)

E(ψ)

)

.

Applying the strict concavity of η one obtains

E(ϕψ) = E(ϕ)E(ψ), ϕ ∈ Φ, ψ ∈ Ψ,

i.e. Φ and Ψ are uncorrelated.

Hence and by the Corollary to Proposition 4, one gets

Corollary 2. For every Φ and Ψ we have

ε(Φ ∨ Ψ) ≤ ε(Φ) + ε(Ψ),

and equality holds iff Φ and Ψ are uncorrelated.

Let now D be a doubly stochastic operator and let Φ ∈ P.
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Definition 3. The quantity

ε(D,Φ) = lim sup
n→∞

1

n
ε
(

n−1
∨

k=0

DkΦ
)

is said to be the mean entropy of D with respect to Φ.

It would be interesting to know whether the above sequence is conver-
gent.

If D is a Koopman operator then we obtain Definition 4 of [1].
Corollary 2 and Proposition 2 yield at once the following

Corollary 4. ε(D,Φ) ≤ ε(Φ).

Definition 4. The quantity

ε(D) = sup{ε(D,Φ) : Φ ∈ P}

is said to be the entropy of D.

The entropy of aDS-operator is an invariant with respect to the following
natural relation of conjugacy.

Let (X,B, µ) and (Y, C, ν) be Lebesgue probability spaces and let D and
D′ be doubly stochastic operators on the spaces L∞(X,µ) and L∞(Y, ν),
respectively. ThenD andD′ are said to be conjugate if there exists a bijective
linear transformation V : L∞(Y, ν) −→ L∞(X,µ) such that V and V −1 are
positive, V D′ = DV and \

X

V f dµ =
\
Y

f dν

for every f ∈ L∞(Y, ν).
It follows from Lemma 6 of [2] that V is induced by a point transfor-

mation ϕ : X → Y , i.e. (V f)(x) = f(ϕx). Of course ϕ is bijective a.e.
and measure-preserving. Therefore, the fact that the entropy is an invariant
easily follows from the definition.

It is shown in [1] that for every Koopman operator UT induced by a
measure-preserving transformation T one obtains

ε(UT ) = h(T )

where h(T ) is the Kolmogorov–Sinai entropy of T .
In particular, if T is the identity transformation, then h(T ) = 0 and

therefore

ε(Φ1 ∨ . . . ∨ Φn) = o(n), Φk = Φ, 1 ≤ k ≤ n, n ≥ 1.

We further obtain immediately

Remark 1. If D is a DS-operator such that Dk = D for some positive

integer k then ε(D) = 0.



254 B. KAMIŃSKI AND J. DE SAM LAZARO

In particular the entropy of a conditional expectation operator equals 0.

Conjecture. Let G be a compact abelian group equipped with a nor-
malized Haar measure λ and let µ be a Borel probability measure on G.
The operator Dµ on L∞(G,λ) defined by

(Dµf)(x) =
\
G

f(x− y)µ(dy)

is said to be the convolution operator determined by µ.
If µ is a Dirac measure concentrated at some x0 ∈ G then Dµ is, of

course, the Koopman operator induced by the rotation τx = x − x0 on G.
It is well known that the entropy of τ equals 0, i.e. ε(Dµ) = 0.

On the other hand, if µ is a Haar measure then Dµ = E and, therefore,
ε(Dµ) = 0.

It would be interesting to know whether ε(Dµ) = 0 for any µ.
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