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Abstract. We develop a relative isomorphism theory for random Bernoulli shifts by
showing that any random Bernoulli shifts are relatively isomorphic if and only if they
have the same fibre entropy. This allows the identification of random Bernoulli shifts with
standard Bernoulli shifts.

1. Introduction. Shift systems arise naturally in ergodic theory in the
following two ways: as representations of stationary stochastic processes
and via symbolic dynamics for smooth dynamical systems with hyperbolic
properties. These two interpretations are combined in chaos theory to asso-
ciate stochastic features to deterministic systems which can be modeled by
shifts. In particular such an identification allows a classification of systems ac-
cording to stochastic properties. The extreme case is the identification with
Bernoulli shifts, which are models of independent and identically distributed
stochastic processes. This makes the class of dynamical systems which are
isomorphic to Bernoulli shifts especially interesting.

In order to show that Bernoulli shifts need not be isomorphic, Kol-
mogorov introduced the notion of entropy as an extremely successful iso-
morphy invariant. It gained even more importance when Ornstein [Orn70]
showed that entropy is a complete invariant for Bernoulli shifts and even
shifts with the so-called weak-Bernoulli property, i.e. that any such shifts
with the same entropy are isomorphic. This result was extended by Thou-
venot [Th75a] in a relative isomorphism theory for the so-called relative,
conditional or fibre entropy to the case of factors of skew products.

In the theory of random dynamical systems random shifts as introduced
in [BG92] arise naturally via symbolic dynamics for smooth systems with
hyperbolic properties evolving under the influence of noise (see also [GK99]
and [Gun99]). They can be seen as representations of stationary stochastic
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processes in random environments. For the same reasons as in the deter-
ministic situation random Bernoulli shifts, their classification and a suitable
notion of entropy are of interest. Another interesting question arises from the
fact that “deterministic” shifts are trivial examples of random shifts: when
can one identify random and “deterministic” shift systems? The answer to
this question is somehow amazing, but not unexpected: also for random
Bernoulli shifts the fibre entropy is a complete invariant and hence allows
the decoupling of noise and shift systems. For experts in the field of random
dynamical systems it means a surprise, as they are used to new features
in the classification of random systems, as the topological classification of
hyperbolic linear random dynamical systems in [Con97] shows.

In our main result we will show explicitly that random Bernoulli shifts
are (relatively) isomorphic if and only if they have the same entropy. This
result could also be obtained by an application of an extension of [Lin77,
Appendix] of the relative isomorphism theory of [Th75a], which guarantees
that a property of the generator known as relatively very weak Bernoulli is
sufficient for the fibre entropy to be a complete invariant. We prefer a more
direct approach to pay tribute to the random features of our shift systems.

This paper is also a result of many discussions we had with J.-P. Thou-
venot during several German–Polish Conferences on Dynamical Systems and
Ergodic Theory. At these occasions we also experienced the organizing skills,
determination and the enthusiasm, but most of all the kindness of Anzelm
Iwanik.

2. The main result. Throughout this paper we fix a complete proba-
bility space (Ω,F ,P) together with an invertible P-preserving ergodic trans-
formation ϑ. Consider a compact metric space X with Borel σ-algebra B,
and a set E ⊂ Ω × X measurable with respect to the product σ-algebra
F ⊗ B such that the fibres Eω := {x ∈ X : (ω, x) ∈ E}, ω ∈ Ω, are compact.
Then a continuous bundle random dynamical system (RDS) in time Z is
generated by invertible mappings f(ω) : Eω → Eϑω with iterates given by

f(n, ω) :=





f(ϑn−1ω) . . . f(ϑω)f(ω) for n ≥ 1,
id for n = 0,
f(ϑnω)−1 . . . f(ϑ−1ω)−1 for n ≤ −1,

for n ∈ Z, ω ∈ Ω such that (ω, x) 7→ f(ω)x is measurable and x 7→ f(ω)x is
continuous for P-almost all ω. With the help of the skew product transfor-
mation Θ : E → E, Θ(ω, x) = (ϑω, f(ω)x), we call a probability measure µ
on (E,F ⊗ B ∩ E) f -invariant if it is invariant under Θ and has marginal P
on Ω. Any such measure µ disintegrates via dµ(ω, x) = dµω(x)dP(ω) with
disintegrations satisfying f(ω)µω = µϑω P-a.s. For these invariant measures
µ we introduce the fibre (or relative) entropy of f with respect to µ according
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to [Kif86] as hµ(f) = hµ(Θ|(PrΩ|E)−1(F)) where the right-hand side is the
conditional entropy of Θ with respect to (PrΩ|E)

−1(F) and PrΩ |E is the
natural projection from E to Ω. Equivalently one can define hµ(f) using
countable partitions P = {Ai} of X into measurable sets Ai as

hµ(f) = sup
P

hµ(f, P ) = sup
P

lim
n→∞

Hµω

( n−1∨

i=0

f(i, ω)−1Pϑiω

)
P-a.s.

where Hµω
(Pω) denotes the entropy of the partition {Ai ∩ Eω} of Eω and

the supremum is taken over all partitions P such that
T
Hµω

(Pω) dP(ω) < ∞.
This representation of fibre entropy can be found in [Bog93] together with
a version of the Kolmogorov–Sinai Theorem which states that for partitions
P satisfying

∨∞
i=−∞ f(i, ω)−1Pϑiω = B ∩ Eω, so-called generators, one has

hµ(f) = hµ(f, P ).

We will be mainly interested in the case where X :=
∏∞

i=−∞ Z+ where

Z+ = Z+ ∪ {∞} denotes the one-point compactification of Z+ = {1, 2, . . .}
and X is compact in the product topology and metrizable. We denote the
elements of X by x = (xi). The continuous mapping σ : X → X defined
by (σx)i = xi+1 is called the (left) shift . Let k denote a Z+-valued random
variable and put

Σk(ω) := {x ∈ X : xi ≤ k(ϑiω) for all i ∈ Z} =

∞∏

i=−∞

{1, . . . , k(ϑiω)}.

Then {σ : Σk(ω) → Σk(ϑω) : ω ∈ Ω} determines a bundle RDS known
as random k-shift (cf. [Gun99]). If

T
log k dP < ∞, then the partition of X

into one-cylinders {x ∈ X : xi = k}k∈Z yields a generator and the random
version of the Sinai–Kolmogorov Theorem can be applied.

For the random k-shift we consider an invariant measure µ induced by
a random probability vector p = {p(ω) = (pi(ω)) ∈ [0, 1]k(ω) : ω ∈ Ω} via
disintegrations on cylinder sets as

µω({x ∈ Σk(ω) : xi = ai for i = −n, . . . , n}) =
n∏

i=−n

pai
(ϑiω)

for any n ∈ N and ai ∈ {1, . . . , k(ϑiω)}. The resulting dynamical system
(Σk, σ, µ) is called the random p-Bernoulli shift. Its entropy is given by

hµ(σ) = −
T∑k(ω)

i=1 pi(ω) log pi(ω) dP(ω).

In the following we will be concerned with the classification of random
Bernoulli shifts via fibre entropy. We will call two RDS over the same ab-
stract dynamical system (Ω,F ,P, ϑ) isomorphic if the induced skew prod-
ucts are isomorphic relative to ϑ.

2.1.Theorem. Let (Σk, σ) with
T
log k dP < ∞ be a random p-Bernoulli

shift with corresponding σ-invariant measure µ and entropy h := hµ(σ).
Assume that the probability space (Ω,F ,P) is complete. Then there exist
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• a probability vector q = (q1, . . . , qn) for some n ∈ N, and a correspond-

ing Bernoulli shift ({1, . . . , n}Z, σ) with corresponding σ-invariant measure

ν = qZ,

• a measurable isomorphism Φ : (Σk, µ) → (Ω × {1, . . . , n}Z,P× ν) such

that

hν(σ) = h, Φ ◦Θ = Θ ◦ Φ, PrΩ ◦ Φ = PrΩ.

Φ is a fibrewise homeomorphism in the following sense: Write Φ(ω, x) =
(ω, φω(x)). There exist σ-invariant measurable subsets A1 ⊂ Σk and A2 ⊂
Ω × {1, . . . , n} with µ(A1) = (P × ν)(A2) = 1 such that φω is a homeomor-

phism between A1(ω) and A2(ω), where Ai(ω) := {x : (ω, x) ∈ Ai}.

3. Structure of the proof. In the proof we will allow infinitely many
symbols. Every random probability vector p = (pi(ω))i∈N defines a σ-invar-
iant random product measure µp on Σ := Ω ×X .

We will prove the following: Let p be any random probability vector such
that µ = µp has finite entropy hµ(σ) = −

T
Ω

∑∞
i=1 pi(ω) log pi(ω) dP(ω). A

sufficient condition for finite entropy is that µ is concentrated on Σk for
some random variable k : Ω → N with

T
log k dP < ∞. We will also assume

hµ(σ) > 0. (If hµ(σ) = 0 then for a.e. ω there exists i = i(ω) with pi(ω) = 1.
In this case a random permutation of symbols yields an isomorphism to a
deterministic system.)

Then we will construct an isomorphism Φ between (Σ,µp) and (Σ,µq),
where q is a random probability vector with the following properties:

(i) hµp
(σ) = hµq

(σ),

(ii) there exists a deterministic n with qi(ω) = 0 for i > n,

(iii) q3 is independent of ω and lies in the open interval ]0, 1[,

(iv) if there exists an i such that pi(ω) ≡ pi ∈ ]0, 1[ is independent of ω,
then all qj are independent of ω.

Properties (iii) and (iv) show that a twice repeated application of our
construction yields an isomorphism between an arbitrary random Bernoulli
shift with finite entropy and a deterministic Bernoulli shift.

The construction of the isomorphism Φ consists of several steps. In Sec-
tion 4 we define certain symbols to be “markers”, which will be fixed under
the isomorphism. The construction of the isomorphisms depends on the
positions of the symbols relative to the markers. This ensures that the con-
struction is shift invariant, which would not be the case if the construction
was based on fixed coordinates.

In the next step (Section 5) we construct a decreasing sequence of equiv-
alence relations Rr(ω) ⊂ X ×X , which partitions X into equivalence classes
of comparable measure. This construction relies on the fact that the measure
of cylinder sets can asymptotically be estimated using the entropy.
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Section 6 contains the construction of the isomorphism. First we define a
probability vector q which coincides with p on the set of markers and which
has at least one deterministic component. The space X is also partitioned
into equivalence classes with respect to µq. For every natural number r we
construct a correspondence between the equivalence classes with respect
to µp and the equivalence classes with respect to µq. This correspondence
defines a relation Rr(ω) ⊂ X × X . Some properties of the Rr (listed in
Lemma 6.1) will ensure that

⋂
r≥1 Rr(ω) is essentially a measure preserving

one-to-one relation, which gives the desired isomorphism.

The idea of the proof follows a deterministic proof of Keane and Smo-
rodinsky (see [CFS82, Chapter 10, §7]). In particular, in the investigation
of the combinatorial properties of the correspondences between equivalence
classes we can use most of the arguments of the deterministic proof. How-
ever, the random situation requires some new ideas. The main difficulty here
are nonuniformities which arise when the pi are not bounded away from 0
or 1. Most of the work which is needed to handle these nonuniformities is
done in Section 4.

4. Markers and skeletons

4.1. Definition of the markers. We start with a random probability
vector p = (pi(ω))i∈N and set µ = µp. Without loss of generality we can
assume (due to a permutation of symbols) that\

p1(ω) log p1(ω) dP(ω) < 0.

Hence there exists ε > 0 such that

P{ω ∈ Ω : p1(ω) ∈ [ε, 1− ε]} > 0.

In the case where pi(ω) ≡ pi ∈ ]0, 1[ is independent of ω for some i we
assume i = 1. The symbol 1 will play the special role of the marker for the
symbols in the infinite sequence. We pick a “good” set A ∈ F such that

P(A) > 0 and ε ≤ p1(ω) ≤ 1− ε for every ω ∈ A.

In case p1 is deterministic choose A = Ω, else choose A such that
−
T
Ac p1(ω) log p1(ω)dP > 0.

For ω ∈ A the marker 1 will not be changed under our isomorphism Φ,
i.e. if xk = 1 and ϑkω ∈ A, then the kth coordinate of φω(x) will be equal
to 1.

4.2. Entropy “relative to the markers”. Here we consider the “dynamics
relative to the fixed markers”. Set

p̃i(ω) :=





pi(ω) if ω 6∈ A,
pi(ω)/(1− p1(ω)) if ω ∈ A, i 6= 1,
0 if ω ∈ A, i = 1,
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and

F (ω, x) :=

{
− log p̃x0

(ω) if p̃x0
(ω) > 0,

0 if p̃x0
(ω) = 0.

Then h0 :=
T
Fdµp can be interpreted as the relative entropy produced by

the symbols 6∈ A× {1}. We have h0 < h < ∞. Since

h0 ≥ −
\
Ac

p1(ω) log p1(ω) dP(ω)−
∞∑

i=2

\
A

pi(ω)

1− p1(ω)
log

pi(ω)

1− p1(ω)
dP(ω),

h0 = 0 implies by the choice of A that p1(ω) = p1 is deterministic and for
almost every ω there exists some i = i(ω) > 1 with pi(ω) = 1 − p1. But
in this case there exists a trivial isomorphism to a deterministic Bernoulli
shift. Hence we can assume h0 > 0.

Our next goal is to write F as a pointwise limit of an increasing sequence
of bounded measurable functions. For this purpose set

Jm(ω) := {i ∈ N : p̃i(ω) ≥ 1/m}

for m ≥ 1, ω ∈ Ω and choose im = im(ω) minimal with

p̃im(ω) := min
i∈Jm(ω)

p̃i(ω).

Define

p̃i(m,ω) :=





p̃i(ω) for i ∈ Jm(ω) \ {im},
1−

∑
i∈Jm(ω)\{im} p̃i(ω) for i = im,

0 otherwise,

F̃m(ω, x) :=
{
− log p̃x0

(m,ω) for x0 ∈ Jm(ω),
0 otherwise.

Then limm→∞ p̃i(m,ω) = p̃i(ω) for all ω ∈ Ω, i ∈ N and F̃m+1(ω, x) ≥

F̃m(ω, x), i.e. F̃m ր F for m → ∞, and

lim
m→∞

\̃
Fm dµ =

\
F dµ = h0.

For r ∈ N choose Mr such that\̃
FMr

dµ ≥ (1− 2−(r+1))h0

and set Fr := F̃Mr
. We note that

Fr ≤ logMr and F = sup
r

Fr = lim
r→∞

Fr .(1)

4.3. Construction of “skeletons”. Define a random variable Z : Σ → N

and random subsets Zn, n ∈ N, of Σ as follows: for (ω, x) ∈ Σ we choose
k ≥ 0 minimal such that ϑkω ∈ A, xk = 1 and set

Z(ω, x) =





card {j : 0 < j < k and ϑjω ∈ A (⇒ xj 6= 1)}
if ω ∈ A, x0 = 1,

0 otherwise,

Zn := {(ω, x) : Z(ω, x) ≥ n}.

Thus we have determined sets of (ω, x) with ω ∈ A, x0 = 1, and the next n
symbols corresponding to a noise realization in the good set A are different
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from 1. We have Zn+1 ⊂ Zn, µ(
⋂

n≥0 Zn) = 0 and µ(Zn) ≥ εn+1P(A) > 0
by the choice of A.

For n ∈ N set

ãn(ω, x) = max{j ≤ 0 : Z(Θj(ω, x)) ≥ n},

b̃n(ω, x) = min{j > 0 : Z(Θj(ω, x)) ≥ n},

ℓ̃n(ω, x) = b̃n(ω, x) − ãn(ω, x),

which are P-a.s. well defined and yield random variables describing length
of words which contain a word corresponding to Zn. We have

ãn(ω, x) ց −∞ and b̃n(ω, x), ℓ̃n(ω, x) ր +∞.(2)

If ãn(ω, x) ≤ j < b̃n(ω, x), then ℓ̃n(Θ
j(ω, x)) = ℓ̃n(ω, x), ãn(Θ

j(ω, x)) =

ãn(ω, x)− j, and b̃n(Θ
j(ω, x)) = b̃n(ω, x)− j.

By Birkhoff’s Ergodic Theorem, for r ∈ N,

lim
n→∞

1

ℓ̃n(ω, x)

b̃n(ω,x)−1∑

j=ãn(ω,x)

Fr(Θ
j(ω, x)) = inf Frdµ ≥ (1− 2−r)h0 µ-a.s.

Hence we can find 0 < N1 < N2 < . . . such that

Nr

r2r
h0 ≥ logMr(3)

and

µ

{
(ω, x) :

1

ℓr(ω, x)

br(ω,x)−1∑

j=ar(ω,x)

Fr(Θ
j(ω, x)) ≤ (1− 2−r)h0

}
≤ 2−r,(4)

where ar(ω, x) := ãNr
(ω, x), br(ω, x) := b̃Nr

(ω, x) and ℓr(ω, x) := ℓ̃Nr
(ω, x).

Let S be the set of all finite words from the alphabet {∗, 1, ⋆}. We define
a so-called r-skeleton for (ω, x) by

sr : Σ → Ω×S, (ω, x) 7→ (ϑar(ω,x)ω, τar
(ω, x), τar+1(ω, x), . . . , τbr−1(ω, x)),

where

τj(ω, x) =





∗ if ϑjω ∈ Ac,
1 if ϑjω ∈ A, xj = 1,
⋆ if ϑjω ∈ A, xj 6= 1.

An r-skeleton is characterized by the property that it can be turned into
an allowable word by replacing the symbols ∗ and ⋆ by some symbols from
{2, 3, . . .} or {1, 2, . . .}, respectively. Such a word is called a filler for the
skeleton. Note that r-skeletons consist of consecutive (r − 1)-skeletons.
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5. Partitions into equivalence classes

5.1. Equivalence relations. For (ω, x) ∈ Σ and r ∈ N set

Dr(ω, x) := {(ω, y) : sr(ω, x) = sr(ω, y)}.

We will now construct equivalence relations on the sets of fillers for sr(ω, x),
which define partitions of Dr(ω, x) into equivalence classes.

For (ω, x) ∈ Σ choose k = k(ω, x) < b1(ω, x) maximal with

k∑

j=a1(ω,x)

F1(ω, x) ≤ − logM1 +
1

2
h0ℓ1(ω, x)

which is possible because 1
2h0ℓ1(ω, x) ≥

1
2h0N1 ≥ logM1 by (3). Now define

two relations
1
∼ and

1
⌣ by

(ω, x)
1
∼ (ω, y) ⇔ s1(ω, x) = s1(ω, y), k(ω, x) = k(ω, y),

xj
1
↔ yj for a1(ω, x) ≤ j ≤ k(ω, x),

(ω, x)
1
⌣ (ω, y) ⇔ (ω, x)

1
∼ (ω, y),

where

xi
r
↔ yi ⇔ xi = yi or {xi, yi} ∩ (JMr

(ϑiω) \ {iMr
(ϑiω)}) = ∅

for r ∈ N. For a1(ω, x) ≤ j < b1(ω, x) we have

(ω, x)
1
∼ (ω, y) ⇔ Θj(ω, x)

1
∼ Θj(ω, y).

Define

G1(ω, x) :=

{
F1(ω, x) for k(ω, x) ≥ 0,
0 for k(ω, x) < 0.

Note that G1(Θ
j(ω, x)) = 0 for k(ω, x) < j < b(ω, x). Inductively we will

now construct suitable random variables Gr(ω, x) satisfying Gr−1 ≤ Gr ≤ Fr

and
br(ω,x)−1∑

j=ar(ω,x)

Gr(Θ
j(ω, x)) ≤ (1 − 2−r)h0ℓr(ω, x)− logMr.(5)

For r = 1 this is clear, as

b1(ω,x)−1∑

j=a1(ω,x)

G1(Θ
j(ω, x)) =

k(ω,x)∑

j=a1(ω,x)

F1(Θ
j(ω, x))

≤ − logM1 +
h0

2
ℓ1(ω, x)

= h0ℓ1(ω, x)

(
1−

1

2

)
− logM1.



BERNOULLI SHIFTS 335

Now consider r > 1 and assume that Gr−1 has been constructed. Then
choose kr = kr(ω, x) < br(ω, x) maximal with

kr∑

j=ar(ω,x)

Fr(Θ
j(ω, x)) +

br(ω,x)−1∑

j=kr

Gr−1(Θ
j(ω, x))

≤ − logMr + h0(1− 2−r)ℓr(ω, x)

and define

Gr(ω, x) =

{
Fr(ω, x) for kr(ω, x) ≥ 0,
Gr−1(ω, x) for kr(ω, x) < 0.

Then
br(ω,x)−1∑

j=ar(ω,x)

Gr(Θ
j(ω, x)) =

kr(ω,x)∑

j=ar(ω,x)

Fr(Θ
j(ω, x))(6)

+

br(ω,x)−1∑

j=kr(ω,x)+1

Gr−1(Θ
j(ω, x))

≤ − logMr + h0(1− 2−r)ℓr(ω, x).

Note that this construction is possible, as with the help of (3),

br(ω,x)−1∑

j=ar(ω,x)

Gr−1(Θ
j(ω, x)) ≤ (1 − 2−(r−1))h0ℓr(ω, x)

≤ (1 − 2−r)h0ℓr(ω, x)− logMr.

Define

G(ω, x) := sup
r

Gr(ω, x) = lim
r→∞

Gr(ω, x).

By (1), (4) and the choice of kr(ω, x),

µ

{
(ω, x) :

1

ℓr(ω, x)

br(ω,x)−1∑

j=ar(ω,x)

Gr(Θ
j(ω, x)) ≥ (1− 2−r)h0 −

2 logMr

ℓr(ω, x)

}

≥ 1− 2−r.

We can deduce that\
Gr dµ =

\ 1

ℓr(ω, x)

br(ω,x)−1∑

j=ar(ω,x)

Gr(Θ
j(ω, x)) dµ(ω, x),

as
∑

Gr is constant for Θ−ar(ω,x)(ω, x), . . . , Θbr(ω,x)−1(ω, x). Therefore\
Gr dµ ≥ (1− 2−r)

[
(1− 2−r)h0 −

2 logMr

Nr

]
.

The right-hand side of this inequality tends to h0 =
T
F dµ as r → ∞, since

2 logMr

Nr

≤
h0

r2r−1
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by (3). This implies

G = supGr = F µ-a.s.(7)

We introduce the following relations inductively for r > 1:

(ω, x)
r
⌣ (ω, y) :⇔ sr(ω, x) = sr(ω, y),

Θj(ω, xj)
r−1
∼ Θj(ω, yj) for ar(ω, x) ≤ j < br(ω, x),

(ω, x)
r
∼ (ω, y) :⇔ (ω, x)

r
⌣ (ω, y),

xj
r
↔ yj for ar(ω, x) ≤ j ≤ kr(ω, x).

Clearly the relation
r
∼ is finer than the relation

r
⌣ and thus the equivalence

classes of
r
⌣ are unions of equivalence classes of

r
∼.

5.2. Measure of the equivalence classes. Define

Er(ω, x) := {y ∈ X : (ω, x)
r
∼ (ω, y)},

E′
r(ω, x) := {y ∈ X : (ω, x)

r
⌣ (ω, y)}.

5.1. Lemma. We have

µω(Er(ω, x)) ≥ µω(Dr(ω, x)) exp(−h0(1− 2−r)ℓr(ω, x)),(8)

µω(E
′
r(ω, x)) ≥ µω(D(ω, x)) exp(−h0(1− 2−r+1)ℓr(ω, x)).(9)

Furthermore, there exists a set Br ⊂ Σ with µ(Br) ≥ 1 − 2−r such that for

all (ω, x) ∈ Br,

µω(Er(ω, x)) ≤ µω(Dr(ω, x))M
2
r exp(−h0(1− 2−r)ℓr(ω, x)).(10)

P r o o f. By definition of Gr and
r
∼,

µω(Er(ω, x)) = µω(Dr(ω, x)) exp
(
−

br(ω,x)−1∑

j=ar(ω,x)

Gr(Θ
j(ω, x))

)
.(11)

Together with (5) this implies (8). For Br we choose the complement of the
set appearing in (4). By (6) we have kr(ω, x) ≤ br(ω, x)−3 on this set, hence
by (1) and the definition of Gr,

br(ω,x)−1∑

j=ar(ω,x)

Gr(Θ
j(ω, x))

=

br(ω,x)−1∑

j=ar(ω,x)

Fr(Θ
j(ω, x)) +

br(ω,x)−1∑

j=kr(ω,x)+1

(Gr−1(Θ
j(ω, x)) − Fr(Θ

j(ω, x)))

≥

br(ω,x)−1∑

j=ar(ω,x)

Fr(Θ
j(ω, x))− 2 logMr > (1− 2−r)h

ℓr(ω,x)
0 − 2 logMr

by (4). Thus we obtain (10) with the help of (11).

To prove (9) observe that E′
r(ω, x) (if r > 1) is the intersection of

r−1
∼

equivalence classes E′
i of length ℓi such that

∑
i ℓi = ℓr(ω, x). It follows from
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(8) that

µω(E
′
r(ω, x)) =

∏

i

µω(E
′
i) ≥ µω(Dr(ω, x))

∏

i

e−h0(1−2−r+1)ℓi

= µω(Dr(ω, x))e
−h0(1−2−r+1)ℓr(ω,x).

6. Construction of the isomorphism

6.1. The probability vector q. With a ∈ [0, 1] define

q1(ω) = p1(ω) for ω ∈ A, q1(ω) = 0 for ω ∈ Ac,

q′3(a, ω) = aε, q′2(a, ω) = 1− q1(ω)− q′3(a, ω).

Note that

a 7→ aε log aε+ P(A)(1 − aε) log(1− aε)

+
\
Ac

(1− q1(ω)− aε) log
1− q1(ω)− aε

1− q1(ω)
dP(ω) = h̃(1)(a)

is continuous in a and lima→0 h̃
(1)(a) = 0. If h̃(1)(1) ≥ h0, then by the

intermediate value theorem there exists an a0 ∈ (0, 1] such that h̃(1)(a0) = h0

and we can consider

q2(ω) = q′2(a0, ω), q3(ω) := q′3(a0, ω) = a0ε.

Otherwise we set q2 := q2(1), ĥ = h̃(1)(1)− ε log ε and choose q3, . . . , qn such
that q3 + . . .+ qn = ε, qi does not depend on ω, and

n∑

i=3

qi log qi = h0 − ĥ.

For ν := µq we construct skeletons and equivalence classes of fillers in the
same way as for µ above. For a.e. (ω, x) ∈ Σ we have

νω(Dr(ω, x)) = µω(Dr(ω, x)) = p1(ϑ
ar(ω,x)ω)

∏

j∈J

(1− p1(ϑ
jω))

with J = {j : ar(ω, x) < j < br(ω, x), ϑ
jω ∈ A}.

Dr(ω, x) splits into finitely many
r
∼ equivalence classes E

(r)
1 , . . . , E

(r)
s

corresponding to µ and analogously into equivalence classes Ẽ
(r)
1 , . . . , Ẽ

(r)
t

corresponding to ν instead of µ in the construction of the equivalence rela-
tion

r
∼.

6.2. Relations on X ×X

6.1. Lemma. For P-almost all ω ∈ Ω there exists a sequence (Rr(ω))r∈N
of subsets Rr(ω) ⊂ X ×X which is decreasing in the sense that Rr+1(ω) ⊂
Rr(ω) and has the following properties :

(i) (x, y) ∈ Rr(ω) ⇒ sr(ω, x) = sr(ω, y).



338 V. M. GUNDLACH AND G. OCHS

(ii) If r is even, then Rr(ω)∩ (Dr(ω, x)×Dr(ω, x)) is a (finite) union of

products of equivalence classes , i.e. if (ω, x)
r
∼ (ω, x′) and (ω, y)

r
⌣ (ω, y′),

then (x, y) ∈ Rr(ω) ⇔ (x′, y′) ∈ Rr(ω). If r is odd , the roles of
r
∼ and

r
⌣

are interchanged.

(iii) For fixed x ∈ X and every n-cylinder C ⊂ X the set {ω : Rr(ω) ∩
({x} × C) 6= ∅} is measurable.

(iv) Rr(ω) is correct in the sense that νω(Rr(ω,B)) ≥ µω(B) for every

measurable subset B of X , where Rr(ω,B) = {y ∈ X : ∃x ∈ B such that

(x, y) ∈ Rr(ω)}.

(v) (x, y) ∈ Rr(ω) ⇔ (σjx, σjy) ∈ Rr(ϑ
jω) for ar(ω, x) ≤ j < br(ω, x).

(vi) Rr(ω) is minimal in the sense that if S ⊂ Rr(ω) satisfies the condi-

tions (i)–(v), then S = Rr(ω).

P r o o f. We construct (Rr(ω)) explicitly. Start with R
(0)
1 (ω) := {(x, y) :

s1(ω, x) = s1(ω, y)}. There is a natural ordering on the set of fillers for
sr(ω, x), which induces an ordering on the equivalence classes. We go

through all pairs (E
(1)
i , Ẽ

(1)
j ) in order and put

R
(k+1)
1 (ω) :=

{
R

(k)
1 (ω) \ (E

(1)
i × Ẽ

(1)
j ) if this defines a correct subset,

R
(k)
1 (ω) otherwise.

Then R1(ω) := R
(pq)
1 (ω) is a correct and minimal subset satisfying all the

properties (i)–(vi).

We are now in an ω-wise situation described in [CFS82, Chapter 10, §7]
so that we can take over some combinatorial results from there.

Suppose r > 1 is even. Recall that sr(ω, x) is a sequence of (r − 1)-
skeletons

sr−1(Θ
j1 (ω, x))sr−1(Θ

j2 (ω, x)) . . . sr−1(Θ
jk(ω, x)).

Each of these skeletons defines a partition of X in equivalence classes, where

the
r
⌣ equivalence classes are exactly the sections of

r−1
∼ equivalence classes

with respect to sr−1(Θ
jℓ (ω, x)). Now assume that Rr−1(ω) with the proper-

ties (i)–(vi) exists. We can define a new subset

R(0)
r (ω) := {(x, y) : sr(ω, x) = sr(ω, y),

(σjlx, σjly) ∈ Rr−1(ϑ
jlω) for 1 ≤ l ≤ k}

⊂ Rr−1(ω).

This R
(0)
r (ω) has all the properties (i)–(v):

• (i) and (v) follow from the definition.

• (ii) holds, as (ω, x)
r
∼ (ω, y) ⇒ (ω, x)

r
⌣ (ω, y) ⇒ (ω, x)

r−1
∼ (ω, y).

• (iv) follows from [CFS82, Chapter 10, §7, Lemma 7].
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• (iii) is true, as Rr(ω) is a countable union of products of cylinder sets
depending measurably on ω.

R
(0)
r (ω) is not necessarily minimal, but by the same procedure we have

already applied to obtain R1(ω) from R
(0)
1 (ω) we can construct a subset

Rr(ω) which keeps all properties (i)–(v) and is minimal in addition. Namely

we can construct Rr(ω) by going in order through all pairs of
r
∼ (with respect

to µ) and
r
⌣ (with respect to ν) equivalence classes respectively. We remove

all pairs which are not needed for correctness. If r is odd, we can proceed
analogously, interchanging the roles of

r
∼ and

r
⌣.

6.3. A one-to-one relation. For r ∈ N and E ⊂ Σ put

Rr(E) := {(ω, y) : ∃(ω, x) ∈ E with (x, y) ∈ Rr(ω)},

R−1
r (E) := {(ω, x) : ∃(ω, y) ∈ E with (x, y) ∈ Rr(ω)}

and set

R :=

∞⋂

r=1

Rr.

Using the completeness of (Ω,F ,P) it is possible to deduce from Lemma
6.1(iii) the measurability of Rr(E) and R−1

r (E) and thus of R(E) and
R−1(E) for any measurable set E ⊂ Σ.

By (2) and Lemma 6.1(v) there exist subsets S1, T1 ⊂ Σ with µ(S1) =
ν(T1) = 1 such that

((ω, x), (ω, y)) ∈ R ⇔ (Θj(ω, x), Θj(ω, y)) ∈ R

whenever j ∈ Z and (ω, x) ∈ S1, (ω, y) ∈ T1.

6.2. Lemma. There exist shift invariant measurable sets S ⊂ S1, T ⊂
T1 with µ(S) = ν(T ) = 1 such that R restricted to S × T is a one-to-one

relation.

P r o o f. For even r ∈ N set

Kr := {(ω, x) : Rr(ω, x) consists of one
r
⌣ equivalence class},

and

Lr := {(ω, x) ∈ Kr : y0 is uniquely determined

in the equivalence class Rr(ω, x)}.

Fix Dr(ω, x). Let nr(ω, x) be the number of
r
∼ equivalence classes (with re-

spect to µ) Er ⊂ Dr(ω, x) for which there exist at least two
r
⌣ equivalence

classes Ẽ′
r 6= Ẽ′′

r (with respect to ν) with Er × Ẽ′
r, Er × Ẽ′′

r ⊂ Rr(ω). By the
construction of Rr(ω) and [CFS82, Chapter 10, §7, Lemma 6], nr(ω, x) is

bounded from above by the total number of
r
∼ equivalence classes in Dr(ω, x)
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with respect to νω. From (9), nr(ω, x) ≤ exp(h0(1−2−(r−1))ℓr(ω, x)). Defin-
ing

K ′
r := {(ω, x) ∈ Σ \Gr : µω(Er(ω, x)) ≤ M2

r e
−h0(1−2−r)ℓr(ω,x)µω(Dr(ω, x))}

we thus have

µω(Dr(ω, x) ∩K ′
r)

≤ µω(Dr(ω, x)) exp(h0(1− 2−(r−1))ℓr(ω, x))M
2
r exp(−h0(1− 2−r)ℓr(ω, x))

= µω(Dr(ω, x))M
2
r exp(−h02

−rℓr(ω, x))

≤ µω(Dr(ω, x))M
2
r exp(−h02

−rNr),

which shows that

µ(K ′
r) ≤ M2

r exp(−h02
−rNr) ≤ M2

rM
−r
r → 0 as r → ∞.

On the other hand, we consider

K ′′
r := {(ω, x) ∈ Σ : µω(Er(ω, x)) > M2

r exp(−h0(1− 2−r)ℓr(ω, x))}.

By (10), µ(K ′′
r ) ≤ 2−r → 0 as r → ∞. Therefore we deduce from Kr ⊃

Σ \ (K ′
r ∪K ′′

r ) that

lim
r→∞

µ(Kr) = 1.

In order to deduce an analogous result for Lr we consider

L̃r := {(ω, y) : y0 uniquely defined

in the
r
⌣ equivalence class with respect to ν}.

If we define functions F̃ and G̃r analogously to F and Gr with pi replaced
by qi, then

(ω, y) ∈ L̃r ⇔ G̃r−1(ω, y) = F̃ (ω, y) 6= 0,

which implies via (7) that limr→∞ ν(L̃r) = 1. From Lemma 6.1(iv), for

L′
r := R−1

r (L̃r) it follows that limr→∞ µ(L′
r) ≥ limr→∞ ν(L̃r) = 1. Since

Lr = Kr ∩ L′
r we have

lim
r→∞

µ(Lr) = 1.

Define L :=
⋃∞

r=1 L2r ∩ S1. The set S2 :=
⋂∞

j=−∞ ΘjL is shift invariant
with µ(S2) = 1. For (ω, x) ∈ S2 there exists at most one y ∈ X with
((ω, x), (ω, y)) ∈ R.

Analogously we can find a shift invariant set T2 ⊂ T1 with ν(T2) = 1 such
that for (ω, y) ∈ T2 there exists at most one x ∈ X with ((ω, x), (ω, y)) ∈ R.
Set

S := {(ω, x) ∈ S2 : ∃(ω, y) ∈ T2 with ((ω, x), (ω, y)) ∈ R},

T := {(ω, y) ∈ T2 : ∃(ω, x) ∈ S2 with ((ω, x), (ω, y)) ∈ R}.
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Clearly R(S) ⊂ T and R−1(T ) ⊂ S. Therefore R is a one-to-one relation on
S × T . We have

1 = µ(S2) = ν(T2) ≤ lim
r→∞

µ(R−1
r (T2)) = µ(R−1

r (T2)),

which implies

µ(S) = µ(S2 ∩R−1
r (T2)) = 1.

Analogously ν(T ) = 1.

6.4. The isomorphism Φ. Now we are prepared to finish the proof. Define
Φ : S → T via

{Φ(ω, x)} = R({(ω, x)}) and y = φω(x) ⇔ (ω, y) = Φ(ω, x).

From 6.3 it is clear that Φ is measurable and commutes with Θ, i.e.

φθω ◦ σ = σ ◦ φω .

For E ⊂ S we have (using ν(T c) = 1)

ν(Φ(E)) = ν(T ∩R(E)) = ν(R(E))

= ν
( ∞⋂

r=1

Rr(E)
)
= lim

r→∞
ν(Rr(E)) ≥ µ(E),

and analogously µ(Φ−1(E)) ≥ ν(E) for E ⊂ T , i.e. Φ is measure preserving.
It remains to show the continuity of

φω : S(ω) := {x : (ω, x) ∈ S} → T (ω) := {y : (ω, y) ∈ T }

and of φ−1
ω . Let

C := {x ∈ X : x−n = a−n, . . . , xn = an}

be a cylinder set and x ∈ X with φω(x) ∈ C. There exists an even r ∈ N

with Θi(ω, x) ∈ Lr for |i| ≤ n (Lr from the proof of Lemma 6.2), i.e.

the coordinates (φω(x))i for |i| ≤ n are uniquely determined by the
r
⌣

equivalence classes E′
r(Θ

i(ω, x)) for −n ≤ i ≤ n. Hence

S(ω) ∩
( n⋂

i=−n

Θ−iEr(Θ
i(ω, x))

)
⊂ φ−1

ω (C),

which means that φ−1
ω (C) contains an open neighbourhood of x in S(ω).

The continuity of φ−1
ω follows in the same way.

7. Remarks. Our main result states in particular that one can find
relative isomorphisms which are able to decouple the noise from the shift
in random shifts. This means that qualitatively a random Bernoulli shift
shows the same behaviour as a “deterministic” Bernoulli shift, at least in the
ergodic theoretical sense. Though random Bernoulli shifts do not generate
any new dynamical phenomena, they are useful in investigations of RDS,
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e.g. those generating random fractal structures (cf. [Kif96]), as they draw a
real-time picture of the dynamics in contrast to other symbolic descriptions
which might be obtained via relative isomorphisms.

If we recall from Ornstein’s theory (see for example [Orn70], [Pet83] or
[CFS82]) that all two-sided Bernoulli shifts of the same entropy are isomor-
phic, we have the following amendment to Theorem 2.1.

7.1. Corollary. Any two random Bernoulli shifts (Σk1
, σ, µ1) and

(Σk2
, σ, µ2) of the same entropy and with log ki ∈ L1(Ω,P), i = 1, 2, are

relatively isomorphic.

This result can even be extended to a wider class of random shifts and
RDS. As pointed out by Thouvenot such a work can make use of an ex-
tension in [Lin77, Appendix] of the relative isomorphism theory of [Th75a].
There, the same notion of relativized or fibre entropy is used together with
the assumption that F is countably generated by a partition H . Then it is
proved that if there exists a finite partition P of the bundle E or Ω × X
that has the property known as H-conditionally finitely determined, then the
corresponding RDS, if it has finite fibre entropy, is relatively isomorphic to a
random Bernoulli shift of the same entropy. In fact, the condition of a finite
partition P can be weakened to countable partitions with finite entropy,
as it is only used to obtain a version of the Shannon–McMillan–Breiman
Theorem, which in our situation is provided by [Bog93, Theorem 2.2.5].

The notion of a partition to be H-conditionally finitely determined is
rather abstract and difficult to check. Fortunately it could be shown by
[Th75b] that it is implied by the so-called very weak Bernoulli property of
a partition; these notions are in fact equivalent, as shown in [Rah78] (see
also [Kie84]). We will use only a restriction of that notion, the weak Ber-
noulli property of a partition (see e.g. [Shi77]) with an ω-wise representation
according to [Kie84].

7.2. Definition. Let P , Q be two partitions of a measurable bundle E
such that P(ω) and Q(ω) are finite partitions of Eω P-a.s. They are called
(ω, ε)-independent with respect to a probability measure µ for some ε > 0 if

∑

P∈P(ω), Q∈Q(ω)

|µω(P ∩Q)− µω(P )µω(Q)| < ε.

The partition P is called weak Bernoulli with respect to a bundle RDS ϕ
and its ϕ-invariant measure µ if for every ε > 0 and P-a.a. ω ∈ Ω there
exists an N = N(ω, ε) such that the partitions

∨n−1
i=0 ϕ(i, ω)−1P(ϑiω) and∨r−1

i=0 ϕ(i + t, ω)−1P(ϑi+tω) are (ω, ε)-independent for all n ≥ 0, r ≥ 0,
t ≥ s+N .

Obviously random Bernoulli shifts and also random Markov shifts with
aperiodic matrices P (cf. [Gun99]) have the weak Bernoulli property with
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respect to the partition in one-cylinders. Thus the already mentioned result
of Thouvenot and Lind, which we can cite as follows for our situation, applies
to them.

Theorem 7.3 (Thouvenot–Lind). Assume that F is countably gener-

ated. Then any two random k-shifts (Σk1
, σ, µ1), (Σk2

, σ, µ2) which satisfy

the weak Bernoulli property and have the same entropy are (relatively) iso-

morphic. In particular they are isomorphic to a random Bernoulli shift with

this entropy.

Let us mention once more that such a classification result allows the
decoupling of the noise process described by the abstract dynamical system
(Ω,F ,P, ϑ) and the shift dynamics. The price one has to pay for this de-
coupling is the loss of information, e.g. on time scales, due to the relative
isomorphism. Moreover this result shows implicitly that an interesting class
of random shifts does not generate any new dynamical features. Nevertheless
it is useful in analyzing smooth RDS with hyperbolic properties.
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