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Abstract. We prove a generalised tightness theorem for cocycles over an ergodic
probability preserving transformation with values in Polish topological groups. We also
show that subsequence tightness of cocycles over a mixing probability preserving trans-
formation implies tightness. An example shows that this latter result may fail for cocycles
over a mildly mixing probability preserving transformation.

Let (£2,B,m) be a probability space, let T' : 2 — (2 be an ergodic
probability preserving transformation, let G be a Polish topological group
and let ¢ : {2 — G be measurable.

We consider S,,, the random walk or cocycle on G defined by

Sow) =e€,  Spi1(w) = (T"w) Sy (w).
This random walk is generated by the skew product transformation Ty :
X x G — X x G where T} (w,y) = (T"w, Sp(w)y). In case G is a locally

compact topological group, Ty preserves the measure m x mqg where mg is
a left Haar measure on G.

1. Tightness theorem. We consider the situation where {m-dist.(S,,) :
n > 1} is tight in the sense that for every £ > 0, there is a compact C C G
such that sup,,~; m(S, € C) < € (equivalently, tightness is precompactness

in the space P(QG) of probability measures on G). One way this can happen
is when ¢ is cohomologous to a compact-group-valued function, i.e. there is
a compact subgroup K C G and measurable ¥ : 2 — K, g : {2 — G such
that B(w) = g(Tw)~ d(@)g(w); then Sy(w) = g(T"w)" ky (w)g(w) where
kp(w) == (T ) (T 2w) ... Yp(w) € K.

TIGHTNESS THEOREM. The distributions {m-dist.(S,) : n > 1} are tight
in P(G) < ¢ is cohomologous to a compact-group-valued function.
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364 J. AARONSON AND B. WEISS

Remarks about <=. 1) The < of the tightness theorem is an easy conse-
quence of the tightness of a single probability on a Polish space (Prokhorov’s
theorem, see [Par|) and the probability preserving property of T'.

2) If m is not absolutely continuous with respect to some T-invariant
probability on ({2, B) then < may fail.

In this case, there is a set W € B with m(WW) > 0 and a sequence
ng — oo such that {7~ W : k > 1} are disjoint (such a set is called weakly
wandering). Given a noncompact Polish space G, we choose 2y € G and a
sequence y, € G, yr — oo (i.e. for each compact C' C G, y € C eventually)
and define f : 2 — G by

Flz) = Yk, x €T ™W (k>1),
T\ wo, z€R\Up T W.
It follows that {m-dist.(f o T™) : n > 1} cannot be tight in P(G) since
m([f o T = yx]) =2 m(W) = 0.
If G is a noncompact Polish topological group, we set ¢ = f~1f oT and

obtain a coboundary for which the distributions {m-dist.(S,,) : n > 1} are
not tight in P(G).

In case G has no nontrivial compact subgroups, the tightness theorem
boils down to the so-called coboundary theorem:

The distributions {m-dist.(S,) : n > 1} are tight in P(G) < ¢ is a
coboundary.

The first version of the coboundary theorem seems to be:

L? COBOUNDARY THEOREM |[Leo]. If {Z, : n > 1} is a wide sense

stationary process, then there exists a wide sense stationary process {Y;, :
n > 1} such that Z, =Yy, — Yoi1 iff sup,s E(| X0 _; Zk|?) < co.

Proof. If there is {Y,, : n > 1} wide sense stationary such that Z, =
Y, = Yoq1, then > 7 Zy =Y, — Y,qq and || D, _; Zill2 < 2||Yi]|2 for all
n > 1.

Conversely, if | Y 1_; Zg|l2 < M for all n > 1, then by weak* sequential
compactness of norm bounded sets, there are N, — oo and a r.v. Y =
Y (Zy,Zs,...) such that

1 Ng n
oD LY
¢ n=1k=1
where — denotes weak convergence in L?. Write Y, := Y(Z,, Zn11,...).

Then {Y,, : n > 1} is a wide sense stationary process and
N, n

1
N, 2

Zhsv1 —Y, Vu>1.
1
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It follows that

1 N, n+v 1 N, n+v—1
YI/+II_MZ Z Zk:EZ( Z Zk+Zn+u—Zu)
n=1k=v+1 n=1 k=v
1 N, n 1 Ng
:EZZZINFV?I—FE ZTL+I/_ZV4Y1/_ZV
n=1k=1 n=1

because || ij; n+v || is uniformly bounded. m
Leonov’s theorem has the LP analogues:

LP? COBOUNDARY THEOREM. Let (X, B,m,T) be a probability preserving
transformation, let 1 < p < oo and let f : X — R be measurable. There
exists g € L*(m) such that f =g —goT iff sup,>; || > py foTF||, < oc.

The proof of the L? coboundary theorem is the same as that of Leonov
with Komlos type convergence replacing weak convergence when p = 1.

The coboundary theorem is established in [Schl] for the case G = R,
and in [Mo-Sch] for G locally compact, second countable, Abelian without
compact subgroups.

The tightness theorem for locally compact, second countable groups was
established in [Sch2]; related partial results are given in [Co] and [Zim)].

Bradley has proved = of the coboundary theorem assuming only that
T is measurable: in [Brl| for G = R, in [Br2] for G a Banach space and in
[Br3] for G a group of upper triangular matrices.

The present methods can be stretched to prove the = of the tightness
theorem assuming only that T' is measurable and invertible.

Basic LEMMA. If the family {P-dist.(S,) : n > 1} is tight in P(G),
then there is a measurable P : 2 — P(G) such that

Pro,(A) = Po(6(w)'A) (A € B(G)).

This basic lemma is implicit in [Brl] for G = R. The general proof is
essentially as in [Brl] (see below).

The coboundary theorem for R is easily established using it ([Brl]).
Indeed if for w € 2, u(w) is defined as the minimal number satisfying

Fu((=00, p(w)]), Bu ([u(w), 00)) = 1/2,
then p : 2 — R is measurable and (since Pr,(A) = P,(A — ¢(w))) we have
u(Tw) = p(w) — Blw).

The proof of the tightness theorem given the basic lemma uses a general-
isation of the characterisation of invariant measures for group extensions in
[Key-New]|. The proof is an adaptation of Lemanczyk’s proof of [Key-New]
in [Lem]. See also the proof of Theorem 8.3.2 in [A].
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Proof of the basic lemma. Choose first K, C K,,11 C ... C G, asequence
of compact sets in G with the property (ensured by tightness) that

(1) m([S, € K;|) <1/4” Vn,v > 1.
Consider the random measures W, : 2 — P(G) defined by
1 n
~—n Z 14(S5;)
j=1

Next, for v > 11et A, C C(K,) be a countable family, dense in C'(K,); and
let A=J2, A,.
We now claim that there are ny — oo and L : A — L°({2) such that
(2) | FdW,, — L(f) weak* in L®(2) Vf € A.
G

This is shown using weak™ precompactness of L ({2)-bounded sets, and a
diagonalisation.

By possibly passing to a subsequence, we can ensure that for each f € A,
there is Ny such that

H((Sdenk—L(f)><dean—L(f)>>dm(<2ik vk > Ny, j <k,
X a o

whence ([Rev])

N
3) %ZSdenkéL(f) ae Ve A

k=1G
and hence (by density) for all f € |J -, C(K,).
By the Chebyshev—Markov inequality,
m(L(1xg) > 1/2) ¢ m(Wy, (K5) > 1/27) < 2 | W, (KS)dm
b's
<1/2" Vv>1

and so by the Borel-Cantelli lemma, L(1x¢) < 1/2” a.e. for v large.

It follows that there is a measurable P : 2 — P(G) such that L(f)(w) =
o fdP, forall fc A.

To see that Pr, = P, o Ry, (Ry(y) := yg), note that

| fdW,(Tw) Zf

G

n+1

Z—Zf 1w ZfoRcb(W) 1(55(w))



TIGHTNESS OF COCYCLES 367

2|/ fllo
= | fo Ryy-r dW,(w) £ ;
G
201 f oo
— dewn o Ryw) £ Hﬂ” . m

Proof of = in the tzghtness theorem. Given probabilities w — p, on G
satisfying
PTw = Pw © L¢(w)*1a
define a probability u € P(£2 x G) by
A x B) = | p,(B) dm(w).
A
We first note that this probability is Ty-invariant:

| wev)oTydp=\uTx) | v(é(x)y) dp.(y) dm(z)
XxG

@

X

Su Tz) \ v(y) dprs(y) dm(x)
X G

Y

u(z Sv ) dp.(y) dm(z) = S u@vdpu.
XxG
Almost every ergodic component P of i has a disintegration over m of the
form
P(A x B) := | p,(B) dm(w)
A

where w — p,, € P(G) is measurable, and pr,, = p,, 0 Ry (.- Fix one such P.

Define p € P(G) by p(B) := P(£2 x B). There are compact sets C; C
Cy C ... such that |J,—, C,, = G mod p. Define compact subsets {K,
n > 0} by

Ko:={e}, Knpp1=(K,UC,)(K,UC,) "(K,UC,)(K,UC,)™"
Evidently, Gy := |J,—, K,, is a subgroup of G and p(G \ Gp) = 0, whence
Pw(G\ Go) =0 for m-a.e. w € (2.

Next, consider the space C(Gyp) of bounded, continuous, R-valued func-
tions on Gy (equipped with the supremum norm) and set

C:={f € Cs(Gy): sup |f(y)| — 0}.

Evidently C = |-, Cg(K,,) is separable, and f € C = fo R, € C for all
g € Gy (since if g € K;, then z € K,,.; = 29 & K,,).

For each a € G, P o Q, (where Q,(w,y) := (w,ya)) is also an ergodic
Ty-invariant probability (since Ty, 0 Q, = Q4 © Ty), and therefore either
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PoQ,=Por PoQ, L P. Define H:={a € Gy: PoQ, = P}, a closed
subgroup of Gy. For a.e. w € 2, p,(Aa) = p,(A) (a € H, A € B(Q)).

Consider the Banach space M(£2x Gj) of bounded measurable functions
2 x Gg — R equipped with the supremum norm. We need a separable
subspace A C M({2 x Gy) which separates the points of 2 x G such that
feA= foQ, € Aforall a € Gy. In particular,

a,b€Cy, | fdPoQ,= | fdPoQ, Vf€ A= PoQ,=PoQ,
02xG 02xG

To obtain such a subspace, fix a compact metric topology on {2 generat-
ing B; then A= C(£2) ® C is as needed.
By Birkhoff’s ergodic theorem,

n—1
%ZfoT(’;(w,y)% | rap ae vier(p).
k=0 2xG

Set

1 n—1
Y =< (w,y) €2 xGy:— foTk(w,y) — fdPVfE.A}.
{n T |

Since A is a separable subspace of M (2 x Gp), the set Y is determined by
a countable subcollection of A, whence Y € B(f2 x Gj), and by Birkhoff’s
ergodic theorem P(Y) =1. Forw € 2,set Y, = {y € Gy : (w,y) € Y}. We
claim that Y, is a coset of H whenever it is nonempty.

To see this, suppose that a € G. Then for all f € A and for a.e. (z,y)
€Y,

n—1
%Zfon(w,ya) | foQudP= | faPoqQ;l.
k=0 NxaG NxG
Thus, (w,ya) € Y iff Po Q! = P, equivalently a € H; and Y,, is indeed a
coset of H whenever it is nonempty (i.e. a.e.).

By the analytic section theorem, there is a measurable h : {2 — G such
that h(w) € Y, for a.e. w € 2, whence Y,, = h(w)H.

Now let P/, € P(G) be defined by P/ (A) := p,(h(w) " 1A). Clearly
P/ (H) =1 and P/(Aa) = P/(A) (a € H, A € B(G)). Thus by [Weil],
H is compact and P/, = my, Haar measure on H.

Defining ¥ : 2xG — 2 x G by ¥(w,y) := (w, h(w)y), we have Po¥~1 =
mxmg. UV :=WoT,oW ! thenmxmygoV =mxmyand V =T,
where ¥(w) := h(w)p(w)h(w) L.

Since (2 x G,B(£2 x G),m x myg,V) is a probability preserving trans-
formation, we see that ¢ : 2 — H. =
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2. Subsequence tightness. Let (X, B,m,T) be a mixing probability
preserving transformation and let ¢ : X — R be measurable. Bradley [Br4]
showed that if the stochastic process {¢poT™ : n > 1} is strongly Rosenblatt
mixing, then either

1) sup,.cg m([|Sn — | < C]) = 0 for every 0 < C < o0, or

2) there are constants a,, such that {m-dist.(S,, — a,,) : n > 1} is tight
(whence ¢ is cohomologous to a constant).

A weaker version of this generalises to an arbitrary stationary stochastic
process driven by a mixing probability preserving transformation.

THEOREM 2. Suppose that (X, B, m,T) is a mizing probability preserving
transformation and that ¢ : X — R is measurable. If there are ny — o0
and d, € R such that {m-dist.(S,, — di) : k > 1} is tight, then there are
a € R and g : 2 — R measurable such that p(w) = a + g(Tw) — g(w). If
supy, |di| < oo, then a = 0.

Proof. Consider (X x X,B@B,mxm,T xT),and ¢,¢' : X x X - R
defined by ¢(z,y) == ¢(z), ¢'(z,y) == d(y).

e We first show that {m x m-dist.(S,, — S],) : n > 1} is tight. Let ¢ > 0
and choose M > 0 such that m([|S,, —dk| > M/2]) < /2 for all K > 1. By
mixing of T', for all n > 1,

m([|Sn — Sy 0o T™| > M]) — m x m([|S, — S| > M])
as k — co. Now

Sp—8poT™ =8, —Spin, +5n, =5n, —Sn,0T",
whence

m([|S — S 0 T"| > M]) = m([|Sn, — Su, 0 T"| > M])
< 9m([|Sn, — di| > M/2)) < e.

e Next, as in [Brd4], there are a,, € R such that {m-dist.(S, —a,) : n > 1}
is tight. To see this, given € > 0, let M (¢) > 0 be such that

m x m([|S, — S\| > M(e)]) <&* Vn>1.
It follows that
m({z € X :m([|Sn — Sn(x)| > M(e)]) > €})

< 2 {m1S — Su(@)| > M(e)]) dm(a)

X

1
=—mx m([|Sn —S,| > M(e)]) <e VYn>1,
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whence there are a,(¢) € R such that
m([|Sn — an(e)] > M(e)]) <e Vn>1.
Set a,, = a,(1/3). For each 0 < e < 1/2, n > 1, we have
m({|Sn — an(e)] < M(e)] N[|Sn — an| < M(1/3)]) >0,
whence |a, — a, ()| < M(1/3) + M (e) and
m([|Sn — an| >2M(e) + M(1/3)]) <e Vn>1.

e We show that there is an a € R such that sup,,> |a, —na| < co. To
this end, note that there is an M > 0 such that

(1) lagtr —ap —a| <M Vk,1>1.
Indeed, if m([|S, — an| > K]) < 1/8 for all n > 1, then (since Ski; =
Sk + S OTk)
m([|Sk+1 — ax — a| > 2K])
< m([|Sk — ak| > K] U [|Sl oTk — al| > K]) < 1/4,
whence
m([[Sk+1 — ar — ar| < 2K N [| Skt — api| < K]) >0

and |ag4; — ar — a;| < 3K for k,1 > 1.
By (), there are Ny — oo and b, € R (v > 1) such that
1 &
EZ(QH_V—%) —b, ask—ooVv>1
j=1
It follows from (1) that

1
b, —a,| = klggo ‘Fk ;(aj-&-l/ —a;—ay)| <M
and that
1 &
butp < N Z(ajJrquu — aj)
[t
1 Ny, 1 Np+p
=N D (@4 —aj) + N > (@540 —ay)
k=1 F j=pt1
Nk Nlc
1 1 M + |a,|
- N Z(%‘w —a;) + N, Z(%‘w —a;) + Tk“
j=1 j=1

— by, + by

Thus b, = va and |a, — va| < M where a = b; = lim,,—, o @y /n.
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In case supy, |di| < 0o, because of the tightness of {m-dist.(S,,) : k > 1}
we have supy s |an, | < oo, whence a = 0.

e It now follows from the coboundary theorem that ¢ is cohomologous
toa. m

3. An example. We show that there is a probability preserving trans-
formation (X, B, m,T) which is mildly mizing in the sense that there is no
A € B with 0 < m(A) < 1 such that liminf, .o m(AAT"A) =0 (see §2.7
of [A]), but there is a measurable function ¢ : X — R such that T} is ergodic
and for some ny — oo, limsup;,_, ., |Sn, | < 00 m-almost everywhere.

Chacon’s transformation [Cha]. This transformation (X, B,m,T) is de-
fined inductively on X :=J;~; C), C R where m = Lebesgue measure.

Here C,, = UZ”:_OI T*J,, where

ol =1, lyi1 =3l +1 (=1, =(3"—1)/2);

o {T*J, :0 <k <1, — 1} are disjoint intervals of length 1/3"~! and
T:T%J, — TFtL], is a translation;

e (11 is obtained by writing J, = U?:o Jn,i where the J,; (i =0,1,2)
are disjoint intervals of length 1/3™ and setting J,,4+1 := J,, 0 and

TkJn,(h nggln_L
Thk—ln I <k<2 —1
Tk .— n,l, n = > 4ln ;
Int Sni1, k=2l,,

TF2=1 ] 00 2, +1<k<3l, =11 — 1

where S, 1 is an interval of length 1/3™, disjoint from C,, (called the spacer).
The set X has finite measure which can be normalized to equal one
but we keep the standard Lebesgue measure in order to simplify the later
formulae. We first give a proof of the ergodicity based on a careful analysis of
how the intervals T*.J,, approximate arbitrary measurable sets. This analysis
will also be the base for our proof of the mild mixing property.
Define

Cp = {Un(K) = J T" K {01, 1 — 1}}.
keK

For A€ B, ¢ >0 and n > 1 define
E()={0<k<l,—1:m(T"J,NA) <em(J,)} C{0,1,....0L, —1}.

Evidently, for A, B€ B disjoint and 0<e<1/2, Kj(qni and Kgli are disjoint.

It is standard that for all A € B and € > 0, there is N4 . such that

\Efqn)\ <él, Vn>Nyu.
where
EY =1{0,1,....5, -\ (KUK,
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whence (for such n)
mUL(KSD\A) = Y m(T"J,\ A) <em(Cy)
keK )

and

m(A\ U (KE§)) = m(AN U (K)) +m(ANUL(ESY))

m(T*J, \ A) 4+ em(C,) < 2em(C,,)

reKQ,

IN

and m(A A Un(Ki@)) < 3em(C,,). Henceforth, we let n4 . be the minimal
N with |[E{Y| < el,, for all n > N.
Conversely, suppose that A € Band U = U,,(K) € C, satisfy m(AAU) <
em(U). Then
Z m(T*J,)

keK, m(T*J,\A)>/em(J,)
< > m(T*J, \ A)

keK, m(T* J,\A)>em(J,)

-

S%m(U\A)<\/E

Z m(T*J,)

keKe, m(TkJ\A¢)2\/em(Jn)

< % > m(T*J, \ A°)

keKe, m(T*J,\A)>/Em(Jn)

and

< %m(A\U)<\/E

whence
BN\ KK K| < Vel
and n > ny o /7.

To see (the well known fact [Fr]) that (X, B, m,T) is an ergodic measure
preserving transformation, let A € B with m(A4) > 0 satisfy TA = A.
Evidently, Kj(qn) #+ 0= Kj(qn) ={0,1,...,l, — 1}, whence Un(Ki‘ni) =C,.

It follows that m(A) > m(C,)(1—3e¢) for alle > 0 and n > n4 ., whence
A = X mod m.

In [Cha] it was shown that Chacon’s transformation (X,B,m,T) is
weakly mixing and not strongly mixing. We next claim that it is mildly
mizing. For a related result, see [F-K].
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To see this, we first need some notation to record how sets in C,, appear
in Cy,42. Define e; (0 < j <7) by

L Oa .:052,356’
= 15 ] = 154’557’

ko =0, Kjt+1 = K; + Iy, + €;

Kj = Kjn by

and
In—1

X;=Xjni=J T Jnys (0<5<38).
i=0
Then given n > 1, K C {0,1,...,l, — 1} and U = U,,(K) € C,, we have
Tom(UNXo) = | T Jna=UNX; (0<5<7)
ieK
and
THre(UNX;) =UNXj40.
Next suppose that A € B, e >0 and n > n4 .. Then
(T4 Join N A) < 9em(Jpse) Vie K{, 0<j<8
and
(T Jyio \ A) < 9em(Jpyn) Vi€ KY, 0<j <8
whence
m(T" (AN Xo) A (AN X;)) < 36e.
Now suppose A € B with m(A) > 0 satisfies lim inf,, oo m(AAT™A) = 0.
We claim that A =T~ !A.
To see this, fix e > 0. Then there aren > ny . and N € [I,,, l,,41 —1] such

that m(AATN A) < e, whence there is B € C,, such that m(BATN B) < 3e.
Write N = al,, +b wherea =1,2and 0 < b <,. For 0 < j < 6 —a we have

TNX; = Toltb X, = Tb=¢e X,
where e; 1 = e; and e; 2 = e; + €;41. Thus, on the one hand
™W(BNX;)=T"BnT"X;
~* BNTVNX; =BNT" %X, (0<j<7)
(where C =" D means m(C A D) < n) and on the other hand
T™NBNX;)=T"%+(BNX;1,) (0<j<6-a)

whence
BNXjam T %BNX;1, Y0<j<6-a,

B ~27e p—bteiap VO<j<6—a,
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whence (choosing j, j' with e , —ej/ o = 1)
B/ TB = A~ TA.

The cocycle. This cocycle ¢ : X — Z will be defined successively as a
sum of coboundaries. Define ¢(™ : C), 1o — Z by

15 VS Sn—‘,—l,
¢ (z) = { -3, z€Syyo,
0, else.
Note that
@) Yn>L k>n+2 TVX;p=Xin=9gw =0on X,

(this is because gj(\?) Xip = jgl(:)|Jk = 0); whereas for all U € C,,,

UnT-Chungl  =1o0n | Xee=UNY,
k=0,1,3,7

whence
m(UNT- DU (gl =1)) > dm(U).
Now fix a sequence nj " oo such that
Ny >ng+ 2,
o > sk M(Sn;) <m(Jn,)/(45(2ly, + 1))
and define ¢ := 352, g(™).
Ergodicity of Ty,. We see by (f) that for all & > 1,

(ny5)
nk+1 5:921nk+1 on Yy,,

>k
whence
(Yo O [021,, 01 # 05 1) <D0 mllgly?),, #0))
j=k+1
< @l +1) D m(Sn)) < m(i,)"k)

Jj>k+1
and for U € C,,, U # 0, we have
m(U N T~ TH7 [P, S 1])
> m(U M T (ank+1)U M [ (nk)+1 1]) ([¢2lnk+1 # ngnk+1])

m(Jn,) S 19m(U)
45 — 45

>

@I»-lk

m(U) —



TIGHTNESS OF COCYCLES 375

To show that Ty : X x Z — X X Z is ergodic, it suffices by [Schl] to
show that if A € B, m(A) > 0 and k > 1 is large enough, then

m(ANT~ et AN g, 11 = 1]) > 0.
To see this, note that for £k > 1 large enough, there exists U € C, with
m(A AU) < 2m(U)/45, whence
m(AN T—Clny+1) A N [¢2lnk+1 =1])
>m(UNT U N by, 41 =1]) —2m(A A U)

>m(U)/3 > 0.
Tightness of {m-dist.(S, ):k >1}. We first claim that

(o) ((lilg("w)m(g:a VK >1, N > ng +2.

To see this, we consider the tower Cn_o which consists of C'n-blocks, and
the spacers Sy 41 USn 42 on which Zszl g(“k) = 0. The cocycle sum over a
Cn-block is zero by construction.
An arbitrary cocycle sum of length [y in Cny12 begins in the middle of
a Cy-block, either passes over a spacer interval (in Sy41 U Sy42) or not,
and continues to the middle of the next Cy-block. In the second case, the
cocycle sum will be as over a C'ny-block, and will be zero. In the first case,
it will be as over a Cn-block less one interval (the one before the starting
place) and
K K
<Zg(nk)) — —Zg("’“)(xo)-
k=1 Iy k=1
The claim (¢) follows since 25:1 g™) =0,1,-3.
To prove our tightness claim, we prove that m([|S, | > 4]) — 0 as
K — oo. Indeed, by (o),

(IS, | > 4) < m([81,, # (ég(”’“)> /)

lnge

w([( > o), #0])

k=K+1

<tam([| 55 4 1)

k=K+1

= m(Jn
Sl Y0 mis,,) < M)

k=K+1
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