a note on a Conjecture of Jeśmanowicz

BY
MOUJIE DENG (A CHENG CITY)
and G. L. COHEN (BROADWAY, NSW)

Abstract

Let a, b, c be relatively prime positive integers such that $a^{2}+b^{2}=c^{2}$. Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of $(a n)^{x}+(b n)^{y}=(c n)^{z}$ in positive integers is $x=y=z=2$. If $n=1$, then, equivalently, the equation $\left(u^{2}-v^{2}\right)^{x}+(2 u v)^{y}=\left(u^{2}+v^{2}\right)^{z}$, for integers $u>v>0$, has only the solution $x=y=z=2$. We prove that this is the case when one of u, v has no prime factor of the form $4 l+1$ and certain congruence and inequality conditions on u, v are satisfied.

1. Introduction. Let a, b, c be relatively prime positive integers such that $a^{2}+b^{2}=c^{2}$, and let n be a positive integer. Then the Diophantine equation

$$
\begin{equation*}
(n a)^{x}+(n b)^{y}=(n c)^{z} \tag{1}
\end{equation*}
$$

has solution $x=y=z=2$. Jeśmanowicz [4] conjectured in 1956 that there are no other solutions of (1). Building on the work of Dem'yanenko [2], we proved in [3] that the conjecture is true when $n>1, c=b+1$ and certain further divisibility conditions are satisfied.

If $n=1,(1)$ is equivalent to

$$
\begin{equation*}
\left(u^{2}-v^{2}\right)^{x}+(2 u v)^{y}=\left(u^{2}+v^{2}\right)^{z} \tag{2}
\end{equation*}
$$

where u, v are integers such that $u>v>0, \operatorname{gcd}(u, v)=1$, and one of u, v is even, the other odd. A number of special cases of Jeśmanowicz's conjecture have been settled. Sierpiński [8] and Jeśmanowicz [4] proved it for $(u, v)=(2,1)$ and $(u, v)=(3,2),(4,3),(5,4)$ and $(6,5)$, respectively. Lu [7] proved it when $v=1$, and Dem'yanenko [2] when $v=u-1$. Takakuwa [9] proved the conjecture in a number of special cases in which, in particular, $v \equiv 1(\bmod 4)$, and, in $[10]$, when u is exactly divisible by 2 and $v=3,7,11$ or 15 . Le [6] proved it when $u v$ is exactly divisible by $2, v \equiv 3(\bmod 4)$ and $u \geq 81 v$. Chao Ko [5] and Jingrun Chen [1] proved the conjecture when $u v$ has no prime factor of the form $4 l+1$ and certain congruence and inequality conditions on u, v are satisfied.

[^0]In this note, we shall prove that the conjecture is true if one of u, v has no prime factor of the form $4 l+1$, and certain congruence and inequality conditions on u, v are satisfied.

2. Main results

Theorem 1. Suppose u is even with no prime factor of the form $4 l+1$, $u>v>0$ and $\operatorname{gcd}(u, v)=1$. Write $u=2 m$ and suppose also that one of the following is true:
(i) $m \equiv 1(\bmod 2), v \equiv 1(\bmod 4), u^{2}-v^{2}$ has a prime factor of the form $8 l+5$ or $u-v$ has a prime factor of the form $8 l+3$;
(ii) $m \equiv 1(\bmod 2), v \equiv 3(\bmod 4), u+v$ has a prime factor of the form $4 l+3$;
(iii) $m \equiv 2(\bmod 4), v \equiv 3,7(\bmod 8)$;
(iv) $m \equiv 2(\bmod 4), v \equiv 5(\bmod 8), u+v$ has a prime factor of the form $8 l+7$;
(v) $m \equiv 2(\bmod 4), v \equiv 1(\bmod 8), u+v$ has a prime factor of the form $4 l+3$;
(vi) $m \equiv 0(\bmod 4), v \equiv 1(\bmod 8), u+v$ has a prime factor of the form $4 l+3, u^{2}-v^{2}$ has a prime factor of the form $8 l+5$ or $u-v$ has a prime factor of the form $8 l+3$;
(vii) $m \equiv 0(\bmod 4), v \equiv 3,5(\bmod 8)$;
(viii) $m \equiv 0(\bmod 4), v \equiv 7(\bmod 8), u^{2}-v^{2}$ has a prime factor of the form $8 l+3$ or $8 l+5$.

Then the Diophantine equation (2) has no positive integer solution other than $x=y=z=2$.

Proof. Modulo 4, (2) becomes $(-1)^{x} \equiv 1$, so x is even. We now show that z is also even, and that, except perhaps in case (ii), y is even.

The following simple congruences are required:

$$
\begin{array}{lll}
2 u v \equiv 2 v^{2}(\bmod u-v), & u^{2}+v^{2} \equiv 2 v^{2}(\bmod u-v), \\
2 u v \equiv-2 v^{2}(\bmod u+v), & u^{2}+v^{2} \equiv 2 v^{2}(\bmod u+v) \tag{3}
\end{array}
$$

In case (i), we have $2 m+v \equiv 3(\bmod 4)$, so $u+v$ has either a prime factor, p say, of the form $8 l+3$, or a prime factor, q say, of the form $8 l+7$ (or both). In the former case, from (2) and (3),

$$
\left(-2 v^{2}\right)^{y} \equiv\left(2 v^{2}\right)^{z}(\bmod p)
$$

and it follows that

$$
\begin{aligned}
1 & =\left(\frac{-2}{p}\right)^{y}=\left(\frac{-2 v^{2}}{p}\right)^{y}=\left(\frac{\left(-2 v^{2}\right)^{y}}{p}\right) \\
& =\left(\frac{\left(2 v^{2}\right)^{z}}{p}\right)=\left(\frac{2 v^{2}}{p}\right)^{z}=\left(\frac{2}{p}\right)^{z}=(-1)^{z}
\end{aligned}
$$

where (\div) is Legendre's symbol. So z is even. In the latter case, we find in the same way that y is even.

If $u^{2}-v^{2}$ has a prime factor of the form $8 l+5$, or $u-v$ has a prime factor of the form $8 l+3$, then, again in the same way, we find that $y \equiv z$ $(\bmod 2)$. Then y and z are even in case (i), and we may similarly obtain the same conclusion in cases (vi) and (viii).

In case (ii), since $u+v$ has a prime factor of the form $8 l+3$ or $8 l+7$, we find as above that z is even or y is even. If y is even, then $y>1$, and, recalling that x is even, from (2) we have $5^{z} \equiv 1(\bmod 8)$. It follows that, in case (ii), z must be even.

Consider case (iii). If $v \equiv 3(\bmod 8)$, then $u+v \equiv 7(\bmod 8)$. From (2) and (3), we have $\left(-2 v^{2}\right)^{y} \equiv\left(2 v^{2}\right)^{z}(\bmod u+v)$, so that

$$
(-1)^{y}=\left(\frac{-2 v^{2}}{u+v}\right)^{y}=\left(\frac{2 v^{2}}{u+v}\right)^{z}=1
$$

where (\div) is Jacobi's symbol. Then y is even. From $(2), 1 \equiv 9^{z}(\bmod 16)$, which implies z is even. If $v \equiv 7(\bmod 8)$, then, considering (2) modulo $u+v$ and $u-v$, respectively, we may similarly show that y and z are even. This also follows in a similar fashion in cases (iv), (v) and (vii).

In all cases except one, we have now shown that y and z are both even. The exception is case (ii), in which we know only that z is even. We show now that y must be even in this case as well.

Write $x=2 x_{1}$ and $z=2 z_{1}$. Then, from (2),

$$
(4 m v)^{y}=\left(\left(4 m^{2}+v^{2}\right)^{z_{1}}+\left(4 m^{2}-v^{2}\right)^{x_{1}}\right)\left(\left(4 m^{2}+v^{2}\right)^{z_{1}}-\left(4 m^{2}-v^{2}\right)^{x_{1}}\right) .
$$

If x_{1} is even, then $\left(4 m^{2}+v^{2}\right)^{z_{1}}+\left(4 m^{2}-v^{2}\right)^{x_{1}} \equiv 2(\bmod 4)$. Let p be an odd prime factor of m, so that, by hypothesis, $p \equiv 3(\bmod 4)$. Since $\operatorname{gcd}(m, v)=1$, and since -1 is a quadratic nonresidue of p, we have

$$
\begin{equation*}
\left(4 m^{2}+v^{2}\right)^{z_{1}}+\left(4 m^{2}-v^{2}\right)^{x_{1}} \equiv v^{2 z_{1}}+v^{2 x_{1}} \not \equiv 0(\bmod p) \tag{4}
\end{equation*}
$$

It follows that

$$
\begin{align*}
& \left(4 m^{2}+v^{2}\right)^{z_{1}}+\left(4 m^{2}-v^{2}\right)^{x_{1}}=2 v_{1}^{y} \tag{5}\\
& \left(4 m^{2}+v^{2}\right)^{z_{1}}-\left(4 m^{2}-v^{2}\right)^{x_{1}}=2^{2 y-1} m^{y} v_{2}^{y} \tag{6}
\end{align*}
$$

where $v=v_{1} v_{2}$. We will show that $v_{2}>1$. In case $(i i), v \equiv 3(\bmod 4)$, so v has a prime factor $q \equiv 3(\bmod 4)$ and, as in (4),

$$
\left(4 m^{2}+v^{2}\right)^{z_{1}}+\left(4 m^{2}-v^{2}\right)^{x_{1}} \equiv(2 m)^{2 z_{1}}+(2 m)^{2 x_{1}} \not \equiv 0(\bmod q)
$$

In fact, this implies that $v_{1} \equiv 1(\bmod 4)$ and $v_{2} \equiv 3(\bmod 4)$. Since $v_{2}>1$, we now have $2^{2 y-1} m^{y} v_{2}^{y}>(2 m)^{y}>v^{y}>2 v_{1}^{y}$, whence (5) and (6) cannot both hold. Hence x_{1} is odd.

We then have, as above,

$$
\left(4 m^{2}+v^{2}\right)^{z_{1}}+\left(4 m^{2}-v^{2}\right)^{x_{1}}=2^{2 y-1} m^{y} v_{3}^{y}
$$

$$
\left(4 m^{2}+v^{2}\right)^{z_{1}}-\left(4 m^{2}-v^{2}\right)^{x_{1}}=2 v_{4}^{y}
$$

where $v=v_{3} v_{4}$, so that

$$
\begin{align*}
& \left(4 m^{2}+v^{2}\right)^{z_{1}}=2^{2 y-2} m^{y} v_{3}^{y}+v_{4}^{y} \tag{7}\\
& \left(4 m^{2}-v^{2}\right)^{x_{1}}=2^{2 y-2} m^{y} v_{3}^{y}-v_{4}^{y} \tag{8}
\end{align*}
$$

From $(7), \operatorname{gcd}\left(v_{3}, v_{4}\right)=1, y>1$ and $v^{2 z_{1}} \equiv v_{4}^{y}(\bmod 4)$. But, in case (ii), as shown above for v_{2}, we have $v_{4} \equiv 3(\bmod 4)$, so $1 \equiv 3^{y}(\bmod 4)$, and it follows that y is even, as required.

We now complete the proof of Theorem 1.
Notice first that x_{1} must be odd. To confirm this, consider again the passage above in which it was assumed that x_{1} is even. Then, since $y \geq 2$, it follows that $2^{2 y-1} m^{y} v_{2}^{y} \geq 2^{y-1}(2 m)^{y}>2^{y-1} v^{y} \geq 2 v_{1}^{y}$, so, again, (5) and (6) cannot both hold. With x_{1} odd, we may refer again to (7) and (8).

Write $y=2 y_{1}$. From (8),

$$
\left(4 m^{2}-v^{2}\right)^{x_{1}}=\left(2^{2 y_{1}-1} m^{y_{1}} v_{3}^{y_{1}}+v_{4}^{y_{1}}\right)\left(2^{2 y_{1}-1} m^{y_{1}} v_{3}^{y_{1}}-v_{4}^{y_{1}}\right) .
$$

Since $\operatorname{gcd}\left(v_{3}, v_{4}\right)=1$, the factors on the right are relatively prime. Let $2^{2 y_{1}-1} m^{y_{1}} v_{3}^{y_{1}}+v_{4}^{y_{1}}=s^{x_{1}}$ and $2^{2 y_{1}-1} m^{y_{1}} v_{3}^{y_{1}}-v_{4}^{y_{1}}=t^{x_{1}}$. Then

$$
\begin{equation*}
s t=4 m^{2}-v^{2}, \quad \operatorname{gcd}(s, t)=1, s \geq t+2 \tag{9}
\end{equation*}
$$

We have

$$
s^{x_{1}}+t^{x_{1}}=2^{y_{1}}(2 m)^{y_{1}} v_{3}^{y_{1}}>2^{y_{1}} v^{y_{1}} v_{3}^{y_{1}}=2^{y_{1}} v_{3}^{2 y_{1}} v_{4}^{y_{1}}=2^{y_{1}-1} v_{3}^{2 y_{1}}\left(s^{x_{1}}-t^{x_{1}}\right),
$$

from which

$$
\begin{aligned}
\left(2^{y_{1}-1} v_{3}^{2 y_{1}}+1\right) t^{x_{1}} & >\left(2^{y_{1}-1} v_{3}^{2 y_{1}}-1\right) s^{x_{1}} \geq\left(2^{y_{1}-1} v_{3}^{2 y_{1}}-1\right)(t+2)^{x_{1}} \\
& \geq\left(2^{y_{1}-1} v_{3}^{2 y_{1}}-1\right) t^{x_{1}}+2\left(2^{y_{1}-1} v_{3}^{2 y_{1}}-1\right) x_{1} t^{x_{1}-1}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
t>\left(2^{y_{1}-1} v_{3}^{2 y_{1}}-1\right) x_{1} \geq 2^{y_{1}-1} v_{3}^{2 y_{1}}-1 . \tag{10}
\end{equation*}
$$

But, from (8), we have

$$
\begin{aligned}
0 & \equiv\left(4 m^{2}-v^{2}\right)^{x_{1}}=2^{y-2}(2 m)^{y} v_{3}^{y}-v_{4}^{y}=2^{2\left(y_{1}-1\right)}\left(4 m^{2}\right)^{y_{1}} v_{3}^{2 y_{1}}-v_{4}^{2 y_{1}} \\
& \equiv 2^{2\left(y_{1}-1\right)} v^{2 y_{1}} v_{3}^{2 y_{1}}-v_{4}^{2 y_{1}}\left(\bmod 4 m^{2}-v^{2}\right)
\end{aligned}
$$

so that $v_{4}^{y}\left(2^{2\left(y_{1}-1\right)} v_{3}^{2 y}-1\right) \equiv 0(\bmod s t)$, by (9). Since $\operatorname{gcd}\left(v_{4}, s t\right)=1$, we have $2^{2\left(y_{1}-1\right)} v_{3}^{2 y}-1 \equiv 0(\bmod s t)$. If $v_{3}>1$ or $y_{1}>1$, then the lefthand side is positive, and we must have $t^{2}<s t \leq 2^{2\left(y_{1}-1\right)} v_{3}^{2 y}-1$, so that $t \leq 2^{y_{1}-1} v_{3}^{2 y_{1}}-1$, contradicting (10).

Hence $v_{3}=y_{1}=1$, and, from (7), $x_{1}=z_{1}=1$. Thus $x=y=z=2$, completing the proof of Theorem 1.

Theorem 2. Suppose u is even, $25 v>2 u>2 v>0, \operatorname{gcd}(u, v)=1$ and v has no prime factor of the form $4 l+1$. Write $u=2 m$ and suppose also
that one of conditions (i)-(viii) in Theorem 1 is true. Then the Diophantine equation (2) has no positive integer solution other than $x=y=z=2$.

Proof. When one of conditions (i)-(viii) in the statement of Theorem 1 is satisfied, we may show, as in the proof of Theorem 1, that x and z are even, and, except in case (ii), y is even. We show first that y is even in this case as well. Let $x=2 x_{1}$ and $z=2 z_{1}$. In much the same way as before, we may show that x_{1} is odd and

$$
\begin{aligned}
& \left(4 m^{2}+v^{2}\right)^{z_{1}}+\left(4 m^{2}-v^{2}\right)^{x_{1}}=2^{2 y-1} m_{1}^{y} \\
& \left(4 m^{2}+v^{2}\right)^{z_{1}}-\left(4 m^{2}-v^{2}\right)^{x_{1}}=2 m_{2}^{y} v^{y}
\end{aligned}
$$

where $m=m_{1} m_{2}$ and $m_{2} \equiv 1(\bmod 4)$. We have

$$
\begin{align*}
& \left(4 m^{2}+v^{2}\right)^{z_{1}}=2^{2 y-2} m_{1}^{y}+m_{2}^{y} v^{y} \tag{11}\\
& \left(4 m^{2}-v^{2}\right)^{x_{1}}=2^{2 y-2} m_{1}^{y}-m_{2}^{y} v^{y} \tag{12}
\end{align*}
$$

From (11), $y>1$ so that, in case (ii), $1 \equiv 3^{y}(\bmod 4)$. Hence y is even.
Let $y=2 y_{1}$. From (12),

$$
\left(4 m^{2}-v^{2}\right)^{x_{1}}=\left(2^{2 y_{1}-1} m_{1}^{y_{1}}+m_{2}^{y_{1}} v^{y_{1}}\right)\left(2^{2 y_{1}-1} m_{1}^{y_{1}}-m_{2}^{y_{1}} v^{y_{1}}\right) .
$$

As in the corresponding part of the proof of Theorem 1, we may put

$$
2^{2 y_{1}-1} m_{1}^{y_{1}}+m_{2}^{y_{1}} v^{y_{1}}=s^{x_{1}} \quad \text { and } \quad 2^{2 y_{1}-1} m_{1}^{y_{1}}-m_{2}^{y_{1}} v^{y_{1}}=t^{x_{1}}
$$

so that

$$
\begin{equation*}
s t=4 m^{2}-v^{2}, \quad \operatorname{gcd}(s, t)=1, s \geq t+2 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
s^{x_{1}}+t^{x_{1}}=2^{2 y_{1}} m_{1}^{y_{1}}, \quad s^{x_{1}}-t^{x_{1}}=2 m_{2}^{y_{1}} v^{y_{1}} . \tag{14}
\end{equation*}
$$

If $m_{2} \neq 1$, then $m_{2} \geq 5$. From (14), $\left(4 m_{1}\right)^{y_{1}}>2\left(m_{2} v\right)^{y_{1}}$, so $4 m_{1}>m_{2} v$. Then $4 m>m_{2}^{2} v \geq 25 v$, contradicting the hypothesis that $2 u<25 v$. Thus, $m_{2}=1$, and if $y_{1}>1$ then we may use (13) and (14) to obtain a contradiction, much as in the closing part of the proof of Theorem 1, by showing both $t \geq 2^{y_{1}-1}$ and $t<2^{y_{1}-1}$.

Hence $m_{2}=y_{1}=1$, and it follows from (11) and (12) that $x_{1}=z_{1}=1$. Therefore, $x=y=z=2$, completing the proof of Theorem 2 .

REFERENCES

[1] J. R. Chen, On Jeśmanowicz' conjecture, Acta Sci. Natur. Univ. Szechan 2 (1962), 19-25 (in Chinese).
[2] V. A. Dem'janenko [V. A. Dem'yanenko], On Jeśmanowicz' problem for Pythagorean numbers, Izv. Vyssh. Uchebn. Zaved. Mat. 48 (1965), 52-56 (in Russian).
[3] M. Deng and G. L. Cohen, On the conjecture of Jeśmanowicz concerning Pythagorean triples, Bull. Austral. Math. Soc. 57 (1998), 515-524.
[4] L. Jeśmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. 1 (1955/56), 196-202 (in Polish).
[5] C. Ko, On the Diophantine equation $\left(a^{2}-b^{2}\right)^{x}+(2 a b)^{y}=\left(a^{2}+b^{2}\right)^{z}$, Acta Sci. Natur. Univ. Szechan 3 (1959), 25-34 (in Chinese).
[6] M. H. Le, A note on Jeśmanowicz' conjecture concerning Pythagorean numbers, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 97-98.
[7] W. T. Lu, On the Pythagorean numbers $4 n^{2}-1,4 n$ and $4 n^{2}+1$, Acta Sci. Natur. Univ. Szechuan 2 (1959), 39-42 (in Chinese).
[8] W. Sierpiński, On the equation $3^{x}+4^{y}=5^{z}$, Wiadom. Mat. $1(1955 / 56)$, 194-195 (in Polish).
[9] K. Takakuwa, On a conjecture on Pythagorean numbers. III, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 345-349.
[10] -, A remark on Jeśmanowicz' conjecture, ibid. 72 (1996), 109-110.

Heilongjiang Nongken Teachers' College
A Cheng City
People's Republic of China

School of Mathematical Sciences University of Technology, Sydney

PO Box 123
Broadway, NSW 2007
Australia
E-mail: glc@maths.uts.edu.au

[^0]: 2000 Mathematics Subject Classification: 11D61.

