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Abstract. For invertible transformations we introduce various notions of topological
entropy. For compact invariant sets these notions are all the same and equal the usual
topological entropy. We show that for non-invariant sets these notions are different. They
can be used to detect the direction in time in which the system evolves to highest com-
plexity.

1. Introduction. The notion of entropy plays a crucial role in the theory
of dynamical systems. However, it is usually used in the context of invariant
sets or measures and of stationary processes. In this paper we are interested
in generalizing the notion of topological entropy to non-invariant sets. This
will have applications to non-equilibrium systems.

In the early seventies R. Bowen [2] introduced a notion of topological
entropy for non-compact sets. This notion was further studied by Pesin and
Pitskel [4] and also applied to non-invariant sets. While it coincides with
the usual definition of topological entropy for invariant compact sets it has
the disadvantage that it is not symmetric in time—i.e. the entropy into the
“future” may differ from those into the “past”. Moreover, non-equilibrium
systems may have an “inner time” which differs from the time steps used to
measure the entropy. Sometimes we measure too slow or too fast. Therefore
we propose to measure entropy in different time scales. This leads to the
notion of p-weighted entropies where the weight is the ratio of the “inner
time scale” to “our time scale”. Taking into account the physical agreement
that a system evolves to maximal complexity we can detect the “inner time”
of a system as the maximum of the p-weighted entropies. For example we
see that a stable manifold is “directed into the past”—i.e. its time scale is
infinitely slower than the measurement—and the unstable manifold evolves
according to our measurement.
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266 J. SCHMELING

In this paper we study some basic properties of the weighted entropies.
We also introduce a notion of time independent entropy (unweighted en-

tropy). The latter notion has full symmetry in time and should replace
Bowen’s entropy for non-compact non-invariant sets.

In [6] we show that the notions introduced in this paper are preserved
by coding via a finite Markov partition. Hence they can be calculated in the
symbolic space associated with an Axiom A basic set.

2. Various definitions of topological entropy. Let X be a finite-
dimensional compact metric space, and f :X → X a homeomorphism. The
problem with the definition of topological entropy introduced in [2] (see
also [4]) is that h(f |Z) and h(f−1|Z) may not coincide for an arbitrary set
Z ⊂ X; however, if Z is compact and f -invariant, then h(f |Z) = h(f−1|Z).

We introduce new notions of topological entropy which take into account
the “complexity” both in the “future” and in the “past”.

For each finite partition U of X, we denote by Wn(U) the collection of
strings U = U0 . . . Un of sets U0, . . . , Un ∈ U. For each U ∈ Wn(U), we call
the integer m(U) = n the length of U, and define the cylinder set

X(U) = {x ∈ X : fkx ∈ Uk for k = 0, . . . , n}

and

X−(U) = fm(U)X(U).

For every set Z ⊂ X, 0 ≤ p ≤ 1 and every real number α, we set

(1) Np(Z,α,U) = lim
n→∞

inf
Γp
n

∑

(U,V)∈Γp
n

exp[−αm(U) − αm(V)],

where the infimum is taken over all finite or countable collections Γ p
n ⊂

⋃

k>nW[pk](U)×W[(1−p)k](U) =: Ωp
n(U) such that

⋃

(U,V)∈Γp
n

X(U) ∩X−(V) ⊃ Z.

We say that the family Γ p
n induces a covering of Z. We note that the sets

involved in the definition of the outer measures above have “100p percent”
increments from the past and “100(1 − p) percent” increments from the
future. By a simple modification of the construction of Carathéodory di-
mension characteristics (see [3]), when α goes from −∞ to +∞, the quantity
in (1) jumps from +∞ to 0 at a unique critical value. Hence, we can define
the number

hp(f |Z,U) = inf{α : Np(Z,α,U) = 0} = sup{α : Np(Z,α,U) = ∞}.

One can show that the following limit exists (compare with the proof of
Theorem 11.1 in [3]):
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hp(f |Z) = lim
diamU→0

hp(f |Z,U).

We call hp(f |Z) the p-weighted topological entropy of f on the set Z. These
notions were first introduced in [6].

Now we will give a version of the notion of topological entropy that
chooses the minimal “local complexity” independent of time. This quantity
was first introduced in [1]. For Z ⊂ X and every real number α, we set

(2) N∗(Z,α,U) = lim
n→∞

inf
Γ∗

n

∑

(U,V)∈Γ∗

n

exp[−αm(U) − αm(V)],

where the infimum is taken over all finite or countable collections Γ ∗
n ⊂

⋃

k+l>nWk(U)×Wl(U) =: Ω∗
n(U) such that

⋃

(U,V)∈Γ∗

n

X(U) ∩X−(V) ⊃ Z.

Again when α goes from −∞ to +∞, the quantity in (2) jumps from +∞
to 0 at a unique critical value. Hence, we can define the number

h∗(f |Z,U) = inf{α : N(Z,α,U) = 0} = sup{α : N(Z,α,U) = +∞}

and the following limit exists (compare with the proof of Theorem 11.1
in [3]):

h∗(f |Z) = lim
diamU→0

h∗(f |Z,U).

We call h∗(f |Z) the unweighted topological entropy of f on the set Z.

Remark 1. As for the usual topological entropy we have, for a generating
partition U,

hp(f |Z) = hp(f |Z,U) and h∗(f |Z) = h∗(f |Z,U).

Moreover,

h1(f |Z) = h(f |Z) and h0(f |Z) = h(f−1|Z)

where h denotes the usual topological entropy for non-compact sets intro-
duced by Bowen [2].

We also introduce the box-counting versions of the above definitions. For
Z ⊂ X and n ∈ N let Λp

n = W[pn](U)×W[(1−p)n](U) and Ap
n(f, Z,U) be the

minimal number of pairs (Ui,Vi)∈Λp
n such that

⋃

iX(Ui) ∩X−(Vi)⊃Z.
Similarly, we define A∗

n(f, Z,U) to be the minimal number of pairs (Ui,Vi)
∈ Λ∗

n =
⋃

k+l=nWk(U)×Wl(U) such that Z ⊂
⋃

iX(Ui)∩X
−(Vi). The up-

per , respectively lower , p-weighted box-counting entropy and the unweighted
box-counting entropy are defined as

h#
B(f |Z,U) := lim sup

n→∞

logA#
n (f, Z,U)

n
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and

h#
B(f |Z,U) := lim inf

n→∞

logA#
n (f, Z,U)

n
where # = p, 0 ≤ p ≤ 1, or # = ∗. As in Theorem 11.1 in [3] it can be
shown that the following limits exist:

h#
B(f |Z) = lim

diamU→0
h#
B(f |Z,U)

and

h#
B(f |Z) = lim

diamU→0
h#
B(f |Z,U).

Remark 2. It is well-known that for a compact invariant set Z we have
h#(f |Z) = h#

B(f |Z) = h#
B(f |Z) = h(f |Z), # ∈ [0, 1] or # = ∗.

Let µ be a (not necessarily f -invariant) probability measure on X. We
define its upper , respectively lower , p-weighted local entropy and its un-

weighted local entropy at the point x ∈ X as

d#
µ,U(x) = lim sup

n→∞

−
log µ(X(U) ∩X−(V))

n

and

d#µ,U(x) = lim inf
n→∞

−
log µ(X(U) ∩X−(V))

n
where x ∈ X(U) ∩X−(V) and (U,V) ∈ Λ#

n .

Remark 3. If µ is an ergodic f -invariant measure, then the Shannon–
McMillan–Breiman Theorem states that d#

µ,U(x) = d#
µ,U(x) = hµ(U) for

µ-a.e. x ∈ X, where hµ(U) is the usual metric entropy of the partition U.

3. Properties of topological entropies. The following basic proper-
ties are immediate consequences of the definitions.

Theorem 3.1. The topological entropies have the following properties:

(1) for Z1 ⊂ Z2 ⊂ X we have h#(f |Z1) ≤ h#(f |Z2),
(2) for Z =

⋃

i Zi we have h#(f |Z) = supi h
#(f |Zi),

(3) h∗(f |Z) = h∗(f−1|Z),
(4) hp(f |Z) = h1−p(f−1|Z),

(5) h#(f |Z) ≤ h#
B(f |Z) ≤ h#

B(f |Z),

where # = ∗ or # = p, 0 ≤ p ≤ 1. Moreover ,

h∗(f |Z) ≤ hp(f |Z).

From now on we assume that f : X → X has finite topological entropy.

Theorem 3.2. hp(f |Z) : [0, 1] → R is a Lipschitz continuous function

in p.
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Theorem 3.3. We have

h#(f |Z) = sup
U

sup
µ
{ess sup d#

µ,U(x) : suppµ ⊂ Z}

where the supremum is over all finite partitions.

Theorem 3.4. We have

h∗(f |Z) = inf
{

max min
0≤p≤1

hp(f |Zi) : Z =

N
⋃

i=1

Zi

}

.

Theorem 3.5. We have

hp(f |Z) ≤ min{ph1
B(f |Z) + (1− p)h0(f |Z), ph1(f |Z) + (1− p)h0

B(f |Z)}.

Theorem 3.6. hp(f |Z) ≥ max{ph1(f |Z), (1 − p)h0(f |Z)}.

Corollary 3.7. If h0
B(f |Z) = h0(f |Z) and h1

B(f |Z) = h1(f |Z) then

hp(f |Z) = ph1(f |Z) + (1− p)h0(f |Z).

The general situation can be summarized as in Figure 1. Here y1 =
min0≤p≤1 max{ph1, (1− p)h0}, y2 = max0≤p≤1 min{ph1

B +(1− p)h0
B , ph

1 +

(1− p)h0
B}. The graph of hp is located inside the area bounded by the bold

line segments.
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4. Proofs

4.1. Proof of Theorem 3.2. We will need the following lemma.

Lemma 4.1. Let htop(f) < ∞ and U a finite partition. Then for each

ε > 0 there is an n0 = n0(U, ε) such that card({U ∈ Wn(U) : X(U) 6= ∅})
< exp[(htop(f) + ε)n] for all n ≥ n0.

P r o o f. By Remark 2 we have h0
B(f |X) = htop(f) < ∞. But

h0
B(f |X) ≥ h0

B(f |X,U)

= lim sup
n→∞

log card{U ∈ Wn(U) : X(U) 6= ∅}

n
.

Let Z ⊂ X and U be fixed. For 0 ≤ p < q ≤ 1 we consider hp(f |Z)
and hq(f |Z). We fix ε > 0. For [qn] − [pn] − 1> n0(U, ε) let Γ p

n ⊂Ωp
n(U)

with
⋃

(U,V)∈Γp
n
X(U) ∩X−(V) ⊃ Z. For s ≥ t we consider the map ̺st :

Ws(U) → Wt(U) mapping the word W = W0 . . . Ws ∈ Ws(U) to the word
̺st(W) = W0 . . .Wt ∈ Wt(U). We note that [pk] ≤ [qk] and [(1 − p)k] ≥
[(1− q)k] for k ≥ 0. With a pair (U,V) ∈ Γ p

n we associate the set of words
̺((U,V)) given by

{(U′,V′) : U′ ∈ ̺−1
[qm][pm](U); X(U′) 6= ∅, V′ = ̺[(1−p)m][(1−q)m](V)}

where m = m(U,V) = m(U) +m(V).

Clearly, ̺(Γ p
n) := {̺((U,V)) : (U,V) ∈ Γ p

n} induces a cover of Z with
̺(Γ p

n) ⊂ Ωq
n(U) and in view of Lemma 4.1 the cardinality

card(̺((U,V))) ≤ exp[(htop(f) + ε)([qm]− [pm])]

≤ exp[(htop(f) + ε)((q − p)m+ 1)].

Moreover, |(m(U)+m(V))−(m(U′)+m(V′))|≤2. Let Cε :=exp[htop(f)+ε].
Then

∑

(U,V)∈Γp
n

exp[−αm(U,V)]

≥
∑

(U,V)∈Γp
n

C−(q−p)m(U,V)−1
ε

∑

(U′,V′)∈̺((U,V))

exp[−αm(U,V)]

≥ e−4
∑

(U′,V′)∈̺(Γp
n )

C−(q−p)m(U,V)−1
ε exp[−αm(U′,V′)]

≥ K
∑

(U′,V′)∈̺(Γp
n)

exp[−(α+ (q − p) logCε)m(U′,V′)]

≥ K inf
Γ q
n

∑

(U′,V′)∈Γ q
n

exp[−(α+ (q − p) logCε)m(U′,V′)],
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where the infimum is taken over all Γ q
n ⊂ Ωq

n(U) that induce a cover of Z and
K := e−4−(2(q−p)+1)(htop(f)+ε). This implies that hq(f |Z,U) ≤ hp(f |Z,U)+
(q − p)htop(f). Similarly, hp(f |Z,U) ≤ hq(f |Z,U) + (q − p)htop(f). Letting
diam(U) → 0 this implies that hp is Lipschitz continuous with constant
htop(f).

4.2. Proof of Theorem 3.3. Let Z ⊂ X. We are going to prove the
statement in the case of h∗(f |Z). The other cases are a straightforward
modification of the proof.

Let µ be a probability measure supported on Z, U a finite partition of
X with diam(U) sufficiently small and 0 ≤ s < ess sup d∗

µ,U(x) (the case
ess sup d∗

µ(x) = 0 is trivial). Then there is a number n1 and a set Z ′ ⊂ Z of
positive measure with

µ(X(U) ∩X−(V)) < exp[−ns]

provided x ∈ X(U) ∩ X−(V) and m(U,V) = n > n1. For n > n1 we
consider a subset Γ ∗

n ⊂ Λ∗
n that induces a cover of Z ′. We get

0 <
∑

(U,V)∈Γ∗

n

µ(X(U) ∩X−(V)) <
∑

(U,V)∈Γ∗

n

exp[−sm(U)− sm(V)].

Hence, h∗(f |Z) ≥ h∗(f |Z,U) ≥ h∗(f |Z ′,U) ≥ s.

For the other direction let s < h∗(f |Z) and U be a partition of X such
that s < h∗(f |Z,U). ThenN∗(Z, s,U) = ∞ and by standard arguments (see
Theorem 54 in [5]) there is a compact subset Z ′ ⊂ Z with N∗(Z ′, s,U) = 1.
We set µ = N∗(Z ′, s,U)|Z ′. Thus µ is a probability measure supported on
Z. Let d = ess sup d∗

µ,U(x) and ε > 0. For each x ∈ Z ′ and each n∈N there

is a pair (U,V) ∈ Ω∗
n with x ∈ X(U) ∩X−(V) and

(3) µ(X(U) ∩X−(V)) > exp[−(d+ ε)m(U,V)].

By the net structure of the sets X(U)∩X−(V) we can find for any n ∈ N a
family {(Ui,Vi) : m(Ui,Vi) ≥ n} such that (3) holds for each i and induces
a disjoint covering of Z ′. This yields

1 =
∑

i

µ(X(Ui) ∩X−(Vi)) >
∑

i

exp[−(d+ ε)(m(Ui) +m(Vi))].

This implies N∗(Z ′, d + ε,U) < N∗(Z ′, s,U) = 1, i.e. d + ε > s. Hence,
h∗(f |Z,U) ≤ supµ{ess sup d

∗
µ,U(x) : suppµ ⊂ Z}.

4.3. Proof of Theorem 3.4. Let Z ⊂ X and Z =
⋃N

i=1 Zi. In view of
Theorem 3.1(1) and (5) we see that h∗(f |Zi) ≤ min0≤p≤1 h

p(f |Zi) for all i
(we note that actually there is a minimum since hp is continuous). Then by
(2) of the same theorem we have h∗(f |Z) ≤ maxi{min0≤p≤1 h

p(f |Zi)} for
all representations of Z as finite unions of subsets.
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For the other direction let s > h∗(f |Z) and U be a finite partition. Then
for any n ∈ N there is a set Γ ∗

n ⊂ Ω∗
n which induces a covering of Z and

∑

(U,V)∈Γ∗

n

exp[−sm(U,V)] ≤
1

2n
.

Hence
∑

(U,V)∈Γ∗

exp[−sm(U,V)] ≤ 1

where Γ ∗ :=
⋃

n≥1 Γ
∗
n . For N ∈ N, 0 ≤ i < N we set

Γ (i,N)n :=

{

(U,V) ∈ Γ ∗
n :

i

N
≤

m(U)

m(U,V)
≤

i+ 1

N

}

.

Then Γ (i,N)n ⊂
⋃

i/N≤p≤(i+1)/N Ωp
n. We also define

Z(i,N) :=
⋂

K≥1

⋃

n≥K

⋃

(U,V)∈Γ (i,N)n

X(U) ∩X−(V).

By construction for all n ∈ N we find a subset Γ
(i,N)
n ∈

⋃

l≥n Γ (i, n)l which
induces a covering of Z(i,N) with

∑

(U,V)∈Γ
(i,N)
n

exp[−sm(U,V)] ≤ 1.

With (U,V) ∈ Γ
(i,N)
n , V = V0 . . . Vm(V), we associate the pair (U,V′) ∈

Ω
i/N
n with V′ = V0 . . . V[(1−p)k] where k = k(V) is the smallest integer such

that [pk]=m(U). This map is well defined since for (U,V)∈Γ
(i,N)
n we have

[(1 − p)k] ≤ m(V). Moreover, Γ p
n(i,N) := {(U,V′) : (U,V) ∈ Γ (i,N)n}

induces a covering of Z(i,N). Therefore
∑

(U,V′)∈Γp
n(i,N)

exp[−tm(U,V′)]

≤
∑

(U,V)∈Γ
(i,N)
n

exp[−tm(U,V)] exp[t(m(V) − k(V))]

≤
∑

(U,V)∈Γ
(i,N)
n

exp[−tm(U,V)] exp

[

t
m(U,V) + 1

N

]

≤ exp

[

t

N

]

∑

(U,V)∈Γ
(i,N)
n

exp

[

−

(

t−
t

N

)

m(U,V)

]

.

The right-hand side is bounded uniformly in n if t(1−1/N) ≥ s. This implies
that hi/N (f |Z(i,N),U) ≤ h∗(f |Z)+1/N . Letting diam(U) → 0 and N → ∞
gives the desired result.
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4.4. Proof of Theorem 3.5. Let Z ⊂ X, 0 < p < 1 and 0 ≤ s < hp(f |Z)
(again the cases hp(f |Z) = 0 and p ∈ {0, 1} are trivial), and let U be a finite
partition with hp(f |Z,U) > s.

Given n ∈ N and ε > 0 there is a family Γ 0
n ⊂ Ω0

n with

(4)
∑

V∈Γ 0
n

exp[−(h0(f |Z) + ε)m(V)] ≤ 1.

We note that for (U,V) ∈ Ω0
n the word U is empty. For each such V ∈ Ω0

n

we define l = l(V) to be the smallest integer such that [(1 − p)l] = m(V).
We consider all words

W+(V) := {U ∈ W[pl](U) : X(U) ∩ Z 6= ∅}.

By definition of h1
B(f |Z) the cardinality

card(W+(V)) < exp[(h1
B(f |Z) + δ)pl]

provided n is large enough (l > n/(1−p)). By construction Γ p
l := {(U,V) :

V ∈ Γ 0
n , U ∈ W+(V)} ⊂ Ωp

l induces a covering of Z. Moreover, m(U) +
m(V) > l(V) − 2. For sufficiently large n (or l) and δ > 0 we can estimate

∑

(U,V)∈Γp

l

exp[−(ph1
B(f |Z) + (1− p)h0(f |Z) + 2ε)l]

≤
∑

V∈Γ 0
n

exp[(h1
B(f |Z) + δ)pl−(ph1

B(f |Z)+(1−p)h0(f |Z)+2ε)l]

≤
∑

V∈Γ 0
n

exp[δpl − (h0(f |Z) + 2ε)(m(V) + 1)]

≤ exp[h0(f |Z) + 2ε]
∑

V∈Γ 0
n

exp

[(

2p

1−p
δ

)

−h0(f |Z)− 2ε)m(V)

]

.

In view of (4) the right-hand side term in the inequality is bounded by
exp[h0(f |Z) + 2ε] provided ε > (2p/(1 − p))δ. Hence,

hp(f |Z) ≤ ph1
B(f |Z,U) + (1− p)h0(f |Z,U).

Similarly, one gets

hp(f |Z) ≤ ph1(f |Z,U) + (1− p)h0
B(f |Z,U).

Letting diam(U) → 0 yields the assertion.

4.5. Proof of Theorem 3.6. Let 0 ≤ p ≤ 1 and ε > 0 and U a finite
partition. In view of Theorem 3.3 there are probability measures µ1 and µ0

on Z ⊂ X with
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ess sup
µ1

lim inf
m(U)→∞

−
log µ{X(U) : x ∈ X(U)}

m(U)
≥ h1(f |Z,U) − ε

and

ess sup
µ0

lim inf
m(V)→∞

−
log µ{X−(V) : x ∈ X−(V)}

m(V)
≥ h0(f |Z, sU)− ε.

If (U,V) ∈ Ωp
n then there is a k = k(U,V) such that [pk] = m(U) and

[(1− p)k] = m(V). Then

−
1

k
log µ(X(U) ∩X−(V))

≥ −
1

k
log min(µ(X(U)), µ(X−(V)))

≥ max

(

[pk]

k

(

−
log µ(X(U))

m(U)

)

,
[(1 − p)k]

k

(

−
log µ(X−(V))

m(V)

))

.

Hence,

max
i=0,1

ess sup
µi

dp
µ,U(x) ≥ max(ph1(f |Z,U), (1 − p)h0(f |Z,U)) − ε.

Since ε and U were arbitrary the assertion follows from Theorem 3.3.

5. Examples. In this section we consider the case where X = Σ :=
{0, 1, 2, 3, 4}Z is the space of all bi-infinite sequences of five symbols endowed
with the product topology of the discrete topology on the symbols. Then
the shift map σ : Σ →Σ defined by (σi)n = in+1, i = . . . inin+1 . . . ∈ Σ,
(i)n = in, is a homeomorphism. The partition U = {[0], [1], [2], [3], [4]},
[k] := {i ∈ Σ : i0 = k}, is generating and hence h#(σ|·) = h#(σ|·,U), with
# = ∗ or # = p, 0 ≤ p ≤ 1. For (U,V) ∈ Wn(U) × Wm(U) we write
Cn

m(U,V) = X(U) ∩X−(V).

Example 1. We have h∗(σ|Z) ≤ min0≤p≤1 h
p(σ|Z) and this inequality

may be strict. For example, if Z1 = {i ∈ Σ : in = 0, n < 0} and Z0 =
{i ∈ Σ : in = 0, n ≥ 0} then h1(σ|Z1) = h1

B(σ|Z1) = log 5 = h0(σ|Z0) =
h0
B(σ|Z0) and h0(σ|Z1) = h0

B(σ|Z1) = 0 = h1(σ|Z0) = hB(σ|Z0). Hence,
for Z = Z1∪Z0 we have h1(σ|Z) = h0(σ|Z) = h1

B(σ|Z) = h1
B(σ|Z) = log 5,

and by Corollary 3.7,

0 = h∗(σ|Z) < min
0≤p≤1

hp(σ|Z) = min
0≤p≤1

ph1(σ|Z) + (1− p)h0(σ|Z) = log 5.

Example 2. In this example we will show that the upper bound in
Theorem 3.5 is sharp.
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Let 0 ≤ p ≤ 1 and Z ∈ Σ be the set of sequences i with ik ∈ {0, 1} if
there is a number n ∈ N with [p(2n)!] ≤ k < [p(2n + 1)!], ik ∈ {0, 1, 2} if
−[(1−p)(2n−1)!] ≥ k > −[(1−p)(2n)!], and ik ∈ {0, 1, 2, 3} if [p(2n−1)!] ≤
k < [p(2n)!]. There is a constant c > 1 such that

A1
[p(2n+1)!](σ,Z,U) ≤ c2[p(2n+1)!],

c−15−[(1−p)(2n−1)!] ≤ A0
[(1−p)(2n−1)!](σ,Z,U),

c−13−[(1−p)(2n)!] ≤ A0
[(1−p)(2n)!](σ,Z,U) ≤ c3−[(1−p)(2n)!],

c−12k ≤ A1
k(σ,Z,U) ≤ c4k,

c−13k ≤ A0
k(σ,Z,U) ≤ c5k,

c−14[p(2n)!] ≤ A1
[p(2n)!](σ,Z,U) ≤ c4[p(2n)!]

for all n, k ∈ N. This implies h1
B(σ|Z) = log 4, h1

B(σ|Z) = log 2, h0
B(σ|Z) =

log 5 and h0
B(σ|Z) = log 3.

On the other hand, we can define a measure µ on Z by

µ(Cn
m(U,V)) :=

1

card{Cn
m : Cn

m ∩ Z 6= ∅}
.

It is easy to check that the set function µ satisfies Kolmogorov’s consistency
conditions (the number of allowed symbols ik depends only on k) and hence
can be extended to a probability measure on Z. Let (U,V) ∈ Ωp

l and k ∈ N

be such that [pk!] ≤ m(U) < [p(k + 1)!]. Then if m(U) is large enough,
[(1− p)k!]− 1 ≤ m(V) ≤ [(1− p)(k + 1)!]. We get

−
log µ(C

m(U)
m(V) (U,V))

m(U,V)

=
log card{C

m(U)
m(V) (U

′,V′) : C
m(U)
m(V) (U

′,V′) ∩ Z 6= ∅}

m(U,V)

≥
log(A1

m(U)(σ,Z,U) ·A
0
m(V)(σ,Z,U))

m(U,V)
.

Let us assume that k is even. If n = m(U,V) then m(U) = [pn] and
m(V) = [(1− p)n] and

A1
m(U)(σ,Z,U) ·A

0
m(V)(σ,Z,U)

= A1
[pk!](σ,Z,U)2

m(U)−[pk!] ·A0
[(1−p)k!](σ,Z,U)5

m(V)−[(1−p)k!]

≥ c−24[pk!]2[pn]−[pk!]3[(1−p)k!]5[(1−p)n]−[(1−p)k!].

Hence,
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−
log µ(C

m(U)
m(V) (U,V))

m(U,V)

≥
b

n
+

pk!

n
log 4 +

p(n− k!)

n
log 2

+
(1− p)k!

n
log 3 +

(1− p)(n− k!)

n
log 5

≥
b

n
+ α(p log 4 + (1− p) log 3) + (1− α)(p log 2 + (1− p) log 5)

where b > 0 and 0 < α = k!/n ≤ 1. Similarly, for k odd one obtains

−
log µ(C

m(U)
m(V) (U,V))

m(U,V)

≥
b

n
+ (1− α)(p log 4 + (1− p) log 3) + α(p log 2 + (1− p) log 5).

Now Theorems 3.5 and 3.3 imply

min{ph1
B(σ|Z) + (1− p)h0(σ|Z), ph1(σ|Z) + (1− p)h0

B(σ|Z)}

= min{p log 4 + (1− p) log 3, p log 2 + (1− p) log 5} ≥ hp(σ|Z)

≥ ess sup dp
µ,U(x)

≥ min
0≤α≤1

α(p log 4 + (1− p) log 3) + (1− α)(p log 2 + (1− p) log 5)

= min{p log 4 + (1− p) log 3, p log 2 + (1− p) log 5}.

This shows that the inequality in Theorem 3.5 is sharp.

Example 3. Here we give an example showing that the lower estimate
in Theorem 3.6 is sharp.

Fix 0 ≤ p ≤ 1/2. The case 1/2 < p ≤ 1 may be treated by a similar
example. Let Z+ ⊂ Σ be the set of sequences i with ik ∈ {0, 1} if [p(2n)!] ≤
k < [p(2n + 1)!], n ∈ N, and ik ∈ {0, 1, 2, 3} otherwise. We define Z− ⊂
Σ as the set of sequences {π(i) : i ∈ Z+} where π is defined as follows.
For −[(1 − p)l!] ≥ k > −[(1 − p)l!] − ([p(l + 1)!] − [pl!]) we set (π(i))k =
ik−[(1−p)l!]+[pl!]. For all other k < 0 we set ik = 0. We note that p ≤ 1/2
implies [(1 − p)l!] + ([p(l + 1)!] − [pl!]) > 0. Finally, Z = Z+ ∩ Z−. By
construction there is a c > 1 such that

c−1A0
[(1−p)k!](σ,Z,U) ≤ A1

[pk!](σ,Z,U) ≤ cA0
[(1−p)k!](σ,Z,U)

and for [(1− p)l!] ≤ k < [(1− p)(l + 1)!] sufficiently large

A0
k(σ,Z,U)

k
≥

A0
[(1−p)l!(σ,Z,U)

[(1− p)l!]
, l = 2m+ 1,
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and

A0
k(σ,Z,U)

k
≥

A0
[(1−p)(l+1)!(σ,Z,U)

[(1− p)(l + 1)!]
, l = 2m.

This means that the most effective coverings to calculate h0
B(σ|Z) are by

cylinders C0
[(1−p)(2m+1)!] and for h1

B(σ|Z) by cylinders C
[p(2m+1)!]
0 . Hence,

coverings by cylinders of the form C
[p(2m+1)!]
[(1−p)(2m+1)!] are most effective to cal-

culate hp(σ|Z). Similar calculations to those in the example above give

h1
B(σ|Z) = log 4, h1

B(σ|Z) = log 2,

and

h0
B(σ|Z) = log 2, h0

B(σ|Z) =
p

1− p
log 2.

As in the previous example we define a measure on Z by

µ(Cn
m(U,V)) :=

1

card{Cn
m : Cn

m ∩ Z 6= ∅}
.

As in the previous example a simple calculation gives

ess sup
µ

d1
µ,U(x) = log 2, ess sup

µ
d0
µ,U(x) =

p

1− p
log 2.

For (U,V) ∈ Ωp
n, X(U) ∩ X−(V) ∩ Z 6= ∅, the word V is completely

determined by U. This yields Ap
k(σ,Z,U) = A0

[pk](σ,Z,U) and

µ(X(U) ∩X−(V)) = µ(X(U)).

Therefore

ess sup
µ

dp
µ,U(x) = ess sup

µ
lim inf
k→∞

−
[pk]

k

log µ(C
[pk]
0 )

[pk]

= p ess sup
µ

d1
µ,U(x) = p log 2.

In view of Theorems 3.3 and 3.6 we get

hp(σ|Z) ≥ max{ph1(σ|Z), (1 − p)ph0(σ|Z)}

= p log 2 = ess sup
mu

dp
µ,U(x) ≥ hp(σ|Z).

This shows that the estimate in Theorem 3.6 is sharp.
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