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ON THE K-THEORY OF TUBULAR ALGEBRAS

BY

DIRK KUSS IN (PADERBORN)

Abstract. Let Λ be a tubular algebra over an arbitrary base field. We study the
Grothendieck group K0(Λ), endowed with the Euler form, and its automorphism group
Aut(K0(Λ)) on a purely K-theoretical level as in [7]. Our results serve as tools for clas-
sifying the separating tubular families of tubular algebras as in the example [5] and for
determining the automorphism group Aut(DbΛ) of the derived category of Λ.

1. Introduction. This article is concerned with the Grothendieck group
(endowed with the Euler bilinear form) of a canonical algebra Λ over a non-
algebraically closed field (as defined by Ringel and Crawley-Boevey [13]), in
particular with canonical algebras of tubular type (compare [7, 11]). All
algebras which are derived-equivalent to Λ are also covered by our investi-
gation, in particular tubular algebras (= concealed-canonical algebras [11]
of tubular type) and derived-tubular algebras. This follows from the fact
that an equivalence (of triangulated categories) of the derived categories in-
duces an isomorphism of the Grothendieck groups preserving the Euler forms
(compare [3]). The main aim of this paper is to develop the K-theoretical
background which is needed to prove some results in the representation the-
ory of tubular algebras and to describe certain effects which occur when the
base field is not algebraically closed.

A tubular algebra Λ admits a rational family of separating tubular fam-
ilies of stable tubes. Over an algebraically closed field all these stable sepa-
rating tubular families for Λ are equivalent to each other as categories [12,
10]. This is not true in general over a non-algebraically closed field. In fact,
in [5] we gave an example of a tubular canonical algebra over the real num-
bers which admits two equivalence classes of separating tubular families of
stable tubes. The methods and results of the present paper allow one to
prove similar results for arbitrary tubular algebras.

Furthermore we give an example which shows that the distinction lemma
in [1, 2] is not valid over non-algebraically closed fields.

We also determine the group of automorphisms of the Grothendieck
group of Λ which preserve the Euler form. This is the first step of describing
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the automorphism group of the derived category (cf. [9]). The starting point
of our discussion is [7]. Furthermore, we correct some errors which appeared
in that article. Some results in our paper are part of the author’s doctoral
thesis [6]. The author would like to thank Professor Helmut Lenzing for
many helpful discussions.

2. Canonical bases and invariance of tubular symbols. We recall
some definitions from [7]. A bilinear group is a finitely generated abelian
group V equipped with a (non-symmetric) bilinear form

〈−,−〉 : V × V → Z

and an automorphism τ : V → V (called Coxeter transformation) such that
for all x,y ∈ V we have

〈y,x〉 = −〈x, τy〉.

If additionally the bilinear form is non-degenerate, then V is called a bilinear
lattice. We always assume that V is normalized , that is 〈V, V 〉 = Z. Mor-
phisms between bilinear groups are group homomorphisms which preserve
the bilinear form and commute with the Coxeter transformation.

Let V = (V, 〈−,−〉, τ) be a bilinear group, and denote by KernV the
subgroup consisting of all x ∈ V such that 〈x, V 〉 = 0 (equivalently, 〈V,x〉
= 0). We call a linear map r : V → Z a rank or rank function if r is
surjective and compatible with the Coxeter transformation, that is, r = r ◦ τ .
The radical of V is defined as RadV = {x ∈ V | τx = x}. If w ∈ RadV ,
w 6∈ KernV , and c := [Z : 〈V,w〉], then rkw := 1

c 〈−,w〉 defines a rank
function, called w-rank .

Assume now that V is a bilinear lattice. Direct summands of RadV of
rank 1 are called 1-tubes. Let r be a rank function. By scalar extension with
Q we get v ∈ V which is generator of a 1-tube such that r = rkv. Hence we
have a bijection between rank functions and generators of 1-tubes.

Two ranks r and r′ on V are called similar if there is σ ∈ AutV such that
r′ = rσ. If σ ∈ AutV and Zw and Zw′ are 1-tubes, then rkw = rkw′ σ if and
only if σw′ = w. If V and V ′ are bilinear lattices and w ∈ V and w′ ∈ V ′ are
distinguished generators of 1-tubes, then an isomorphism between bilinear
lattices σ : V → V ′ is called a rank isomorphism if σw = w′. Denote by
Autw V the subgroup of AutV consisting of automorphisms σ such that
σ(w) = w.

Let V be a bilinear group. An element u ∈ V is called a root if 〈u,u〉 > 0
and 〈u,x〉/〈u,u〉 ∈ Z for all x ∈ V . Let u ∈ V be a root with τ -period p ≥ 2.
We call

u, τu, . . . , τp−1u
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a root basis if these elements are linearly independent over Z and

〈τ iu, τ ju〉 =


〈u,u〉, j ≡ imod p,

−〈u,u〉, j ≡ i+ 1 mod p,

0, otherwise.

A subgroup T ⊂ V is called a p-tube (p ≥ 2) if it is generated by a root basis
of length p. A p-tube T and a p′-tube T ′ are called orthogonal if 〈T, T ′〉 = 0.

Canonical (bilinear) lattices are defined in [7]. They serve as a model
for Grothendieck groups of canonical algebras (exceptional curves [8], resp.).
The following proposition is a converse of [7, Proposition 7.7] and can be
viewed as a definition for canonical lattices. We omit the straightforward
proof.

Proposition 2.1. Let V be a (normalized) bilinear group and

Bw : a, τ jsi (1 ≤ i ≤ t, 0 ≤ j ≤ pi − 2), w

a system of generators of V having the following properties (1)–(4):

(1) w ∈ RadV , w 6∈ KernV .
(2) a is a root of w-rank 1.
(3) The si are roots of w-rank 0 and their τ -orbits form root bases of

pairwise orthogonal pi-tubes.
(4) 〈a, si〉 > 0, 〈a, τ jsi〉 = 0 for 0 < j ≤ pi − 1; also, 〈a, si〉/〈a,w〉 ∈ Z.

Under these assumptions, the numbers

κ := 〈a,a〉, ε :=
〈a,w〉
〈a,a〉

, ei :=
〈a, si〉
〈si, si〉

, fi :=
1

ε

〈a, si〉
〈a,a〉

are positive integers, Bw is a Z-basis, 〈−,−〉 is non-degenerate, ε ∈ {1, 2},
and (V,w) is a canonical bilinear lattice with symbol (cf. [7, Definition 7.6])

σ[V,w] =

p1, . . . , pt

d1, . . . , dt ε

f1, . . . , ft

 ,(2.1)

where di = eifi.

It is shown in [11] that the Grothendieck group of a concealed-canonical
algebra has a basis as in the proposition (in particular this is true for a
tubular algebra).

Let V be a canonical lattice as in the proposition. We call (contrary
to [7]) the basis Bw canonical or w-canonical and write it usually in the
form

a | s1, τs1, . . . , τp1−2s1 | . . . | st, τst, . . . , τpt−2st | w(2.2)
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We call the symbol (2.1) more precisely a w-symbol. A canonical lattice is
thus a bilinear group admitting a canonical basis. Note that the number κ as
defined above can be calculated from the symbol, since it is the smallest pos-
itive integer such that κεfi/ei ∈ Z for i = 1, . . . , t (see [7, Proposition 7.7]).
Let p = lcm(p1, . . . , pt) and

δ[V ] := p

( t∑
i=1

eifi

(
1− 1

pi

)
− 2

ε

)
.

Then V is called domestic (resp. tubular , wild) if δ[V ] < 0 (resp. = 0, > 0)
(compare [7] and also [11] for further characterizations).

We are interested in the question whether the numbers κ, ε, ei, fi (hence
the symbol) are invariants of a canonical lattice. That is, given a canonical
lattice and two canonical bases, are the symbols defined by these canonical
bases the same (up to permutation)? This is not true in general, since there
is a counterexample in the wild case (see Example 4.3), and also not true
for some tubular cases, as we will see. But we show that the symbol is an
invariant of a tubular canonical lattice with respect to rank isomorphisms.

Let V be a bilinear lattice and B be a Z-basis of V . We call the matrix
C associated with the bilinear form relative to the basis B a Cartan matrix .
If Φ is the matrix associated with the Coxeter transformation τ with respect
to B, then we have the relation Φ = −C−1Ct (see [7]).

Lemma 2.2. Let (V,w) be a canonical lattice. Under the notations above
the numbers t, δ[V ], the determinant of a Cartan matrix and the weights
p1, . . . , pt (up to permutation) are invariants with respect to isomorphisms
of bilinear groups. Moreover , the product κε is an invariant with respect to
rank isomorphism; it coincides with the index [Z : 〈V,w〉].

P r o o f. The invariance of the weights follows from considering the Cox-
eter polynomial (see [7, Proposition 7.8]). In order to see the invariance of
δ[V ], distinguish the tubular from the non-tubular case. The tubular case is
clear, since tubularity means that the radical of V is of rank two. If V is
non-tubular, then by [7, 4.3+8.2], δ[V ] is the unique non-zero integer δ such
that τp = σδ0, where σ0 is the shift automorphism associated with w, and w
generates the radical of V .

Let (V,w) be a canonical lattice with basis as in Proposition 2.1. Let
u ∈ V be a root of w-rank 0. Define

e(u) :=
〈a,u〉
〈u,u〉

and f(u) :=
1

ε

〈a,u〉
〈a,a〉

.

We call the fraction e(u)/f(u) = κε/〈u,u〉 the root quotient of u.

Lemma 2.3. With the definitions from Proposition 2.1, let Ti be the tube
generated by the τ -orbit of si (i = 1, . . . , t). Let u ∈ V be a root of w-rank 0.
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Then there is i ∈ {1, . . . , t} and n ∈ Z such that nei/fi ∈ Z and u = u′+nw,
where u′ is a root in Ti; the root quotient of u is ei/fi. If , moreover , the
τ -orbit of u forms a root basis, then there is some j such that (after possibly
changing n) u = ±τ jsi + nw.

P r o o f. There is a representation u =
∑t
i=1 ui + nw where ui ∈ Ti

and n ∈ Z. Since u is a root, the number 〈u,u〉 =
∑t
i=1〈ui,ui〉 divides

all the non-negative integers 〈u,ui〉 = 〈ui,ui〉, hence u = ui + nw for
some i. Therefore, u′ = ui is a root in Ti and hence also in V . Moreover,
〈u,u〉 = 〈u′,u′〉 = 〈si, si〉 [7, Proposition 5.2]). We get

e(u)

f(u)
=

κε

〈si, si〉
=
ei
fi
.

It is easy to check that if v is a root in Ti, then v + nw is a root if and only
if nei/fi ∈ Z. Moreover, if the τ -orbit of u forms a root basis, then also the
τ -orbit of u′ forms a root basis and hence u′ is a root of length ±1 (for the
notion of length see [7]).

Theorem 2.4. The symbol is a complete invariant of a tubular canonical
lattice with respect to rank isomorphisms.

P r o o f. The proof is based on the analysis of the list of tubular symbols
in [7], see also Table 1. Tubular lattices which are rank isomorphic share the
same sequence of weights and the same determinant of the Cartan matrices.
In some cases we get pairs of symbols (Table 1), where these data coincide.
In these cases the members of the pairs do not lead to rank isomorphic

lattices since either the numbers κε do not coincide, or (in the case
(

2 2
2 2
1 2

)
and (2 2 | 2)) the root quotients do not coincide (which are 1

2 , 2 in the first
and 1, 1 in the second case) (see also Remark 8.2 (3)).

To show completeness, let (V,w) and (V ′,w′) be tubular canonical lat-
tices with the same symbols. Then we have canonical bases

Bw : a, τ jsi (1 ≤ i ≤ t, 0 ≤ j ≤ pi − 2), w

of V and

Bw′ : a′, τ js′i (1 ≤ i ≤ t, 0 ≤ j ≤ pi − 2), w′

of V ′ as in Proposition 2.1. It is then possible to define a rank isomorphism
σ on these bases in the obvious way which preserves the bilinear form since
the symbols are the same.

With the same arguments one shows that the symbol is a complete in-
variant of a domestic canonical lattice with respect to isomorphisms.



142 D. KUSSIN

3. Invariance of tubular decompositions

Lemma 3.1. Let (V,w) be a non-wild (that is, domestic or tubular)
canonical lattice, and let σ ∈ Autw V . Let (2.2) be a canonical basis and
Ti be the tube generated by the τ -orbit of si (i = 1, . . . , t). Then there is a
permutation π ∈ St such that for each i ∈ {1, . . . , t} we have σ(Ti) = Tπ(i).

P r o o f. By Lemma 2.3 there is a permutation π ∈ St such that σ(si) =
±τkisπ(i)+niw, where ni ∈ Z and nieπ(i)/fπ(i) ∈ Z. Now ni ∈ Zfπ(i) (which

in case the symbol is different from
(

2
4
2

)
easily follows from the fact that then

each ei = 1 or fi = 1; applying σ to s1 + τs1 = 2w and involving σ(w) = w
shows the assertion also in that case). This implies σ(si) ∈ Tπ(i).

Example 3.2. The lemma is not true in general for wild canonical lat-

tices. For example, consider the wild symbol
(

4
4
2

)
(which is easily seen to

be realizable as the Grothendieck group of a canonical algebra over the real
numbers R), defined by the canonical basis a | s, τs, τ2s | w. The canonical
basis a − 3s − 2τs − τ2s | −s + w,−τs + w,−τ2s + w | w defines the same
symbol. The tubes generated by the τ -orbits of s and −s + w, resp., are
distinct.

Remark 3.3. The preceding lemma provides a proof (in the non-wild
cases) of [7, Theorem 12.2]. Note that [7, Proposition 11.4] which is used
there does not hold (even in the tubular case): for example, let (V,w) be the

tubular canonical lattice with canonical basis a | s1 | w and symbol
(

2
4
2

)
.

Then the τ -orbits of s1 and s1 + w, resp., generate two different tubes of
elements of rank zero. Another obstruction is treated in Section 7.

4. Further invariants. In this section we do not restrict ourselves to
tubular canonical lattices. We show that the numbers κ and ε are invariants
(up to rank isomorphism). By Lemma 2.2 we only know that the product
κε is an invariant.

In the canonical lattice (V,w) we fix a canonical basis B as in (2.2) which
defines a symbol (2.1) and assume that we have another w-canonical basis

B̃. By Lemma 2.3, after slightly changing B̃ we get a w-canonical basis
B′, yielding (up to permutation) the same symbol as B̃, and which is of the
form

B′ : a′ | ±τ jsi + niw (1 ≤ i ≤ t, 0 ≤ j ≤ pi − 2) | w,

where a′ has the shape

a′ = a +

t∑
i=1

pi−2∑
j=0

αijτ
jsi.
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Lemma 4.1. Under the preceding assumptions we have

αij = ±(pi − 1− j)ni
ei
fi

and

〈a′,a′〉 = 〈a,a〉+ κε

t∑
i=1

±(pi − 1)niei + κε

t∑
i=1

n2i
ei
fi
· pi(pi − 1)

2
.(4.1)

P r o o f. Exploit 〈a′,±τ jsi + niw〉 = 0 (j = 1, . . . , pi − 1).

Proposition 4.2. The numbers κ and ε are invariants of a canonical
lattice (V,w) with respect to rank isomorphisms.

P r o o f. Let κ′ = 〈a′,a′〉 and ε′ = 〈a′,w〉/〈a′,a′〉. The preceding lemma
shows that 〈a,a〉 divides 〈a′,a′〉. Since κε = κ′ε′, the formula also shows
that 〈a′,a′〉 divides 〈a,a〉, hence κ = κ′ and then also ε = ε′.

Example 4.3. We show that a w-symbol in the wild case need not
be unique. Consider the canonical lattice (V,w) with w-canonical basis
a | s1 | s2 | s3 | s4 | w, which defines the symbol 2 2 2 2

1 1 25 25 ε

1 1 5 5

 .

An easy calculation shows that

a + s1 + s2 − s3 | s1 + w | s2 + w | s3 −w | s4 | w

is also a w-canonical basis which defines the symbol 2 2 2 2

9 9 9 25 ε

3 3 3 5

 .

This is a counterexample to the result [7, Theorem 13.1].

5. Slopes and rank functions. Let (V,w) be a tubular canonical
lattice with rank rk = rkw, let p be the least common multiple of the
weights, and let a ∈ V be a root of rank 1 occurring in a w-canonical basis.

Lemma 5.1. Let u :=
∑p−1
j=0 τ

ja. Then u,w forms a Q-basis of Q ⊗
RadV .

P r o o f. By [7, Proposition 10.3], RadV is free of rank 2, hence Q⊗RadV
is two-dimensional over Q. Since rk u = p and rk w = 0 the elements u and
w are linearly independent.
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Remark 5.2. In case
(
2
2

∣∣ 2
)

the elements 1
2 (u−w), w form a Z-basis

of RadV . In all other tubular cases RadV has a Z-basis of the form (1/c)u,
w, where c ∈ {1, 2, 3}. Compare the fourth column of Table 1.

Denote by Q the disjoint union Q ∪ {∞}, where ∞ will be considered as

the “fraction” 1/0. Let q ∈ Q, q = d/r such that (d, r) = 1, r ≥ 0. Define
w̃q := r · u + d ·w and let wq be such that Zwq is a 1-tube and w̃q ∈ Nwq.

Proposition 5.3. (1) The 1-tubes of (V,w) are exactly the Zwq (q∈Q).
(2) The rank functions (up to sign) are in one-to-one correspondence

with the elements q ∈ Q.

P r o o f. It is not difficult to show that the map q 7→ Zwq is a bijection

between Q and 1-tubes.

The automorphism group of RadV can be identified with the modular
group Γ = SL2(Z). By restriction each σ ∈ AutV induces an element in Γ .

Denote by P(RadV ) the set of all direct summands of rank 1 of RadV ,

which we also identify with Q. Each σ ∈ AutV (or each σ ∈ Γ ) induces
a bijective map σ on P(RadV ), which we consider as an element of the
projective modular group Γ = PSL2(Z). In this way the group AutV acts

on the set Q (via σ(wq)=±wσ(q)). Let q, q′∈Q. We call q and q′ equivalent
if there is a σ ∈ AutV such that σwq = wq′ . We call the classes of the

induced equivalence relation on Q slope classes.

6. Shift automorphisms. Let (V,w) be a tubular canonical lattice
with symbol (2.1) which is defined by a fixed w-canonical basis (2.2) and
let p = lcm(p1, . . . , pt). For all x, y ∈ V let

〈〈x,y〉〉 :=

p−1∑
j=0

〈τ jx,y〉.

Let rk = rkw, and define a degree function deg : V → Z by

deg(x) =
1

κε
〈〈a,x〉〉

for all x ∈ V . Then we can define the slope of elements x ∈ V , for which
not both deg x and rk x are zero, by µ(x) = deg(x)/rk(x) ∈ Q. Obviously,

µ(wq) = q for all q ∈ Q. (The slope depends on the choice of deg (resp.
a) and rk (resp. w).) We define certain shift automorphisms (as in [7]) and
study their effect on the slope. For the general notion of a shift automor-
phism associated with an arbitrary tube we refer to [7].

Let

σ0(x) = x− 〈w,x〉
κε

w.(6.1)

We have deg σ0(x) = deg x + p rk x, rkσ0(x) = rk x and µσ0(x) = µx + p.
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For i = 1, . . . , t let

σi(x) = x−
pi−1∑
j=0

〈τ jsi,x〉
〈si, si〉

τ jsi.(6.2)

We have deg σi(x) = deg x + di(p/pi) rk x, rkσi(x) = rk x and µσi(x) =
µx + dip/pi.

Remark. It is easy to see that the τ -orbit of a forms a root basis of a
p-tube.

Let

σa(x) = x−
p−1∑
j=0

〈τ ja,x〉
〈a,a〉

τ ja.(6.3)

We have deg σa(x) = deg x, rkσa(x) = rk x − εdeg x and µσa(x) =
µx/(1− εµx).

Each automorphism σ ∈ AutV induces a bijective map σ from Q into
itself. We consider the subgroup G of Γ generated by these maps. Our aim
is to calculate the (number of) orbits of the action of G on Q. Consider the
subgroup S of G which is generated by the induced maps of σ0, σa and all
the σi (i = 1, . . . , t). Studying the list of tubular symbols in [7] (see also
Table 1) we see that S is already generated by two of these maps, denoted
by σ and %, where the following five cases can occur:

1. σ(q) = q + 1, %(q) = q/(1 + q);
2. σ(q) = q + 2, %(q) = q/(1 + q);
3. σ(q) = q + 3, %(q) = q/(1 + q);
4. σ(q) = q + 1, %(q) = q/(1 + 2q);
5. σ(q) = q + 2, %(q) = q/(1 + 2q).

Lemma 6.1. Let S = 〈σ, %〉. In each of the five cases the orbits of the

action of S on Q are the following :

1. Q;
2. {a/b | a ∈ Z, b ∈ N, a even}, {a/b | a ∈ Z, b ∈ N, a odd};
3. {a/b | a ∈ Z, b ∈ N, a ≡ 0 mod 3}, {a/b | a ∈ Z, b ∈ N, a 6≡ 0 mod 3};
4. {a/b | a ∈ N, b ∈ Z, b even}, {a/b | a ∈ N, b ∈ Z, b odd};
5. {a/b | a ∈ Z, b ∈ N, a odd , b odd}, {a/b | a ∈ Z, b ∈ N, a odd , b even},

{a/b | a ∈ Z, b ∈ N, a even, b odd}.

Here, the notation a/b tacitly means that a and b are coprime.

Proof. Denote by R and S the generators ( 1 0
1 1 ), ( 1 1

0 1 ) of Γ , and by
R, S their images in Γ . It is sufficient to determine the number of orbits
of the action of the subgroups 〈R,S〉 = Γ , 〈R,S2〉, 〈R,S3〉, 〈R2, S〉, and

〈R2, S2〉 of Γ on Q, in other words the number of (equivalence classes of)
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cusps of these subgroups. For this see [4, III, §1]. (It is easily proved that
〈R2, S2〉 = Γ (2) and 〈R,S3〉 = Γ 1(3) = Γ 0(3) in the notation of [4].)

7. Roots with no defined slope. Let (V,w) be a tubular canonical
lattice with canonical basis (2.2) and rank rk = rkw = 1

κε 〈−,w〉 and degree
deg = 1

κε 〈〈a,−〉〉. Let x ∈ V . We say that x has a defined slope if rk x 6= 0
or deg x 6= 0. Otherwise we say that x has no defined slope. This definition
is independent of the choice of our rank and degree, since by Lemma 5.1 it
is easy to see that x has no defined slope if and only if x ∈ (RadV )⊥ (that
is, 〈y,x〉 = 0 for all y ∈ RadV ). From this it also follows that if φ ∈ AutV
then x has a defined slope if and only if φx has a defined slope.

Example 7.1. Assume that the symbol of (V,w) is
(

2
4
2

)
, defined by the

canonical basis a | s1 | w. Then x := s1 − w is a root with rk x = 0 and
deg x = 0, hence has no defined slope. If q is the quadratic form q : V → Z
defined by q(v) = 〈v,v〉, then

x ∈ q−1(1) ∩ (RadV )⊥.

This is an example of a situation where the condition of the distinction
lemma in [1, 2] is not fulfilled.

Lemma 7.2. The tubular symbol
(

2
4
2

)
is the only one such that there

exists a root which has no defined slope.

P r o o f. By Lemma 2.3 each root of rank zero is of the form

x = ±
m+l∑
j=m

τ jsi + nw,

where pi does not divide l+1 and nei/fi ∈ Z. Then deg x = (l+1)fip/pi+np
(p = lcm(p1, . . . , pt)). The proof of Lemma 3.1 shows that in all tubular cases

different from
(

2
4
2

)
we have n ∈ Zfi. Therefore, deg x = 0 is only possible

in this special case.

8. Slope classes of tubular symbols. Recall that a (tubular) symbol
is a scheme of natural numbers which is defined by a canonical basis of a
(tubular) canonical lattice. We call two symbols equivalent if it is possible
to realize them by two canonical bases in the same canonical lattice. Let V
be a tubular canonical lattice.

Theorem 8.1. Table 1 shows the 17 equivalence classes of the tubular
symbols. There are at most 2 slope classes, each dense in Q; the number of
slope classes coincides with the number of symbols lying in one equivalence
class. There is a subgroup U of AutV , generated by shift automorphisms
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associated with elements which are listed in the third column of the table,
such that U acts transitively on the slope classes.

Remarks 8.2. (1) The theorem, which will be proved in Section 10,
can be used to classify the separating tubular families over a tubular al-
gebra similarly to the example described in [5]; this will be published in a
forthcoming paper.

(2) It can be shown [6] that each tubular symbol can be realized as the
Grothendieck group of a tubular canonical algebra (or of a tubular excep-
tional curve) over some field of characteristic zero. This can be done by
inserting weights in suitable simple regular representations of suitable tame
bimodules as described in [8].

(3) The second column of Table 1 shows the lists of numbers 〈s1, s1〉, . . .
. . . , 〈st, st〉. (For each pair of symbols, the upper (lower) list of numbers is
associated with the left (right, resp.) symbol.) We see that two equivalent
but different symbols can be distinguished by these lists.

Corollary 8.3. Let U be the subgroup of AutV as in Theorem 8.1.
Then

{σ | σ ∈ AutV } = {σ | σ ∈ U}.

The proof will be given in Section 11.

9. The automorphism groups of tubular symbols. Denote by U
the group as in Corollary 8.3, and denote by % : AutV → U the map
σ 7→ σ. The group U can be considered as a subgroup of Γ = PSL2(Z). More
precisely, easy calculations (using the Z-basis of RadV given in Table 1,
fourth column) show that U is of the form Γ , Γ 2 := 〈R,S2〉 (or 〈R2, S〉)
or Γ 3 := 〈R,S3〉 (or 〈R3, S〉) (see Table 1). These groups coincide with the
well known (projective) congruence modular groups Γ , Γ 0(2) (or Γ 0(2))
and Γ 0(3) (or Γ 0(3)) resp. (and hence are subgroups of Γ of index 1, 3 or
4, resp.) (compare [4]).

By [7, Proposition 12.1] the subgroup of AutV which is generated by
the shift automorphisms σ0, σ1, . . . , σt from Section 6 is isomorphic to the
abelian group L(p,d) on generators ~x0, . . . , ~xt with relations pi~xi = di~x0
for 1 ≤ i ≤ t. As in [7] we denote by Sσ[V ] the subgroup of the symmetric
group St consisting of all permutations α preserving the symbol data, that
is, satisfying pi = pα(i), di = dα(i) and fi = fα(i) for all i = 1, . . . , t. Denote
by 〈−1〉 the subgroup of AutV generated by the negative identity which is
of order 2.

Theorem 9.1. Let V be a tubular canonical lattice and let U be the
subgroup of AutV as in Theorem 8.1. Let HT be the torsion group of the
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group H = L(p,d). Then there is an exact sequence

1→ 〈−1〉 ·HT · Sσ[V ] → AutV
%→ U → 1.(9.1)

P r o o f. It is sufficient to show that 〈−1〉 ·HT · Sσ[V ] coincides with the
kernel of %. This follows as in the proof of [7, Corollary 12.4] (compare
Remark 3.3).

The groups HT , Sσ[V ] and U in each of the tubular cases are listed in
Table 1.

Table 1. Classes of tubular symbols

Symbols 〈si, si〉 Gen. of U Rad. basis HT Sσ[V ] U(
2
4

)
,

(
2
2
2

∣∣∣2) 1
4

a,w
a, s1,u− 2w

1
2u,w
u,w

Z2 1 Γ 2(
2
4
2

)
1 a,w, u+2w2

1
2u,w Z2 1 Γ(

2
4
4

)
,
(
2
2

∣∣2) 4
1

a,w
s1, u+w2

u,w
u−w
2 ,w Z2 1 Γ 2(

3
3

)
,

(
3
3
3

)
1
3 a, s1

1
3u,w
u,w

Z3 1 Γ 3(
2 2
1 3

)
3, 1 a, s1 u,w Z2 1 Γ(

2 2
1 3
1 3

)
1, 3 a, s1 u,w Z2 1 Γ(

2 2
2 2

)
,

(
2 2
2 2
2 2

)
1, 1
2, 2 a, s1

1
2u,w
u,w

Z2 × Z2 Z2 Γ 2(
2 2
2 2
1 2

)
, (2 2 | 2) 1, 4

2, 2 a, s1 u,w Z2 × Z2
Z2

1
Z2 Γ 2(

2 4
1 2

)
,

(
2 4
1 2
1 2

)
2, 1
1, 2 a, s2

1
2u,w
u,w

Z4 1 Γ 2(
3 3
1 2

)
2, 1 a, s1 u,w Z3 1 Γ(

3 3
1 2
1 2

)
1, 2 a, s1 u,w Z3 1 Γ

(2 3 6) 1, 1, 1 a, s3 u,w Z2 × Z3 1 Γ

(2 4 4) 1, 1, 1 a, s2 u,w Z2 × Z4 Z2 Γ

(3 3 3) 1, 1, 1 a, s1 u,w Z3 × Z3 S3 Γ(
2 2 2
1 1 2

)
2, 2, 1 a, s1 u,w Z2 × Z2 Z2 Γ(

2 2 2
1 1 2
1 1 2

)
1, 1, 2 a, s1 u,w Z2 × Z2 Z2 Γ

(2 2 2 2) 1, 1, 1, 1 a, s1 u,w (Z2)3 S4 Γ
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10. Proof of Theorem 8.1. We treat each of the 23 tubular cases
(which are listed in [7]), and fix a canonical basis (2.2). First we define two
shift automorphisms such that the subgroup S of AutV generated by them
acts on Q with the orbits which are given in Lemma 6.1. Then we show that
either (a) these orbits already coincide with the slope classes (by showing
that the wq-symbols (q-symbols for short) for different orbits are distinct),

or (b) we get the slope classes as orbits in Q of the action of a subgroup S′

of AutV which arises from S by adding a further shift automorphism (by
using then the same argument as in case (a)). Of course, it is sufficient to
determine q-symbols only for representatives q for each orbit. We get these
q-symbols by calculating a wq-canonical basis Bq. (The ∞-symbol is always
given by the given canonical basis (2.2).)

In the cases ( 2 2
1 3 ),

(
2 2
1 3
1 3

)
, ( 3 3

1 2 ),
(

3 3
1 2
1 2

)
, (2 3 6), (2 4 4), (3 3 3), ( 2 2 2

1 1 2 ),(
2 2 2
1 1 2
1 1 2

)
and (2 2 2 2) the shifts associated with a and one of the si yield

case 1 from Section 6. Hence there is only one slope class in these cases,
namely Q.

10.1. The case ( 2
4 ). The shifts at a and w yield case 2 from Section 6,

hence there are at most 2 slope classes with representatives q = 0 and
q = ∞, resp. For the representative q = 0 we have the canonical basis

B0 : −s1 | τa | 12u, and thus get the 0-symbol
(

2
2
2

∣∣∣ 2).

By 2.4 there are exactly 2 slope classes, namely

{a/b | a ∈ Z, b ∈ N, a even}, {a/b | a ∈ Z, b ∈ N, a odd}.

10.2. The case
(

2
2
2

∣∣∣ 2). The shifts at a and s1 (or w) yield case 5 from

Section 6, hence there are at most 3 slope classes with representatives q = 0,
q = 1 and q = ∞, resp. The canonical basis B0 : −s1 | τa | u gives the
0-symbol ( 2

4 ). The canonical basis B1 : a | 2a+w | u+w gives the 1-symbol
which coincides with the ∞-symbol.

The shift at the 1-tube which is generated by u− 2w and defined by

σu−2w(x) = x− 〈u− 2w,x〉
4

(u− 2w)

induces on the level of slopes the map q 7→ (3q + 4)/(−q − 1) and therefore
1 and ∞ lie in the same slope class. Hence we have precisely 2 slope classes:

{a/b | a ∈ Z, b ∈ N, a odd}, {a/b | a ∈ Z, b ∈ N, a even, b odd}.

10.3. The case
(

2
4
2

)
. The shifts at a and w yield case 2 from Section 6,

hence there are at most 2 slope classes with representatives q = 0 and
q = ∞, resp. The canonical basis B0 : −s1 | τa | 1

2u gives the 0-symbol
which coincides with the ∞-symbol.
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The shift at the 1-tube which is generated by 1
2 (u + 2w) and defined by

σ 1
2 (u+2w)(x) = x− 〈u + 2w,x〉

4
(u + 2w)

induces the map q 7→ 4/(4− q), which shows that 0 and 1 (and hence ∞)
lie in the same slope class. Hence there is exactly 1 slope class.

10.4. The case
(

2
4
4

)
. The shifts at a and w yield case 2 from Section 6,

hence there are at most 2 slope classes with representatives q = 0 and q =∞,
resp. The canonical basis B0 : a−w | a | u gives the 0-symbol

(
2
2

∣∣ 2
)
.

Hence there are precisely 2 slope classes:

{a/b | a ∈ Z, b ∈ N, a even}, {a/b | a ∈ Z, b ∈ N, a odd}.

10.5. The case
(
2
2

∣∣ 2
)
. The shifts at a and s1 (or w) yield case 5 from

Section 6, hence there are at most 3 slope classes with representatives q = 0,
q = −1 and q = ∞, resp. The canonical basis B0 : −s1 | τa | u gives
the 0-symbol which coincides with the ∞-symbol. The canonical basis B−1 :

s1 | −2a + 4s1 −w | 12 (w − u) gives the −1-symbol
(

2
4
4

)
.

The shift at the 1-tube which is generated by 1
2 (u + w) and defined by

σ 1
2 (u+w)(x) = x− 〈u + w,x〉

4
(u + w),

induces the map q 7→ 1/(2− q), hence ∞ and 0 lie in the same slope class.
Therefore we have exactly 2 slope classes:

{a/b | a ∈ Z, b ∈ N, a, b odd},
{a/b | a ∈ Z, b ∈ N, a even, b odd} ∪ {a/b | a ∈ Z, b ∈ N, a odd, b even}.

Furthermore, also the shifts at s1 and 1
2 (u + w) yield these 2 slope classes.

Note also that µ
(
1
2 (u + w)

)
= 1 and that the 1-symbol is

(
2
4
4

)
.

10.6. The case ( 3
3 ). The shifts at a and s1 yield case 3 from Section 6,

hence there are at most 2 slope classes with representatives q = 0 and q =∞,

resp. The canonical basis B0 : −s1 | τa, τ2a | 13u gives the 0-symbol
(

3
3
3

)
.

Hence we get precisely 2 slope classes:

{a/b | a ∈ Z, b ∈ N, a ≡ 0 mod 3}, {a/b | a ∈ Z, b ∈ N, a 6≡ 0 mod 3}.

10.7. The case
(

3
3
3

)
. The shifts at a and s1 yield case 3 from Section 6,

hence there are at most 2 slope classes with representatives q = 0 and q =∞,
resp. The canonical basis B0 : −s1 | τa, τ2a | u gives the 0-symbol ( 3

3 ).
Hence there are exactly 2 slope classes:

{a/b | a ∈ Z, b ∈ N, a ≡ 0 mod 3}, {a/b | a ∈ Z, b ∈ N, a 6≡ 0 mod 3}.
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10.8. The case ( 2 2
2 2 ). The shifts at a and s1 yield case 2 from Sec-

tion 6, hence there are at most 2 slope classes with representatives q = 0 and
q = ∞, resp. The canonical basis B0 : −s1 | τa | τa − 2τs2 + w | 1

2u gives

the 0-symbol
(

2 2
2 2
2 2

)
. Therefore we have precisely 2 slope classes:

{a/b | a ∈ Z, b ∈ N, a even}, {a/b | a ∈ Z, b ∈ N, a odd}.

10.9. The case
(

2 2
2 2
2 2

)
. The shifts at a and s1 yield case 2 from Section 6,

hence there are at most 2 slope classes with representatives q = 0 and q =∞,
resp. The canonical basis B0 : s1−2w | a | a− s2 +w | u gives the 0-symbol
( 2 2
2 2 ). Hence there are exactly 2 slope classes, namely

{a/b | a ∈ Z, b ∈ N, a even}, {a/b | a ∈ Z, b ∈ N, a odd}.

10.10. The case
(

2 2
2 2
1 2

)
. The shifts at a and s1 yield case 2 from Section 6,

therefore we have at most 2 slope classes with representatives q = 0 and
q = ∞, resp. The canonical basis B0 : s1 −w | a − s2 + w | a | u gives the
0-symbol (2 2 | 2). Hence we have exactly 2 slope classes:

{a/b | a ∈ Z, b ∈ N, a even}, {a/b | a ∈ Z, b ∈ N, a odd}.
10.11. The case (2 2 | 2). The shifts at a and s1 yield case 4 from

Section 6, hence there are at most 2 slope classes with representatives q = 0
and q = ∞, resp. The canonical basis B0 : −s2 | τa | 2τa − 2τs1 + w | u
gives the 0-symbol

(
2 2
2 2
1 2

)
. Hence there are precisely 2 slope classes:

{a/b | a ∈ Z, b ∈ N, b even}, {a/b | a ∈ Z, b ∈ N, b odd}.
10.12. The case ( 2 4

1 2 ). The shifts at a and s2 yield case 2 from Section 6,
therefore we have at most 2 slope classes with representatives q = 0 and
q = ∞, resp. The canonical basis B0 : −s2 | a − 2s2 − τs2 − τ2s2 + w |
τa, τ2a, τ3a | 1

2u gives the 0-symbol
(

2 4
1 2
1 2

)
. Hence there are exactly 2 slope

classes:

{a/b | a ∈ Z, b ∈ N, a even}, {a/b | a ∈ Z, b ∈ N, a odd}.

10.13. The case
(

2 4
1 2
1 2

)
. The shifts at a and s2 yield case 2 from Section 6,

hence there are at most 2 slope classes with representatives q = 0 and q =∞.
The canonical basis B0 : −τ3s2 | 2a − 2s1 − s2 − τs2 + 2w | a, τa, τ2a | u
gives the 0-symbol ( 2 4

1 2 ). We get precisely 2 slope classes:

{a/b | a ∈ Z, b ∈ N, a even}, {a/b | a ∈ Z, b ∈ N, a odd}.

11. Proof of Corollary 8.3. Let σ ∈ AutV , and let q ∈ Q be such
that σ(0) = q. Since U acts transitively on the slope classes, there is u ∈ U
such that u(q) = 0. We shall show that uσ = σ1 for some σ1 ∈ U , which
then will prove the corollary. Since uσ(0) = 0, the element uσ is represented
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by the matrix ( 1 0
c 1 ) with c ∈ Z. As the analysis in Section 10 shows, in each

tubular case one of the five cases from Section 6 applies, and the assertion
is clear whenever case 1, 2 or 3 from Section 6 applies. Thus it remains to
show the assertion for cases 10.2, 10.5 and 10.11. Taking into account that
the element uσ acts on each slope class one easily sees that c ∈ 2Z in these
remaining cases, and then the assertion is also clear.
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[2] M. Barot and J. A. de la Pe ña, Derived tubular strongly simply connected
algebras , Proc. Amer. Math. Soc. 127 (1999), 647–655.

[3] D. Happe l, Triangulated Categories in the Representation Theory of Finite
Dimensional Algebras , London Math. Soc. Lecture Note Ser. 119, Cambridge Univ.
Press, 1988.

[4] N. Kobl i tz, Introduction to Elliptic Curves and Modular Forms , Grad. Texts
in Math., 97, Springer, Berlin, 1984.

[5] D. Kuss in, Non-isomorphic derived-equivalent tubular curves and their asso-
ciated tubular algebras , J. Algebra 226 (2000), 436–450.

[6] —, Graduierte Faktorialität und die Parameterkurven tubularer Familien ,
Ph.D. thesis, Universität Paderborn, 1997.

[7] H. Lenz ing, A K-theoretic study of canonical algebras , in: Representation The-
ory of Algebras (Cocoyoc, 1994), R. Bautista, R. Mart́ınez-Villa, and J. A. de la
Peña (eds.), CMS Conf. Proc. 18, Amer. Math. Soc., Providence, RI, 1996, 433–473.

[8] —, Representations of finite dimensional algebras and singularity theory , in:
Trends in Ring Theory (Miskolc, 1996) V. Dlab et al. (eds.), CMS Conf. Proc. 22,
Amer. Math. Soc., Providence, RI, 1998, 71–97.

[9] H. Lenz ing and H. Meltzer, The automorphism group of the derived category
for a weighted projective line, Comm. Algebra 28 (2000), 1685–1700.

[10] —, Sheaves on a weighted projective line of genus one, and representations
of a tubular algebra , in: Representations of Algebras (Ottawa 1992), V. Dlab and
H. Lenzing (eds.), CMS Conf. Proc. 14, Amer. Math. Soc., Providence, RI, 1993,
313–337.
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