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Abstract. We extend the Davenport and Erdős construction of normal numbers to
the Zd case.

1. Introduction. A number α ∈ (0, 1) is said to be normal to the
base b if in the b-ary expansion of α, α = .d1d2 . . . (di ∈ {0, 1, . . . , b − 1},
i = 1, 2, . . .), each fixed finite block of digits of length k appears with an
asymptotic frequency of b−k along the sequence (di)i≥1. Normal numbers
were introduced by Borel [B]. Champernowne [C] gave an explicit construc-
tion of such a number, namely

θ = .123456789101112 . . .

obtained by successively concatenating all the natural numbers written to
base 10.

Let ϕ(x) = αxr+α1x
r−1+. . .+αr−1x+αr (α > 0, r ≥ 1) be a polynomial

with integer coefficients such that ϕ(n) ≥ 0 (n = 1, 2, . . .). Davenport and
Erdős [DE] generalized Champernowne’s construction and proved that the
number

.ϕ(1)ϕ(2) . . . ϕ(n) . . .

obtained by successively concatenating the b-expansions of the numbers ϕ(n)
(n = 1, 2, . . .) is also normal. We refer the reader to other generalizations of
Champernowne’s construction which appear in [AKS] and [SW].

In [LeSm] we extend Champernowne’s construction to Zd, d > 1, ar-
rays of random variables, which we shall call Zd-processes. We shall deal
with stationary Zd-processes, that is, processes with distribution invariant
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under the Zd action. We shall call a specific realization of a Zd-process a
“configuration”.

In this note we generalize the Davenport and Erdős construction to the
Zd case. For the sake of clarity, we carry out the proof only for the case
d = 2. The generalization for general d > 2 is easy and straightforward. We
begin with a very simple generalization (see also [Ci] and [KT]).

We denote by N the set of non-negative integers. Let d, b ≥ 2 be two
integers, Nd = {(n1, . . . , nd) | ni ∈ N, i = 1, . . . , d}, ∆b = {0, 1, . . . , b − 1},
Ω = ∆Nd

b .
We shall call ω ∈ Ω a configuration (lattice configuration). A configura-

tion is thus a function ω : Nd → ∆b.
Given a subset F of Nd, ωF will be the restriction of the function ω to F .

Let N ∈ Nd, N = (N1, . . . , Nd). We denote a rectangular block by

FN = {(f1, . . . , fd) ∈ Nd | 0 ≤ fi < Ni, i = 1, . . . , d},

h = (h1, . . . , hd), hi ≥ 1, i = 1, . . . , d; G = Gh is a fixed block of digits
G = (gi)i∈Fh , gi ∈ ∆b, χω,G(f) is the characteristic function of the block of
digits G shifted by the vector f in the configuration ω:

χω,G(f) =
{

1 if ω(f + i) = gi, ∀i ∈ Fh,
0 otherwise.

(1)

Definition. ω ∈ Ω is said to be rectangular normal if for any h ∈ Nd
and block Gh,

#{f ∈ FN | χω,G(f) = 1} − b−h1...hdN1 . . . Nd = o(N1 . . . Nd)(2)

as max(N1, . . . , Nd)→∞.

As remarked, in what follows we shall consider the case d = 2.

Construction. The map

L(f1, f2) =

{
f21 + f2 if f2 < f1,
f22 + 2f2 − f1 if f2 ≥ f1,

(3)

is a bijection between N and N2, inducing a total order on N2 from the
usual one on N. Let In = [α−1/(2r)b2n

2/r], n = 1, 2, . . . We define the con-
figuration ωn on F(2nIn,2nIn) as the concatenation of I2n 2n × 2n blocks of
digits with the lower left corner (2nx, 2ny), 0 ≤ x, y < In. To each of these
blocks we assign the number ϕ(L(x, y)). Next we use the b-expansion of
ϕ(L(x, y)) according to the order L to obtain the digits of the 2n× 2n block
considered. It is easy to obtain an analytic expression for the digits of the
configuration ωn:

ωn(2nx+ s, 2ny + t) = aL(s,t)(u),(4)

where
u = u(x, y) = ϕ(L(x, y)),(5)
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s, t, x, y are integers, 0 ≤ x, y < In, 0 ≤ s, t < 2n, and

n =
∑
i≥0

ai(n)bi(6)

is the b-expansion of the integer n.
Next we define inductively a sequence of increasing configurations ωn

on F(2nIn,2nIn). Put ω′1 = ω1, ω′n+1(f) = ω′n(f) for f ∈ F(2nIn,2nIn) and
ω′n+1(f) = ωn+1(f) otherwise. Put

ω∞ = lim ω′n, (ω∞)F(2nIn,2nIn)
= ω′n, n = 1, 2, . . .(7)

Theorem. ω∞ is rectangular normal.

The proof of the Theorem is given in Section 3.

2. Auxiliary notation and results. Let (ux)x≥0 be an arbitrary se-
quence in [0, 1). The quantity

D(N) = D((ux)N−1x=0 ) = sup
γ∈(0,1]

∣∣∣∣ 1

N
#{0 ≤ n ≤ N − 1 | ux ∈ [0, γ)} − γ

∣∣∣∣(8)

is called the discrepancy of (ux)N−1x=0 . The sequence (ux)x≥0 is said to be
uniformly distributed in [0, 1) if D(N)→ 0.

To estimate the discrepancy we use the Erdős–Turán inequality (see, for
example, [DrTi], p. 15)

ND(N) ≤ 3

2

(
2N

H + 1
+

∑
0<|m|≤H

|
∑N−1
x=0 e(mux)|

m

)
,(9)

where e(y) = e2πiy, m = max(1, |m|) and H ≥ 1 is arbitrary.
We shall use the following Weyl inequality (see, for example, [DrTi],

p. 15): ∣∣∣ L∑
x=1

e(ψ(x))
∣∣∣ ≤ C(θ)L1+θ(q−1 + L−1 + qL−k)2

1−k

,(10)

where ψ(x) = βxk + β1x
k−1 + . . .+ βk−1x+ βk, |β − p/q| < 1/q2, (p, q) = 1

and θ > 0 is arbitrary.

3. Proof of the Theorem. Consider the configuration ωn, where n
satisfies the following inequality:

2(n− 1)In−1 ≤ max(N1, N2) < 2nIn.

Let h1, h2 ≥ 1 be integers and

di1,i2 ∈ {0, 1, . . . , b− 1}, 0 ≤ i1 < h1, 0 ≤ i2 < h2.

We consider the block of digits G = (di1,i2)0≤i1<h1, 0≤i2<h2
, the configuration

ωn, and the block of digits ω0 = (ωn(i, j))0≤i<N1, 0≤j<N2 .
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To compute the number of appearances of the block G in the configura-
tion ω0, we introduce the following notation (see (1)):

Vn,G(L1,M1;L2,M2)(11)

=
⋃

(i,j)∈[L1,L1+M1)×[L2,L2+M2)

{(i, j) | χωn,G(i, j) = 1},

Vn,G(N1, N2)= Vn,G(0, N1; 0, N2).(12)

Let

N1 = 2nN11 +N12, N2 = 2nN21 +N22, with N12, N22 ∈ [0, 2n).(13)

Next, we fix s, t ∈ [0, 2n), and compute the number of appearances of G
in the configuration ω0 = (ωn(i, j))0≤i<N1, 0≤j<N2 such that the shift of the
block G by the vector (i, j) satisfies i ≡ s (mod 2n), j ≡ t (mod 2n). Set

As,t,G(M1,M2) =
⋃

(i,j)∈[0,2nM1)×[0,2nM2)

{(i, j) | χωn,G(i, j) = 1 and(14)

i ≡ s, j ≡ t (mod 2n)}.

Let ε > 0 be arbitrary. To complete the proof of the Theorem it is
sufficient to prove that for all s, t ∈ [εn, 2n(1− ε)),

|#As,t,G(M1,M2)− b−h1h2M1M2| < εM1M2.

Observe that

Vn,G(N1, N2) = Vn,G(2nN11, 2nN21) ∪ Vn,G(0, 2nN1; 2nN21, N22)(15)

∪ Vn,G(2nN11, N12; 0, N2)

and

Vn,G(2nN11, 2nN21) =
⋃

0≤s<2n

⋃
0≤t<2n

As,t,G(N11, N21),(16)

Vn,G(0, 2nN11; 2nN21, N22)(17)

=
⋃

0≤s<2n

⋃
0≤t<N22

(As,t,G(N11, N21 + 1) \As,t,G(N11, N21)).

Now let
v(i1, i2) = v(s, t, i1, i2) = L(s+ i1, t+ i2).(18)

Everywhere below 0 ≤ s, t < 2n− h1h2.
Using (4)–(6) we see that the condition

ωn(2nx+ s+ i1, 2ny + t+ i2) = di1,i2 , ∀(i1, i2) ∈ [0, h1)× [0, h2),(19)

is equivalent to the statement

av(i1,i2)(u(x, y)) = di1,i2 , ∀(i1, i2) ∈ [0, h1)× [0, h2).(20)
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From (14), (1) and (19), (20) we obtain

As,t,G(M1,M2)(21)

= {(2nx+ s, 2ny + t) ∈ [0, 2nM1)× [0, 2nM2) |
av(i1,i2)(u(x, y)) = di1,i2 , ∀(i1, i2) ∈ [0, h1)× [0, h2)}.

Let k1, . . . , kh (h = h1h2) be an increasing sequence of integers from the set

{v(s, t, i1, i2) + 1 | i1 = 0, 1, . . . , h1 − 1, i2 = 0, 1, . . . , h2 − 1},(22)

and µ(i1, i2) ∈ [1, h] ((i1, i2) ∈ [0, h1) × [0, h2)) be a sequence of integers so
that

µ(i1, i2) > µ(j1, j2)⇔ v(s, t, i1, i2) > v(s, t, j1, j2),(23)

where iν , jν ∈ [0, hν), ν = 1, 2. It is evident that

kµ(i1,i2) = v(s, t, i1, i2)+1, i1 = 0, 1, . . . , h1−1, i2 = 0, 1, . . . , h2−1.(24)

Now put

dµ(i1,i2) = di1,i2 , i1 = 0, 1, . . . , h1 − 1, i2 = 0, 1, . . . , h2 − 1.(25)

From (21)–(25) we see that

As,t,G(M1,M2) = {(2nx+ s, 2ny + t) ∈ [0, 2nM1)× [0, 2nM2) |(26)

aki−1(u(x, y)) = di, ∀i ∈ [1, h1h2]}.

Lemma 1. Let M1,M2 ∈ [0, In), In = [α−1/(2r)b2n
2/r], s, t ∈ [0, 2n −

15h], h = h1h2. Then

#As,t,G(M1,M2)(27)

=

bk2−k1−1−1∑
x2=0

. . .

bkh−kh−1−1−1∑
xh=0

Bst(M1,M2, d(x2, . . . , xh)),

where

Bst(M1,M2, d) = #{(x, y) ∈ [0,M1)× [0,M2) |(28)

{u(x, y)b−kh} ∈ [d/bkh−k1+1, (d+ 1)/bkh−k1+1)},

and

d = d(x2, . . . , xh)(29)

= d1 + x2b+ d2b
k2−k1 + . . .+ xhb

kh−1−k1+1 + dhb
kh−k1 .

P r o o f. From (6), we see that the condition aki−1(u(x, y)) = di, ∀i ∈
[1, h], is equivalent to the statement

u(x, y) = x1 +d1b
k1−1 +x2b

k1 +d2b
k2−1 + . . .+xhb

kh−1 +dhb
kh−1 +xh+1b

kh ,

with xi ∈ [0, bki−ki−1−1), k0 = 0, i = 1, 2, . . . , h, xh+1 ≥ 0. Using (26) and
(29) we get
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As,t,G(M1,M2)(30)

=

bk2−k1−1−1⋃
x2=0

. . .

bkh−kh−1−1−1⋃
xh=0

{(2nx+ s, 2ny + t) ∈ [0, 2nM1)× [0, 2nM2) |

u(x, y) = x1 + d(x2, . . . , xh)bk1−1 + xh+1b
kh}

for arbitrary integers x1 ∈ [0, bk1−1), xh+1 ≥ 0. Bearing in mind that the
condition

u(x, y) = x1 + dbk1−1 + xh+1b
kh

is equivalent to the condition

{u(x, y)b−kh} ∈
[

d

bkh−k1+1
,

d+ 1

bkh−k1+1

)
we deduce from (30) and (28) that

As,t,G(M1,M2)

=

bk2−k1−1−1⋃
x2=0

. . .

bkh−kh−1−1−1⋃
xh=0

{(2nx+ s, 2ny + t) ∈ [0, 2nM1)× [0, 2nM2) |

{u(x, y)b−kh} ∈ [d/bkh−k1+1, (d+ 1)/bkh−k1+1)}.

Lemma 2. Let 1 ≤ M2 ≤ M1 ∈ [bξ2n
2/r, In), In = [α−1/(2r)b2n

2/r], ξ =
(1− ε)2 + ε ∈ (0, 1), s, t ∈ [εn, 2n(1− ε)], h = h1h2, n ≥ 4/ε2, ε ∈ (0, 1/(4r))
and 0 < |m| ≤ H = bkh−k1+s+t. Then

S(m) =

M2−1∑
y=0

M1−1∑
x=0

e(mu(x, y)b−kh) = O(M1M2H
−1b−n

2ε22−2r−2

).(31)

P r o o f. By (22), (18) and the condition of the lemma, we get

k1 = max(s2 + t, t2 + t− s), k1 − s− t > ε2n2/2,(32)

0 ≤ kh − k1 ≤ 2sh1 + 2th2 + 2h21 + 2h22 ≤ 8nh+ 4h2,(33)

H = O(b16nh).

Let
M0 ∈ [bξ12n

2/r, In], ξ1 = (1− ε)2 + ε2,(34)

and

σ(y) =

M0−1∑
x=0

e(mϕ(x2 + y)b−kh).

Applying Weyl’s inequality (10) with θ = ε2r2−2r−2, L = M0, k = 2r,
β = αmb−kh , q = bkh/d and d = gcd(bkh , αm), where α > 0 is an integer, we
obtain
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|σ(y)|(35)

≤ C(ε2r2−2r−2)M1+ε2r2−2r−2

0 (b−khd+M−10 + bkhd−1M−2r0 )2
−2r+1

.

Using the assumption of the lemma, (34), (18), (22) and (32), (33) we
get

b−khd ≤ b−khα|m| ≤ αb−khH = αb−k1+s+t(36)

= O(b−k1/2) = O(b−ε
2n2/2),

M−10 ≤ b−2((1−ε)
2+ε2)n2/r < b−n

2/r,(37)

bkhd−1M−2r0 ≤ b(kh)max(M0)−2rmin ≤ b
4n2(1−ε)2+2n−2r(((1−ε)2+ε2)2n2/r)(38)

= b−4n
2ε2+2n = O(b−2n

2ε2).

Now from (33)–(38) we have

M−10 σ(y) = O(Mε2r2−2r−2

0 b−ε
2n22−2r

) = O(b−ε
2n22−2r−1

),

and
HM−10 σ(y) = O(b−ε

2n22−2r−2

).(39)

Putting

σ1 =

M2
2−1∑
x=0

e(mϕ(x)b−kh),(40)

σ2 =

M2−1∑
y=0

M1−1∑
x=0

e(mϕ(x2 + y)b−kh),(41)

σ3 =

M2−1∑
x,y=0

e(mϕ(x2 + y)b−kh),(42)

and using (5) and (31), we obtain

S(m)− σ1 =

M2−1∑
y=0

M1−1∑
x=M2

e(mu(x, y)b−kh) = σ2 − σ3.(43)

If M2 < bξ12n
2/r, we apply (39) with M0 = M1 for σ2, and the trivial

estimate for σ1 and σ3:

HM−11 M−12 S(m) = O(b−ε
2n22−2r−2

+ (HM−11 M−12 )M2
2 )(44)

= O(b−ε
2n22−2r−2

+ b16nh+(ξ1−ξ)2n2/r)

= O(b−ε
2n22−2r−2

).

Now let M2 ≥ bξ12n
2/r. We apply (39) with M0 = M2 for σ2 and for σ3:

HM−11 M−12 (|σ2|+ |σ3|) = O(b−ε
2n22−2r−2

).(45)
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To estimate the sum σ1 we apply Weyl’s inequality with θ = ε2r2−2r−3,
L = M2

2 , k = r, β = αmb−kh , q = bkh/d, d = gcd(bkh , αm), and repeat the
calculations (35)–(39):

HM−11 M−12 |σ1| = O(b−ε
2n22−2r−2

).(46)

By (44)–(46) the assertion of the lemma follows.

Lemma 3. Under the assumptions of Lemma 2,

D = D(({u(x, y)b−kh})M1−1,M2−1
x=0, y=0 ) = O(bk1−kh−s−t).(47)

P r o o f. We apply Lemma 2, (31), (33) and Erdős–Turán’s inequality
with H = bkh−k1+s+t to get

D = O

(
H−1 + (M1M2)−1

∑
0<|m|≤H

|S(m)|
m

)

= O

(
H−1

(
1 +

1

s+ t+ 1

∑
0<|m|≤H

1

m

))
= O(H−1(1 + (s+ t+ 1)−1 logH))

= O(H−1(1 + (s+ t+ 1)−1(kh − k1 + s+ t))) = O(H−1).

Using the definition of discrepancy (8), we get:

Corollary 1. Under the assumptions of Lemma 2,

Bst(M1,M2, d) = M1M2b
k1−kh−1(1 +O(b−s−t)),(48)

where Bst(M1,M2, d) is defined in (28).

Corollary 2. Under the assumptions of Lemma 2,

#As,t,G(M1,M2) = b−hM1M2 +O(M1M2b
−s−t).(49)

P r o o f. This follows from (28), Lemma 1 and Corollary 1.

Lemma 4. Under the assumptions of Lemma 2, let 1 ≤ N2 ≤ N1 ∈
[2nbξ2n

2/r, 2nIn). Then

#Vn,G(N1, N2)− b−h4n2N1N2 = 200ε0N1N2 +O(N1N2/n), |ε0| ≤ ε.
P r o o f. Using (16) we have

Vn,G(2nN11, 2nN21)(50)

=
⋃

εn≤s,t<2n(1−ε)

⋃
min(s,t)<εn

⋃
2n(1−ε)≤max(s,t)<2n

As,t,G(N11, N21).

We apply (49) to the first union and the trivial estimates to the other unions:

#Vn,G(2nN11, 2nN21)(51)

=
∑

εn≤s,t<2n(1−ε)

(b−hN11N21 +O(N11N21b
−s−t)) + 16ε1n

2N11N21
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= b−h4n2N11N21 + 32ε2n
2N11N21 +O(N11N21),

N21 ≥ 1, |εi| < ε, i = 1, 2.

Similarly, from (17) and (49) we obtain

(52) #Vn,G(0, 2nN11; 2nN21, N22)

=
∑

0≤s<2n

∑
0≤t<N22

(b−hN11 +O(N11b
−s−t)) + 16ε3nN11N22

= b−h2nN11N22 + 32ε4nN11N22 +O(N11N22)

5 with |εi| < ε, i = 3, 4. We get a trivial estimate from (11)–(13):

#Vn,G(2nN11, N12; 0, N2) ≤ N2N12 ≤ 2nN2 < N1N2/n.

Now the assertion of the lemma follows from (13), (15), and (51)–(52).

Similar notation is introduced for the configuration ω (instead of ωn):

VG(P1, P2) = {(v1, v2) ∈ [0, P1)× [0, P2) |(53)

ω(v1 + i1, v2 + i2) = di1,i2 , ∀(i1, i2) ∈ [0, h1)× [0, h2)}.

We prove the Theorem for the case N1 ≥ N2. The other case is simi-
lar.

End of the proof of the Theorem. Let 1 ≤ N2 ≤ N1, N1 ≥ 4b8. Then
there exists n ≥ 3 so that

N1 ∈ [2(n− 1)In−1 − h, 2nIn − h).(54)

Now let
N ′1 = 2(n− 1)In−1 − h, N ′2 = min(N2, N

′
1).(55)

From (53) and the definition of the configurations ω, ωn we get

#VG(N1, N2) = #Vn,G(N1, N2)−#Vn,G(N ′1, N
′
2) + #VG(N ′1, N

′
2)(56)

+ 2ε1hN
′
2 + 2ε2N1 min(h,N2 −N ′2)

with |εi| ≤ 1, i = 1, 2. It is easy to see that if N2 ≤ n, then N2 = N ′2,
otherwise h ≤ hN2/n and

#VG(N1, N2)−#Vn,G(N1, N2) = #VG(N ′1, N
′
2)−#Vn,G(N ′1, N

′
2)(57)

+ 4ε3hN1N2/n with |ε3| ≤ 1.

Analogously

#VG(N ′1, N
′
2)−#Vn,G(N ′1, N

′
2) = #VG(N ′′1 , N

′′
2 )−#Vn−1,G(N ′′1 , N

′′
2 )(58)

+ 4ε4hN1N2/n,
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where

N ′′1 = 2(n− 2)In−2 − h, N ′′2 = min(N2, N
′′
1 ), |ε4| ≤ 1.(59)

It is evident that

#VG(N ′′1 , N
′′
2 ) + #Vn,G(N ′′1 , N

′′
2 ) ≤ 2N ′′1N

′′
2 < 2N1N2/n.(60)

From (56)–(60) we obtain

#VG(N1, N2) = #Vn,G(N1, N2)−#Vn,G(N ′1, N
′
2)

+ #Vn−1,G(N ′1, N
′
2) +O(N1N2/n).

It is easy to verify that

bξ2n
2/r = o(In−1),

where ξ = (1 − ε)2 + ε ∈ (0, 1), and In = [α−1/(2r)b2n
2/r]. Hence N1 ∈

[2nbξ2n
2/r, 2nIn) and we can apply Lemma 4:

#VG(N1, N2)

= b−hN1N2 − b−hN ′1N ′2 + 400ε5N1N2 + b−hN ′1N
′
2 +O(N1N2/n)

= b−hN1N2 + 400ε5N1N2 +O(N1N2/n) with |ε5| ≤ ε.

Now from (1), (2), and (53) we obtain the assertion of the Theorem.

Acknowledgments. We are grateful to the referee for his corrections
and suggestions.

REFERENCES

[AKS] R. Adler, M. Keane and M. Smorodinsky, A construction of a normal
number for the continued fraction transformation , J. Number Theory 13
(1981), 95–105.
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