
COLLOQU IUM MATHEMAT ICUM
VOL. 84/85 2000 PART 1

RELATIVELY MINIMAL EXTENSIONS OF TOPOLOGICAL FLOWS

BY

MIECZYS LAW K. M E N T Z E N (TORUŃ)

Abstract. The concept of relatively minimal (rel. min.) extensions of topological flows
is introduced. Several generalizations of properties of minimal extensions are shown. In
particular the following extensions are rel. min.: distal point transitive, inverse limits of
rel. min., superpositions of rel. min. Any proximal extension of a flow Y with a dense set
of almost periodic (a.p.) points contains a unique subflow which is a relatively minimal
extension of Y . All proximal and distal factors of a point transitive flow with a dense set of
a.p. points are rel. min. In the class of point transitive flows with a dense set of a.p. points,
distal open extensions are disjoint from all proximal extensions. An example of a relatively
minimal point transitive extension determined by a cocycle which is a coboundary in the
measure-theoretic sense is given.

1. Introduction. The theory of minimal flows and their minimal exten-
sion has a long history and it enjoys a great collection of useful tools and
valuable results. It was developed by J. Auslander, I. U. Bronshtĕın, R. Ellis,
H. Furstenberg, E. Glasner and others. However, many natural examples of
flows are not minimal, e.g. the full shift. The purpose of the present paper is
to relativize the notion of minimality with respect to a given factor. We will
study several analogies of the notion of minimality in topological dynamics.
The definitions and facts below can be found in [2] and [6].

Throughout we will denote by T some fixed discrete group. If a contin-
uous action of T is defined on a Hausdorff space X, then the pair (X,T )
will be called a flow . Except in Section 3 we will assume X to be com-
pact. To simplify notation, we will refer to (X,T ) as X. If x ∈ X, the
orbit {tx : t ∈ T} is denoted by O(x) and the orbit closure {tx : t ∈ T} by
O(x). The flow X is point transitive if there is an x0 ∈ X with dense orbit:
O(x0) = X. In this case we will write (X,x0) instead of (X,T ). A nonempty
subset X0 ⊂ X is minimal if it is closed, invariant (tX0 = X0, t ∈ T ) and
contains no proper subset with these properties. In particular, the flow X
is minimal iff O(x) = X for each x ∈ X. If x ∈ X is such that its orbit
closure is a minimal set, then we call x an almost periodic point. For open
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sets U, V ⊂ X the dwelling set D(U, V ) ⊂ T is defined by

D(U, V ) = {t ∈ T : tU ∩ V 6= ∅}.

By definition, X is topologically ergodic if for any nonempty open sets U, V ⊂
X, D(U, V ) 6= ∅. Equivalently, X is topologically ergodic iff each nonempty
open invariant subset of X is dense. One can define the dwelling set for an
x ∈ X and an open set U ⊂ X by

D(x, U) = {t ∈ T : x ∈ tU}.

Clearly X is point transitive iff there exists an x0 ∈ X such that D(x0, U)
6= ∅ for every nonempty open U ⊂ X. Each point transitive flow is topo-
logically ergodic, but not vice versa. Both notions coincide for instance on
second countable Baire spaces. A point x ∈ X is almost periodic iff for any
open ∅ 6= U ⊂ X the dwelling set D(x, U) is syndetic, i.e. there exists a com-
pact subset K of T such that KD(x, U) = {kt : k ∈ K, t ∈ D(x, U)} = T .

Given two flows X and Y we say that Y is a factor of X, or that X is
an extension of Y , if there exists a continuous map φ : X → Y such that
φ(X) = Y and φ is equivariant , i.e. φ(tx) = tφ(x) for all x ∈ X and t ∈ T .
The function φ is called a factor map or an extension. If the surjectivity
assumption is dropped we will speak about homomorphisms. If X is point
transitive, O(x0) = X, then Y is also point transitive and y0 = φ(x0) has
dense orbit in Y . In such a situation we will write φ : (X,x0) → (Y, y0).
Writing (X,x0) → (Y, y0) we will understand that (X,x0) is an extension
of (Y, y0) via some factor map φ : (X,x0)→ (Y, y0) with y0 = φ(x0).

If φ : X → Y is a factor map, we can define a closed invariant equivalence
relation Rφ ⊂ X×X by (x, y) ∈ Rφ iff φ(x) = φ(y). Obviously, the quotient
space XRφ = X/Rφ with the quotient topology is a compact Hausdorff
space which is isomorphic to Y . This allows us to picture factors of X as
invariant, closed equivalence relations on X, also called factor relations.
Conversely, given such a relation R we can define a factor map φ : X → XR

by φ(x) = [x]R (here [x]R denotes the equivalence class of x ). Note that if
we have two factor relations R1, R2 and a factor map π : XR1

→ XR2
with

πR2 = π ◦ πR1 , then R1 ⊂ R2.

If φ : X → Z and ψ : Y → Z are extensions of the flow Z, then by the
relative product of φ and ψ we understand the subflow (Rφψ, T ) of (X×Y, T ),
where Rφψ = {(x, y) ∈ X × Y : φ(x) = ψ(y)}. The relative product of φ
and ψ is an extension of Z having both φ and ψ as factors via the projections
πX , πY , i.e. such that ψ ◦ πX = φ ◦ πY . In general this extension is not the
smallest one with this property.

Two extensions φ : X → Z and ψ : Y → Z are said to be disjoint ,
φ ⊥ ψ, whenever each extension θ : Z∗ → Z of which φ and ψ are factors
also has Rφψ, the relative product of φ and ψ, as a factor. More precisely,



RELATIVELY MINIMAL EXTENSIONS 53

if φ∗ : Z∗ → X, ψ∗ : Z∗ → Y are extensions such that φ ◦ φ∗ = ψ ◦ ψ∗ then
the map

Z∗ 3 z∗ 7→ (φ∗(x∗), ψ∗(z∗)) ∈ Rφψ
is onto. To illustrate this definition we give the following commutative dia-
gram of factor maps.
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Observe that φ ⊥ ψ iff for every closed invariant set D ⊂ Rφψ the
conditions πX(D) = X, πY (D) = Y imply D = Rφψ. If Z is the trivial flow,
i.e. Z = ∗ is a one-point set, and φ : X → ∗, ψ : Y → ∗ are disjoint, then
we say that the flows X and Y are disjoint and write X ⊥ Y . It turns out
that if X ⊥ Y then at least one of X, Y is minimal.

By βT we denote the Čech–Stone compactification of the discrete group
T . One can define an action of T on βT by extending the map T 3 s 7→
ts ∈ T ⊂ βT to a map βT 3 p 7→ tp ∈ βT . Thus βT becomes a T -flow.
There is a unique natural structure of a semigroup on βT such that for each
p ∈ βT the map q 7→ qp is continuous. Then βT acts on any flow X and
for x ∈ X we have βTx = O(x). If (X,x0) is a point transitive flow, then
βTx0 = O(x0) = X. Thus we can see X as a factor of βT .

Now fix x0 ∈ X. The (closed) set {p ∈ βT : px0 = x0} contains an
idempotent u (uu = u) and the principal ideal βTu is a closed subset of βT
satisfying βTux0 = βTx0 = O(x0). The point x0 is almost periodic iff there
exists an idempotent u in some minimal ideal in βT such that ux0 = x0.

Let X be a flow and x, y ∈ X. We say that the pair (x, y) is proximal if
there exists a p ∈ βT such that px = py. If either x = y or the pair (x, y)
is not proximal, we call it distal . Assume now that φ : X → Y is a factor
map. Then φ is called proximal if each pair (x, y) from the factor relation
Rφ is proximal. If each (x, y) ∈ Rφ is distal, then we call φ distal .

An extension φ : X → Y is called a group extension if there is a topo-
logical compact Hausdorff group G acting continuously and equivariantly
on X as a group of homeomorphisms such that the fibers of φ are precisely
the G-orbits in X: ∀x1, x2 ∈ X (φ(x1) = φ(x2) iff ∃g ∈ G (x2 = x1g))
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iff x1G = x2G). Equivalently, ∀x ∈ G (φ−1(φ(x)) = xG). Note that group
extensions are open (i.e. the factor map is open) and not necessarily distal.

2. Relatively minimal extensions. Assume (X,T ) to be a flow. Let
R be a factor relation on X. Put

AR = {D ⊂ X : D is closed, invariant and ∀x ∈ X ([x]R ∩D 6= ∅)}.
Thus an invariant closed D is in AR iff the map D 3 x 7→ [x]R ∈ XR is
onto.

Clearly AR is nonempty and is partially ordered by inclusion. If {Dα :
α ∈ A} is a chain and x ∈ X, then

⋂
α∈ADα ∩ [x]R 6= ∅ by compactness.

Now, by the Zorn lemma, each member of AR is a superset of some minimal
element of this family.

Definition 2.1. The minimal (with respect to inclusion) elements of
AR will be called relatively minimal with respect to R. The family of all
subsets of X which are relatively minimal with respect to R will be denoted
by M(X,R) or M(R). If φ : X → Y is a factor map, then we will often
write M(X,Y ) instead of M(Rφ).

Let us write down the following observations.

Proposition 2.1. (i) Assume that X0 ∈ M(X,R). Then X0 is point
transitive if and only if XR is point transitive.

(ii) If XR is point transitive and O([x0]R) = XR, then for each X0 ∈
M(X,R) and for each x ∈ [x0]R ∩X0 we have O(x) = X0.

(iii) If XR is minimal then the family M(X,R) consists of all minimal
subsets of X.

P r o o f. (i) If XR is point transitive, then there is an x0 ∈ X0 such that
O([x0]R) = XR. Then D = O(x0) ⊂ X0 is a closed invariant set. Since XR

is point transitive, we have D ∈ AR. Hence D = X0.
(ii) Set D = O(x). Clearly D ⊂ X0. If [y]R ∈ XR then [y]R = p[x]R =

[px]R for some p ∈ βT . Since px ∈ D, the set D meets [y]R. Consequently,
D = X0.

(iii) is obvious.

The following proposition indicates a situation in which the almost pe-
riodic points are contained in each relatively minimal set.

Proposition 2.2. If the extension X → XR is proximal and Q de-
notes the closure of the set of all almost periodic points from X, then
Q ⊂

⋂
M(R).

P r o o f. Let D ∈ M(R) and choose any almost periodic point x ∈ X.
Then there is an x′ ∈ [x]R∩D and, by proximality of the extension X → XR,
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there is a p ∈ βT such that px = px′ ∈ D. Thus O(x) ⊂ D, so x ∈ D and
the result follows.

Definition 2.2. Call X relatively minimal with respect to its factor
Y (φ : X → Y ), or equivalently a relatively minimal extension of Y , if
M(Y ) = {X}. If this is the case, then we call φ a relatively minimal map.
We then write φ : X → Y rel. min. or X → Y rel. min.

From Proposition 2.1(iii) and Definition 2.2 we have the following corol-
lary.

Corollary 2.1. If Y is a minimal flow and X is relatively minimal
with respect to Y , then X is minimal as well.

Proposition 2.3. Assume that we are given the following commuting
diagram of factor maps.

X Y

Z

χ

AAAAAA  

φ //

ψ

��

Then χ is relatively minimal if and only if so are φ and ψ.

P r o o f. First assume that χ is relatively minimal. Let X0 ⊂ X be an in-
variant, closed set satisfying φ(X0) = Y . Then χ(X0) = ψφ(X0) = ψ(Y ) =
Z and therefore X0 = X, so φ is relatively minimal. If Y0 ⊂ Y is invari-
ant, closed and satisfies ψ(Y0) = Z, then putting X0 = φ−1(Y0) we obtain
χ(X0) = ψφ(X0) = ψ(Y0) = Z. Thus X0 = X, hence Y0 = Y . This implies
that ψ is relatively minimal.

The opposite implication is obvious.

Proposition 2.4. Let φ : X → Y be relatively minimal. Then Y is
topologically ergodic iff so is X.

P r o o f. Assume that Y is topologically ergodic. Let U ⊂ X be an open
nonempty invariant set. Then φ(U c)c is open invariant, hence by the topo-
logical ergodicity, dense in Y . Since φ(U c)c ⊂ φ(U) ⊂ φ(U), it follows that
φ(U) is dense in Y , thus φ(U) = Y . Because φ is rel. min., U = X.

Proposition 2.5. Let (A,≤) be a directed set and let (X, (φα)α∈A) be
the limit of an inverse system U = ((Yβ)β∈A, (φαβ)α≤β) of flows, where
φαβ : Yβ → Yα for α ≤ β. If all φαβ’s are relatively minimal , then all φα’s
are relatively minimal as well.

P r o o f. Given α ∈ A we find a relatively minimal extension Xα ⊂ X of
Yα via φα. First we show that φβ(Xα) = Yβ for each β ∈ A. If β ≤ α, then
φβ(Xα) = φβαφα(Xα) = φβα(Yα) = Yβ . If α ≤ β, then φαβ(φβ(Xα)) =
φα(Xα) = Yα. Since φαβ is rel. min., φβ(Xα) = Yβ . Finally, if β and α
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are not comparable, then we find a γ ∈ A such that α ≤ γ, β ≤ γ. Now
φγ(Xα) = Yγ and therefore φβ(Xα) = φβγφγ(Xα) = φβγ(Yγ) = Yβ .

Now we prove that Xα = X. Let x ∈ X. For each β ∈ A we have
φβ(Xα) = Yβ , therefore there is an xβ ∈ Xα such that φβ(xβ) = φβ(x).
We intend to prove that limxβ = x. To do this fix a γ ∈ A and an open
U ⊂ Yα satisfying x ∈ φ−1γ (U), equivalently, φγ(x) ∈ U . If β ≥ γ then

φγ(xβ) = φγβφβ(xβ) = φγβφβ(x) = φγ(x) ∈ U . Thus xβ ∈ φ−1γ (U), which

proves that limxβ = x. Since Xα is closed, x ∈ Xα.
We have proved that Xα = X, hence φα : X → Yα is relatively minimal

for all α ∈ A.

Proposition 2.6. Let ϕ : X → Y be a factor map. Then there exist a
flow X̃, factor maps ϕ̃ : X → X̃, ψ : X̃ → Y and a one-to-one homomor-
phism θ : Y → X̃ such that :

(i) ϕ = ψ ◦ ϕ̃, i.e. the diagram

X X̃

Y

ϕ

@@@@@@ ��

ϕ̃ //

ψ

��

commutes;
(ii) ψ ◦ θ = idY ;

(iii) ϕ̃ is relatively minimal.

P r o o f. Define R = Rϕ = {(x1, x2) ∈ X ×X : ϕ(x1) = ϕ(x2)}. Find an
X0 ∈M(X,Y ) and define an equivalence relation R0 on X by setting

R0 = [R ∩ (X0 ×X0)] ∪∆X .

The equivalence classes of R0 are of the form

[x]R0 =

{
{x} if x 6∈ X0,
[x]R ∩X0 if x ∈ X0.

Then ∆X ⊂ R0 ⊂ R. Let X̃ = XR0 , ϕ̃ : X → X̃ and ψ : X̃ → Y be the

natural quotient maps. Clearly ϕ = ψϕ̃ and ψϕ̃(X0) = Y . Let θ : Y → X̃
be defined by θ([x]R) = [x]R ∩ X0 = [x]R0

, x ∈ X0. Then θ(Y ) = ϕ̃(X0)
and

ψθ([x]R) = ψ([x]R ∩X0) = [[x]R ∩X0]R = [x]R = idY ([x]R).

Since ψ restricted to ϕ̃(X0) is one-to-one, θ is continuous.
Finally we show that ϕ̃ is rel. min. Assume that W ⊂ X is a closed

invariant set with ϕ̃(W ) = X̃. Since [x]R0
= {x} for x 6∈ X0, we have

X \X0 ⊂W . Now ϕ̃(W \X0) = Y \ ϕ̃(X0) and ϕ(X0∩W ) = ψϕ̃(X0∩W ) =
ψϕ̃(X0) = ϕ(X0) = Y . Thus X0 ⊂W . We have shown that W = X.
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Let (X,x0) be point transitive. Since the system (βT, e) is an extension
of (X,x0), there exists a compact invariant subset A ⊂ βT and an a ∈ A
such that (A, a)→ (X,x0) rel. min. Actually we have more:

Lemma 2.1. For any point transitive flow (X,x0) there exists an idem-
potent u ∈ βT such that (βTu, u)→ (X,x0) rel. min. Moreover , each closed
invariant A ⊂ βT satisfying A→ (X,x0) rel. min. is of the form A = βTu
for some idempotent u ∈ βT .

P r o o f. Take any closed invariant A ⊂ βT such that (A, a) → (X,x0)
rel. min. Let B = {p ∈ A : px0 = x0}. The set B is nonempty (a ∈ B),
compact and BB ⊂ B. By Lemma 2.9 of [2], there exists an idempotent u in
B. Since A is invariant, βTu ⊂ A. On the other hand βTu(x0) = βT (ux0) =
βTx0 = X. This forces βTu = A because the extension (A, u)→ (X,x0) is
relatively minimal.

Lemma 2.2. Let φ : X → Y be a factor map and Y = O(y0). If u ∈ βT
is an idempotent such that (βTu, u) → (Y, y0) rel. min., then M(X,Y ) =
{βTux : x ∈ φ−1(y0)}.

P r o o f. If x ∈ φ−1(y0), then by Proposition 2.3, βTux ∈M(X,Y ). On
the other hand, ifX0 ∈M(X,Y ), thenX0 = O(x) for some x ∈ φ−1(y0)∩X0

(Proposition 2.1) and X0 = O(x) = O(ux) = βTux.

From Lemma 2.2 and Proposition 2.3 we get the following proposition.

Proposition 2.7. Let (Y, y0) be a point transitive flow. Assume that u∈
βT is an idempotent such that the extension (βTu, u)→ (Y, y0) is relatively
minimal. Then for any extension φ : X → Y , φ is relatively minimal iff
there exists an x0 ∈ φ−1(y0) such that βTux0 = X.

Proposition 2.8. If X is point transitive and φ : X → Y is distal then
φ is relatively minimal.

P r o o f. Let Y = O(y0) and fix X0 ∈ M(X,Y ). Choose x0 ∈ φ−1(y0) ∩
X0, where φ : X → Y is distal. Choose an idempotent u ∈ βT such that
(βTu, u) → (Y, y0) rel. min. Then φ(ux0) = uφ(x0) = uy0 = y0 = φ(x0)
and, by distality of φ, ux0 = x0. We have X = O(x0) = βTx0 = βT (ux0) =
βTux0 and by Lemma 2.2, φ : X → Y is relatively minimal.

Proposition 2.9. Let φ : X → Y be a group extension and X0 ⊂ X be a
point transitive subflow such that φ(X0) = Y . Then the extension φ : X0 →
Y is relatively minimal. In particular , each point transitive group extension
is rel. min.

P r o o f. Let φ : X → Y be a G-extension and X0 = O(x0). Then y0 =
φ(x0) has dense orbit in Y . Let u ∈ βT be an idempotent such that βTu→
(Y, y0) is rel. min. Then the extension (βTux0, ux0)→(Y, y0) is also rel. min.
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Because uy0 = y0, we have φ(ux0) = y0 and therefore there is a g ∈ G
such that ux0 = x0g. We also have (ux0)g = u(x0g) = u(ux0) = ux0, so
(ux0)g = x0g. Since g acts on X as a homeomorphism, ux0 = x0, which
finishes the proof.

Definition 2.3. Let (X,T ) be a flow. A closed invariant set ∅ 6= D ⊂ X
will be called almost minimal if the set of almost periodic points of D is
dense in D. The flow (X,T ) is an almost minimal flow if X is an almost
minimal set.

Usually the above property is referred to by writing that D or X is a B-
set. However there is also the notion of B-flows, which is different (stronger)
than the notion of B-set and may be ambiguous. To omit difficulties in
formulating statements we will use the new name.

Clearly, each factor of an almost minimal flow is again almost minimal.
The converse is not true, but we have the following lemma.

Lemma 2.3. If XR is almost minimal and X0 ∈ M(X,R), then X0 is
also almost minimal.

P r o o f. Denote by φ the factor map X → XR and by Q the set of all
almost periodic points of X0. Then φ(Q) is the set of all almost periodic
points of XR. Also XR = φ(Q) = φ(Q) because XR is almost minimal.
Since Q is invariant and projects via φ onto XR, we get Q = X0.

As a conclusion we have

Corollary 2.2. A relatively minimal extension of an almost minimal
flow is almost minimal.

It is well known that any proximal extension of a minimal flow contains
a unique minimal subset. The relative version of this theorem in the class
of almost minimal flows is given by the following proposition.

Proposition 2.10. Assume that φ : X → Y is a proximal extension
and Y is an almost minimal flow. Then M(X,Y ) consists of exactly one
element. More precisely , if Q denotes the closure of the set of all almost
periodic points from X, then M(Y ) = {Q}.

P r o o f. Since the set of all almost periodic points in Y is dense, we have
φ(Q) = Y . Now, take any X0 ∈M(Y ) and any almost periodic point x ∈ X.
There is an almost periodic x0 ∈ X0 such that φ(x) = φ(x0). We can find a
p ∈ βT (φ is proximal) such that px = px0. Then px ∈ O(x0) and, because
x is almost periodic, O(x) = O(x0). Therefore x ∈ X0 and X0 = Q.

From Proposition 2.10 we get the following fact.

Proposition 2.11. If X is almost minimal and X → XR is proximal
then it is relatively minimal.
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From Propositions 2.8 and 2.11 we get the following conclusion.

Corollary 2.3. If X is a point transitive almost minimal flow , then
all proximal factors and all distal factors of X are relatively minimal.

In the class of minimal flows two extensions φ and ψ are disjoint iff the
relative product Rφψ is minimal. This is not true in the general situation.
Nevertheless we have the following obvious fact.

Proposition 2.12. Let φ : X → Z and ψ : Y → Z be two extensions
such that at least one of the projections πX : Rφψ → X, πY : Rφψ → Y is
relatively minimal. Then φ ⊥ ψ.

If we add some natural assumptions then the converse is true.

Theorem 1. Assume that φ : X → Z and ψ : Y → Z are factor maps of
point transitive flows and φ is relatively minimal. Then φ ⊥ ψ if and only
if the projection πY : Rφψ → Y is relatively minimal.

P r o o f. The sufficiency is always true (Proposition 2.12). To prove the
necessity assume that φ ⊥ ψ and choose A ∈M(Rφψ, X), B ∈M(Rφψ, Y ).
Then πX(A ∪B) = X, πY (A ∪B) = Y . From φ ⊥ ψ we get A ∪B = Rφψ.
Now, because φ is rel. min., we can find x0 ∈ X, y0 ∈ Y such that X =
O(x0), Y = O(y0), φ(x0) = φ(y0) (x0 is an arbitrary element of φ−1(ψ(y0)),
where O(y0) = Y ). Thus (x0, y0) ∈ A ∪ B. Assume that (x0, y0) ∈ A.
This forces πY (A) = Y and the disjointness of φ and ψ gives A = Rφψ,
so πX : Rφψ → X rel. min. The case (x0, y0) ∈ B is similar and gives
πY : Rφψ → Y rel. min. We have proved that at least one of πX , πY is
rel. min. If πX is rel. min., then, by Proposition 2.3, φ ◦ πX is rel. min.,
hence ψ ◦ πY is rel. min. and applying again Proposition 2.3 we conclude
that ψ and πY are rel. min.

We note that in general πX is not rel. min. (see Example 2.1).

Example 2.1. Let X = {0, 1}Z, Y = {0, 1, 2}Z be full shifts. Set Z = X
and let φ : X → X be the identity map, φ = idX . Define ψ : Y → X by the
code 0 7→ 0, 1 7→ 1, 2 7→ 1. Then

Rφψ

X Y

X

not rel. min.
πX

}}{{
{{
{{

πY
rel. min.

CCCCCC !!

φ

rel. min.

DDDDDD""

ψ

not rel. min.}}zz
zz
zz

P r o o f. Clearly φ is rel. min., and ψ is not rel. min. because X ↪→ Y as
a subshift and ψ restricted to X is equal to φ = idX . Also πX is not rel. min.
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since the set D = {(x, x) : x ∈ X} ⊂ Rφψ is closed, invariant and projects
onto the whole X via πX . To end the proof observe that Rφψ ⊂ X × Y is
just the graph of ψ : Y → X, so πY is rel. min.

In the class of minimal flows each distal extension is necessarily open.
This is not true in general, even for point transitive almost minimal exten-
sions. Therefore in the next theorem we assume that the distal extension φ
is open.

Theorem 2. Let X,Y be two almost minimal point transitive flows.
Assume that φ : X → Z is distal and open, and ψ : Y → Z is proximal.
Then φ and ψ are disjoint.

P r o o f. Define Rφψ = {(x, y) ∈ X × Y : φ(x) = ψ(y)}. We have the
diagram

Rφψ

X Y

Z

πX

}}{{
{{
{{ πY

CCCCCC!!

φ

DDDDDD ""
ψ

}}zz
zz

zz

Clearly, the projection πX : Rφψ → X is proximal. By Theorem 1, it suffices
to show that πX : Rφψ → X is rel. min. To do this we will show that the
flow Rφψ is almost minimal.

Since ψ is proximal, πX : Rφψ → X is proximal, and since φ is distal,
so is πY : Rφψ → Y . Now let U ⊂ X, V ⊂ Y be open sets such that
(U × V ) ∩ Rφψ 6= ∅. Then ψ−1φ(U) ⊂ Y is open and (U × V ) ∩ Rφψ =
U × (ψ−1φ(U)∩V )∩Rφψ. Changing V to ψ−1φ(U)∩V we can assume that
ψ(V ) ⊂ φ(U). Because Y is almost minimal, there is an almost periodic
y ∈ V . Then ψ(y) ∈ φ(U) and we can find an x ∈ U such that φ(x) = ψ(y).
Since y is almost periodic, so is φ(x) = ψ(y). If u is an idempotent from
some minimal ideal in βT such that uy = y, then uψ(y) = ψ(uy) = ψ(y)
and φ(x) = ψ(y) = uψ(y) = uφ(x) = φ(ux). The distality of φ gives ux = x.
Thus u(x, y) = (x, y) and (x, y) is almost periodic. We have proved that
Rφψ is almost minimal.

Now we can apply Proposition 2.11 to find that πX : Rφψ → X is
relatively minimal. Theorem 1 gives φ ⊥ ψ.

Corollary 2.4. All point transitive distal group extensions of an al-
most minimal flow Z are disjoint from all proximal point transitive almost
minimal extensions of Z.

Unlike the case of minimal extensions, in general a distal extension need
not be open. An example is given below.
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Example 2.2. Let X = {0, 1}Z be a full shift. Denote by 0 and 1 the
fixed sequences from X: 0[n] = 0, 1[n] = 1, n ∈ Z. Denote by ∆X the
diagonal in the Cartesian square X ×X, i.e. ∆X = {(x, x) : x ∈ X}. Let
D = {0, 1} and let Y be the factor of X given by the relation ∆X ∪ (D×D).
Then X is a point transitive almost minimal flow, the extension X → Y is
distal and not open, because the image of the set [0] = {x ∈ X : x[0] = 0}
is not open in Y .

3. Flows defined by Z-cocycles. Let X be a compact Hausdorff space
and τ : X → X a homeomorphism; then we define a flow (X,Z), where the
action of Z on X is given by (x, n) 7→ τnx. In what follows, for a Z-flow
given by a homeomorphism τ , we will write (X, τ) rather than (X,Z). The
more traditional notation has an obvious advantage: it describes the action
of the group Z on X.

Let G be a topological group with unit element e. For a given continuous
map ϕ : X → G one can define a Z-cocycle ϕ(n) by

ϕ(n)(x) =

ϕ(τn−1x)ϕ(τn−2x) . . . ϕ(τx)ϕ(x), n ≥ 1,
e, n = 0,
ϕ(τ−nx)−1ϕ(τ−n+1x)−1 . . . ϕ(τ−1x)−1, n ≤ −1.

Then the cocycle condition ϕ(n+k)(x) = ϕ(n)(τkx)ϕ(k)(x) is satisfied. Thus
a continuous map ϕ defines a Z-cocycle ϕ(n). Conversely, each Z-cocycle
Ψ : Z × X → G is of the form Ψ(n, x) = ϕ(n)(x), where ϕ(x) = Ψ(1, x).
Therefore we will call a continuous function ϕ : X → G a Z-cocycle. For
such a cocycle ϕ define τϕ : X ×G→ X ×G by setting

τϕ(x, g) = (τx, ϕ(x)g).

The (not necessarily compact) flow (X ×G, τϕ) is called a cocycle extension
of (X, τ). Since X is compact, X × G is compact (locally compact) iff so
is G. Clearly

τnϕ (x, g) = (τnx, ϕ(n)(x)g).

There is a natural action ofG onX×G defined by (X×G)×G 3 ((x, g), h) 7→
(x, gh) ∈ X ×G.

Schmidt’s theory of essential values for measurable cocycles ([5]) is easily
adapted to the case of a topological flow (see e.g. [4]).

Definition 3.1. Let (X, τ) be a Z-flow, G a topological group and
ϕ : X → G a (continuous) cocycle. A g0 ∈ G is an essential value of ϕ if
for each nonempty open U ⊂ X, g0 ∈ V ⊂ G there exists an integer N such
that

U ∩ τ−NU ∩ (ϕ(N))−1(V ) 6= ∅.
The set of all essential values of ϕ will be denoted by E(ϕ).
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Lemma 3.1 ([4]). The set E(ϕ) is a closed subgroup of G.

Proposition 3.1 ([4]). Assume that (X, τ) is topologically ergodic. Then
(X ×G, τϕ) is topologically ergodic if and only if E(ϕ) = G.

Let (X, τ) be a compact Z-flow and Y a compact Hausdorff space. As-
sume that G is a topological group and G ⊂ Aut(Y ) a representation of
G. We will denote the action of G on Y by (g, y) 7→ Sg(y). Additionally
assume that Sgx = idx = x for some x implies g = e, the unit element of
G. Thus we have got a flow (Y,G). Let ϕ : X → G be a Z-cocycle. Define
τ̃ϕ : X × Y → X × Y by

τ̃ϕ(x, y) = (τx, Sϕ(x)(y)).

This class of topological flows has been introduced by Glasner and Weiss [3].
We now show a basic property of such kind of extensions.

Theorem 3. Assume that the flow (Y,G) is minimal and τϕ is point
transitive. Then the extension (X × Y, τ̃ϕ) → (X, τ) is relatively minimal.
In particular τ̃ϕ is point transitive.

P r o o f. By Proposition 2.1(ii) it suffices to show that there is an x0 ∈ X
such that for each y ∈ Y the point (x0, y) ∈ X × Y has dense orbit via
τ̃ϕ. First observe that if (x0, g0) ∈ X ×G has dense orbit, then for each p,
(τpx0, e) has dense orbit as well. Choose x0 ∈ X such that (x0, e) has dense
orbit in X ×G. Fix y0 ∈ Y . Let U ⊂ X and V ⊂ Y be two nonempty open
sets. Find p ∈ Z such that τpx0 ∈ U . Define τ̃pϕ(x0, y0) = (x1, y1), W =
{g ∈ G : Sg(y1) ∈ V }. Then W is a nonempty ((Y,G) is minimal) open set.
There is n ∈ Z with τnϕ (T px0, e) ∈ U×W . Then τ̃n+pϕ (x0, y0) = τ̃nϕ (x1, y1) =

(τnx1, Sϕ(n)(x1)(y1)) ∈ U × V because ϕ(n)(x1) = ϕ(n)(τpx0) ∈W .

Example 3.1. Let X = {−1, 1}Z, τ : X → X be the shift, G = Z.
Define ϕ : X → Z by ϕ(x) = x[0]. We will prove that τϕ is topologically
ergodic. By Proposition 3.1 it suffices to show that E(ϕ) = Z. Fix n ∈ Z.
Let B = [a−k, a−k+1, . . . , a0, a1, . . . , ak] be a block of −1’s and 1’s and put
U = {x ∈ X : x[−k, k] = B}. We now show that there is an integer N such
that U ∩ τ−NU ∩ (ϕ(N))−1({n}) 6= ∅. To do this define a sequence x0 ∈ X
in the following way. Set x0[−k, k] = B. Define s = −(a0 + a1 + . . .+ ak +
a−k + a−k+1 + . . .+ a−1) + n. If s < 0 then add |s| times the symbol −1 to
the right of x0[−k, k]. If s > 0 then add s times the symbol 1 to the right
of x0[−k, k]. Next add the block B. Put 1’s at the other positions of x0.
Now x0, τ

k+|s|+k(x) ∈ U and ϕ(k+|s|+k)(x0) = n. Thus τϕ is topologically
ergodic, thus point transitive.

Let Y = {y ∈ C : |y| = 1} and let z0 ∈ Y be such that {zn0 : n ∈ Z}
is dense in Y . Define a minimal action of G = Z on Y by Sn(y) = zn0 y.



RELATIVELY MINIMAL EXTENSIONS 63

By Theorem 3, the homeomorphism τ̃ϕ : X × Y → X × Y , τ̃ϕ(x, y) =

(τx, z
ϕ(x)
0 y), is point transitive and the extension τ̃ϕ → τ is rel. min.

In [1] there is given a construction of so called cocycles of product
type. Example 1.7 in [1] presents such a cocycle which is continuous and a
coboundary in measure-theoretic sense, so nonergodic. We will show that
this cocycle is point transitive.

Example 3.2. Let (an)n≥1 be a sequence of positive integers. Set

Ω =
∞∏
n=1

{0, 1, . . . , an − 1}.

Equip Ω with the product discrete topology to get a compact Abelian group
with addition defined by

(x+ y)[n] = x[n] + y[n] + εn mod an,

where ε1 = 0 and

εn =

{
0, x[n] + y[n] + εn < an,
1, x[n] + y[n] + εn ≥ an.

Let x0 = (1, 0, 0, 0, . . .) be the unit element of the group Ω. Define τ : Ω →
Ω by τx = x0 + x. Then O(x0) = {kx0 : k ∈ Z} = Ω. Actually the flow
(Ω, τ) is minimal. Let ϕ : Ω \ {−x0} → R be of the form

ϕ(x) =

∞∑
n=1

(bn(τx)− bn(x)),

where bn(x) = βn(x[n]), βn : {0, 1, . . . , an − 1} → R. Since for x 6= −x0 =
(a1 − 1, a2 − 1, a3 − 1, . . .), τx differs from x only in finitely many places,
the summation above is in fact finite. In measure-theoretic ergodic theory
the cocycle ϕ is called a cocycle of product type. Actually the definition of
such cocycles works if we replace R by any Abelian topological group ([1]).
Now assume additionally that

1. an ≥ 3, n ≥ 1,
2.
∑
n 1/an <∞,

3. β2k+1 = 0, k ≥ 1,

4. β2n(k) =

{
1/n, k = 1,
0, k 6= 1.

Then ϕ is continuous on Ω \ {−x0} and |ϕ(x)| ≤ 2/`(x), where `(x) =
min{n ≥ 1 : x[n] < an − 1} <∞ for x 6= −x0 (see [1]). Now, if xn → −x0
then `(xn)→∞, hence ϕ(xn)→ 0. Setting ϕ(−x0) = 0 we get a continuous
cocycle ϕ : Ω → R.

We will prove that E(ϕ) = R. It suffices to show that 1/m ∈ E(ϕ) for
each negative integer m.
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Fix m < 0 and ε > 0. Let V = (1/m − ε, 1/m + ε). Let U ⊂ Ω be an
open set. We can assume that U = [α1, . . . , αt]. Find t < n1 < . . . < ns
such that ∣∣∣∣ 1

n1
+ . . .+

1

ns
+

1

m

∣∣∣∣ < ε.

Let x = (α1, . . . , αt, 1, 1, . . .). Put q1 = 1, qn = a1 . . . an, n ≥ 1, N =
a2n1

q2n1
+ . . .+ a2nsq2ns . By [1],

τN (x)[k] =


αk, k ≤ t,
1, k 6= 2ni, k 6= 2ni + 1,
0, k = 2ni,
2, k = 2ni + 1.

Clearly x ∈ U ∩ τ−N (U). Now

ϕ(N)(x) =

N−1∑
i=0

ϕ(τ ix) =

N−1∑
i=0

∞∑
k=1

(bk(τ i+1x)− bk(τ ix))

=

∞∑
k=1

(bk(τNx)− bk(x)) =

∞∑
k=1

(β2k(τNx[2k])− β2k(x[2k]))

= β2n1
(τNx[2n1])− β2n1

(x[2n1]) + . . .

+ β2ns(τ
Nx[2ns])− β2ns(x[2ns])

= − 1

n1
− 1

n2
− . . .− 1

ns
∈ V.

Thus E(ϕ) = R and by Proposition 3.1, τϕ is point transitive. Now, by
Theorem 3, for each compact minimal flow (Y,R) the extension τ̃ϕ → τ
is relatively minimal, hence τ̃ϕ is minimal. It is shown in [1] that from the
measure-theoretic point of view, ϕ is a coboundary, i.e. there is a measurable
function f : Ω → R such that ϕ(x) = f(τx) − f(x). Therefore the sets
Ay = {(x, Sf(x)(y)) : x ∈ X} ⊂ X × T , where y ∈ Y , are τ̃ϕ-invariant and
hence τ̃ϕ is strongly nonergodic. Thus we have obtained a minimal flow
for which the product measure decomposes into measures concentrated on
graphs of functions Ω 3 x 7→ Sf(x)(y) ∈ Y , y ∈ Y .
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