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A NOTE ON A CONJECTURE OF JEŚMANOWICZ

BY

MOUJIE D E N G (A CHENG CITY)
AND G. L. C O H E N (BROADWAY, NSW)

Abstract. Let a, b, c be relatively prime positive integers such that a2 + b2 = c2.
Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of
(an)x + (bn)y = (cn)z in positive integers is x = y = z = 2. If n = 1, then, equivalently,
the equation (u2−v2)x+(2uv)y = (u2+v2)z , for integers u > v > 0, has only the solution
x = y = z = 2. We prove that this is the case when one of u, v has no prime factor of the
form 4l + 1 and certain congruence and inequality conditions on u, v are satisfied.

1. Introduction. Let a, b, c be relatively prime positive integers such
that a2 + b2 = c2, and let n be a positive integer. Then the Diophantine
equation

(1) (na)x + (nb)y = (nc)z

has solution x = y = z = 2. Jeśmanowicz [4] conjectured in 1956 that there
are no other solutions of (1). Building on the work of Dem’yanenko [2], we
proved in [3] that the conjecture is true when n > 1, c = b + 1 and certain
further divisibility conditions are satisfied.

If n = 1, (1) is equivalent to

(2) (u2 − v2)x + (2uv)y = (u2 + v2)z,

where u, v are integers such that u > v > 0, gcd(u, v) = 1, and one of
u, v is even, the other odd. A number of special cases of Jeśmanowicz’s
conjecture have been settled. Sierpiński [8] and Jeśmanowicz [4] proved it for
(u, v) = (2, 1) and (u, v) = (3, 2), (4, 3), (5, 4) and (6, 5), respectively. Lu [7]
proved it when v = 1, and Dem’yanenko [2] when v = u− 1. Takakuwa [9]
proved the conjecture in a number of special cases in which, in particular,
v ≡ 1 (mod 4), and, in [10], when u is exactly divisible by 2 and v = 3, 7, 11
or 15. Le [6] proved it when uv is exactly divisible by 2, v ≡ 3 (mod 4) and
u ≥ 81v. Chao Ko [5] and Jingrun Chen [1] proved the conjecture when uv
has no prime factor of the form 4l+1 and certain congruence and inequality
conditions on u, v are satisfied.
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In this note, we shall prove that the conjecture is true if one of u, v has
no prime factor of the form 4l + 1, and certain congruence and inequality
conditions on u, v are satisfied.

2. Main results

Theorem 1. Suppose u is even with no prime factor of the form 4l + 1,
u > v > 0 and gcd(u, v) = 1. Write u = 2m and suppose also that one of
the following is true:

(i) m ≡ 1 (mod 2), v ≡ 1 (mod 4), u2 − v2 has a prime factor of the
form 8l + 5 or u− v has a prime factor of the form 8l + 3;

(ii) m ≡ 1 (mod 2), v ≡ 3 (mod 4), u + v has a prime factor of the
form 4l + 3;

(iii) m ≡ 2 (mod 4), v ≡ 3, 7 (mod 8);
(iv) m ≡ 2 (mod 4), v ≡ 5 (mod 8), u + v has a prime factor of the

form 8l + 7;
(v) m ≡ 2 (mod 4), v ≡ 1 (mod 8), u + v has a prime factor of the

form 4l + 3;
(vi) m ≡ 0 (mod 4), v ≡ 1 (mod 8), u + v has a prime factor of the

form 4l + 3, u2 − v2 has a prime factor of the form 8l + 5 or u − v has a
prime factor of the form 8l + 3;

(vii) m ≡ 0 (mod 4), v ≡ 3, 5 (mod 8);
(viii) m ≡ 0 (mod 4), v ≡ 7 (mod 8), u2 − v2 has a prime factor of the

form 8l + 3 or 8l + 5.

Then the Diophantine equation (2) has no positive integer solution other
than x = y = z = 2.

P r o o f. Modulo 4, (2) becomes (−1)x ≡ 1, so x is even. We now show
that z is also even, and that, except perhaps in case (ii), y is even.

The following simple congruences are required:

(3)
2uv ≡ 2v2 (mod u− v), u2 + v2 ≡ 2v2 (mod u− v),

2uv ≡ −2v2 (mod u + v), u2 + v2 ≡ 2v2 (mod u + v).

In case (i), we have 2m + v ≡ 3 (mod 4), so u + v has either a prime
factor, p say, of the form 8l + 3, or a prime factor, q say, of the form 8l + 7
(or both). In the former case, from (2) and (3),

(−2v2)y ≡ (2v2)z (mod p),

and it follows that

1 =

(
−2

p

)y

=

(
−2v2

p

)y

=

(
(−2v2)y

p

)
=

(
(2v2)z

p

)
=

(
2v2

p

)z

=

(
2

p

)z

= (−1)z,
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where
( ·
·
)

is Legendre’s symbol. So z is even. In the latter case, we find in
the same way that y is even.

If u2 − v2 has a prime factor of the form 8l + 5, or u − v has a prime
factor of the form 8l + 3, then, again in the same way, we find that y ≡ z
(mod 2). Then y and z are even in case (i), and we may similarly obtain
the same conclusion in cases (vi) and (viii).

In case (ii), since u + v has a prime factor of the form 8l + 3 or 8l + 7,
we find as above that z is even or y is even. If y is even, then y > 1, and,
recalling that x is even, from (2) we have 5z ≡ 1 (mod 8). It follows that, in
case (ii), z must be even.

Consider case (iii). If v ≡ 3 (mod 8), then u+ v ≡ 7 (mod 8). From (2)
and (3), we have (−2v2)y ≡ (2v2)z (mod u + v), so that

(−1)y =

(
−2v2

u + v

)y

=

(
2v2

u + v

)z

= 1,

where
( ·
·
)

is Jacobi’s symbol. Then y is even. From (2), 1 ≡ 9z (mod 16),
which implies z is even. If v ≡ 7 (mod 8), then, considering (2) modulo u+v
and u− v, respectively, we may similarly show that y and z are even. This
also follows in a similar fashion in cases (iv), (v) and (vii).

In all cases except one, we have now shown that y and z are both even.
The exception is case (ii), in which we know only that z is even. We show
now that y must be even in this case as well.

Write x = 2x1 and z = 2z1. Then, from (2),

(4mv)y = ((4m2 + v2)z1 + (4m2 − v2)x1)((4m2 + v2)z1 − (4m2 − v2)x1).

If x1 is even, then (4m2 + v2)z1 + (4m2 − v2)x1 ≡ 2 (mod 4). Let p be
an odd prime factor of m, so that, by hypothesis, p ≡ 3 (mod 4). Since
gcd(m, v) = 1, and since −1 is a quadratic nonresidue of p, we have

(4) (4m2 + v2)z1 + (4m2 − v2)x1 ≡ v2z1 + v2x1 6≡ 0 (mod p),

It follows that

(4m2 + v2)z1 + (4m2 − v2)x1 = 2vy1 ,(5)

(4m2 + v2)z1 − (4m2 − v2)x1 = 22y−1myvy2 ,(6)

where v = v1v2. We will show that v2 > 1. In case (ii), v ≡ 3 (mod 4), so v
has a prime factor q ≡ 3 (mod 4) and, as in (4),

(4m2 + v2)z1 + (4m2 − v2)x1 ≡ (2m)2z1 + (2m)2x1 6≡ 0 (mod q).

In fact, this implies that v1 ≡ 1 (mod 4) and v2 ≡ 3 (mod 4). Since v2 > 1,
we now have 22y−1myvy2 > (2m)y > vy > 2vy1 , whence (5) and (6) cannot
both hold. Hence x1 is odd.

We then have, as above,

(4m2 + v2)z1 + (4m2 − v2)x1 = 22y−1myvy3 ,
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(4m2 + v2)z1 − (4m2 − v2)x1 = 2vy4 ,

where v = v3v4, so that

(4m2 + v2)z1 = 22y−2myvy3 + vy4 ,(7)

(4m2 − v2)x1 = 22y−2myvy3 − vy4 .(8)

From (7), gcd(v3, v4) = 1, y > 1 and v2z1 ≡ vy4 (mod 4). But, in case (ii),
as shown above for v2, we have v4 ≡ 3 (mod 4), so 1 ≡ 3y (mod 4), and it
follows that y is even, as required.

We now complete the proof of Theorem 1.
Notice first that x1 must be odd. To confirm this, consider again the

passage above in which it was assumed that x1 is even. Then, since y ≥ 2,
it follows that 22y−1myvy2 ≥ 2y−1(2m)y > 2y−1vy ≥ 2vy1 , so, again, (5) and
(6) cannot both hold. With x1 odd, we may refer again to (7) and (8).

Write y = 2y1. From (8),

(4m2 − v2)x1 = (22y1−1my1vy1

3 + vy1

4 )(22y1−1my1vy1

3 − vy1

4 ).

Since gcd(v3, v4) = 1, the factors on the right are relatively prime. Let
22y1−1my1vy1

3 + vy1

4 = sx1 and 22y1−1my1vy1

3 − vy1

4 = tx1 . Then

(9) st = 4m2 − v2, gcd(s, t) = 1, s ≥ t + 2.

We have

sx1 + tx1 = 2y1(2m)y1vy1

3 > 2y1vy1vy1

3 = 2y1v2y1

3 vy1

4 = 2y1−1v2y1

3 (sx1 − tx1),

from which

(2y1−1v2y1

3 + 1)tx1 > (2y1−1v2y1

3 − 1)sx1 ≥ (2y1−1v2y1

3 − 1)(t + 2)x1

≥ (2y1−1v2y1

3 − 1)tx1 + 2(2y1−1v2y1

3 − 1)x1t
x1−1.

It follows that

(10) t > (2y1−1v2y1

3 − 1)x1 ≥ 2y1−1v2y1

3 − 1.

But, from (8), we have

0 ≡ (4m2 − v2)x1 = 2y−2(2m)yvy3 − vy4 = 22(y1−1)(4m2)y1v2y1

3 − v2y1

4

≡ 22(y1−1)v2y1v2y1

3 − v2y1

4 (mod 4m2 − v2),

so that vy4 (22(y1−1)v2y3 − 1) ≡ 0 (mod st), by (9). Since gcd(v4, st) = 1,
we have 22(y1−1)v2y3 − 1 ≡ 0 (mod st). If v3 > 1 or y1 > 1, then the left-
hand side is positive, and we must have t2 < st ≤ 22(y1−1)v2y3 − 1, so that
t ≤ 2y1−1v2y1

3 − 1, contradicting (10).
Hence v3 = y1 = 1, and, from (7), x1 = z1 = 1. Thus x = y = z = 2,

completing the proof of Theorem 1.

Theorem 2. Suppose u is even, 25v > 2u > 2v > 0, gcd(u, v) = 1 and
v has no prime factor of the form 4l + 1. Write u = 2m and suppose also
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that one of conditions (i)–(viii) in Theorem 1 is true. Then the Diophantine
equation (2) has no positive integer solution other than x = y = z = 2.

P r o o f. When one of conditions (i)–(viii) in the statement of Theorem 1
is satisfied, we may show, as in the proof of Theorem 1, that x and z are
even, and, except in case (ii), y is even. We show first that y is even in this
case as well. Let x = 2x1 and z = 2z1. In much the same way as before, we
may show that x1 is odd and

(4m2 + v2)z1 + (4m2 − v2)x1 = 22y−1my
1,

(4m2 + v2)z1 − (4m2 − v2)x1 = 2my
2v

y,

where m = m1m2 and m2 ≡ 1 (mod 4). We have

(4m2 + v2)z1 = 22y−2my
1 + my

2v
y,(11)

(4m2 − v2)x1 = 22y−2my
1 −my

2v
y.(12)

From (11), y > 1 so that, in case (ii), 1 ≡ 3y (mod 4). Hence y is even.
Let y = 2y1. From (12),

(4m2 − v2)x1 = (22y1−1my1

1 + my1

2 vy1)(22y1−1my1

1 −my1

2 vy1).

As in the corresponding part of the proof of Theorem 1, we may put

22y1−1my1

1 + my1

2 vy1 = sx1 and 22y1−1my1

1 −my1

2 vy1 = tx1 ,

so that

(13) st = 4m2 − v2, gcd(s, t) = 1, s ≥ t + 2

and

(14) sx1 + tx1 = 22y1my1

1 , sx1 − tx1 = 2my1

2 vy1 .

If m2 6= 1, then m2 ≥ 5. From (14), (4m1)y1 > 2(m2v)y1 , so 4m1 > m2v.
Then 4m > m2

2v ≥ 25v, contradicting the hypothesis that 2u < 25v. Thus,
m2 = 1, and if y1 > 1 then we may use (13) and (14) to obtain a contra-
diction, much as in the closing part of the proof of Theorem 1, by showing
both t ≥ 2y1−1 and t < 2y1−1.

Hence m2 = y1 = 1, and it follows from (11) and (12) that x1 = z1 = 1.
Therefore, x = y = z = 2, completing the proof of Theorem 2.
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[6] M. H. Le, A note on Jeśmanowicz’ conjecture concerning Pythagorean numbers,
Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 97–98.

[7] W. T. Lu, On the Pythagorean numbers 4n2 − 1, 4n and 4n2 + 1, Acta Sci. Natur.
Univ. Szechuan 2 (1959), 39–42 (in Chinese).
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