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BLOW UP, GLOBAL EXISTENCE AND GROWTH RATE

ESTIMATES IN NONLINEAR PARABOLIC SYSTEMS

BY

JOANNA R E N C  L A W O W I C Z (WARSZAWA)

Abstract. We prove Fujita-type global existence and nonexistence theorems for a
system of m equations (m > 1) with different diffusion coefficients, i.e.

uit − di∆ui =

m
∏

k=1

u
pi
k

k
, i = 1, . . . ,m, x ∈RN , t > 0,

with nonnegative, bounded, continuous initial values and pi
k
≥ 0, i, k = 1, . . . ,m, di > 0,

i = 1, . . . , m. For solutions which blow up at t = T < ∞, we derive the following bounds
on the blow up rate:

ui(x, t) ≤ C(T − t)−αi

with C > 0 and αi defined in terms of pi
k
.

1. Introduction. We consider the following semilinear problem:

uit − di∆ui =

m
∏

k=1

u
pi
k

k , i = 1, . . . ,m,(1.1)

for x ∈ RN , t > 0 and

ui(0, x) = u0i(x), i = 1, . . . ,m, x ∈ R
N ,

where di, p
i
k, i, k = 1, . . . ,m, are nonnegative constants and u0i, i = 1, . . . ,m,

are nonnegative, continuous, bounded functions, N,m ≥ 1.
As the main results, we present a classification of solutions according

to their time existence, and bounds on the rate of blow up for nonglobal
solutions. It turns out that blow up is driven by the nonlinearity in our
system, i.e. (u1, . . . , um) blows up at the same rate as the solutions of the
corresponding kinetic system. Namely, if T denotes the maximal existence
time of u, we prove that

ui(x, t) ≤ C(T − t)−αi , i = 1, . . . ,m,

where the αi are given in terms of pik.
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We briefly review some related work. The system (1.1) for m = 1 or
m = 2 and di = 1 has been analyzed by several authors. We mention the
papers of Fujita ([Fu1], [Fu2]) for the scalar problem, Lu [L] and Escobedo
and Levine [EL] for a system of two equations. Some special problems,
namely (1.1) with pik = 0 for k 6= i + 1, i = 1, . . . ,m − 1 and pmk = 0 for
k 6= 1 (the so-called “completely coupled systems”), have been considered
by Escobedo and Herrero [EH] for m = 2 and by the author for m ≥ 3 [R1],
[R4]. The system (1.1) for m = 2 and positive di is examined in [R2] where
the result analogous to Theorem 2 below is proved. In [R3] the system (1.1)
with m = 3 and di = 1, i = 1, 2, 3, is treated and the assertions correspond-
ing to Theorem 2 and Theorem 1B below are shown. To our knowledge, the
paper [AHV] is the only work where the estimates of the rate of the growth
of solutions for a completely coupled system of two equations in RN × (0, T ),
namely for

ut = ∆u+ vp(1.2)

vt = ∆v + uq,

have been proved. However, the method used, based on classical regularity
techniques, seems to be suitable only for the system (1.2). We also mention
[CM] where the authors prove similar bounds, but only for some class of ra-
dially symmetric solutions, eliminating any possibility of oscillation in time.
In our work we use an idea originally due to Lu [L], based on the compari-
son principles and the concept of invariant region. It is worth noticing that
these tools are crucial to derive our growth rate estimates. We also apply
the results of [LS] to construct a subsolution to our system.

For the statement of the main results, we need some notations. Let

Am = [pik], i, k = 1, . . . ,m,(1.3)

where i labels the rows and k the columns of the matrix. It is clear that, for
definiteness, we can assume henceforth

min
i

m
∑

k=1

pik =

m
∑

k=1

p1k.(1.4)

By α = (α1, . . . , αm) we denote the unique solution of

(Am − I)αt = (1, . . . , 1)t.(1.5)

We put

δ = det(Am − I).(1.6)

Denoting by Dk(Am − I) the matrix Am − I with column k replaced by the
vector (1, . . . , 1)t, we have, whenever δ 6= 0,

αk = δ−1 det(Dk(Am − I)), k = 1, . . . ,m.(1.7)
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We also set

bk = αk/α1, k = 1, . . . ,m,(1.8)

assuming that α1 6= 0, bk > 0. We put

r =

m
∑

k=1

bkp
1
k =

1 + α1

α1
.(1.9)

Remark 1.1. Without loss of generality, we can assume that bk < 1 for
k = 2, . . . ,m, which implies maxk αk = α1. Otherwise, we have maxk αk

= αj and instead of bk, r we define bk(j) = αk/αj , r(j) =
∑m

k=1 bk(j)p
j
k =

(1 + αj)/αj where bk(j) < 1 for k = 1, . . . ,m, k 6= j.

By the above remark we set r = r(j) and formulate our results.

Theorem 1. Assume that p11 > 1.

A. If (
∑m

k=1 p
1
k − 1)−1 < N/2, then for sufficiently small initial data the

solutions of (1.1) exist globally whereas all solutions with initial values large

enough blow up in finite time.

B. If (
∑m

k=1 p
1
k − 1)−1 ≥ N/2, then every nontrivial solution of (1.1) is

nonglobal.

Theorem 2. Assume that p11 ≤ 1 and δ 6= 0.

A. If maxk αk < 0 (i.e. 0 ≤ r < 1), then all solutions of (1.1) are global.

B. If 0 < maxk αk < N/2 (i.e. r > 1 + 2/N), then there are both

nontrivial global solutions and nonglobal solutions of (1.1).
C. If mink αk ≥ N/2 (i.e. 1 < r ≤ 1+2/N with bk > 1 for k = 2, . . . ,m),

then all nontrivial solutions of (1.1) are nonglobal.

Theorem 3. Let u be a solution of (1.1) which blows up at x0 and

T < ∞. Then for any compact subset Ω ∋ x0 there exists a constant C > 0
such that the following bounds hold:

max
x∈Ω

ui(x, t) ≥ C(T − t)−αi , i = 1, . . . ,m.(1.10)

Theorem 4. Let u be a solution of (1.1) in RN × (0, T ). Assume that

maxi αi = α1 and mini αi > 0. If one of the following conditions holds :

(1.11) N = 1, 2 or N ≥ 3, α1 ≥
N − 2

4
,

(1.12) d1∆u01 +A1u
1+1/α1

01 > 0,

then for some constant C > 0,

ui(x, t) ≤ C(T − t)−αi , i = 1, . . . ,m.(1.13)

Some auxiliary assertions are gathered in the next section. The proofs
of the global existence and blow up results in the case p11 > 1 can be found
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in Section 3, whereas the contrary situation is discussed in Section 4. The
lower and upper bounds on the blow up rate are proved in Section 5.

2. Preliminary results. Let Si(t) denote the semigroup operator for
the heat equation with diffusion coefficient di, i.e.

Si(t)w0(x) =
\

RN

(4diπt)
−N/2 exp

(

−
|x− y|2

4dit

)

w0(y) dy.(2.1)

We consider classical nonnegative solutions of (1.1). Such solutions satisfy

ui(t) = Si(t)u0i +

t\
0

Si(t− s)
m
∏

k=1

(uk(s))
pi
k ds, i = 1, . . . ,m.(2.2)

In particular, we have

ui(τ) = Si(τ − ti)ui(ti) +

τ−ti\
0

Si(τ − ti − s)

m
∏

k=1

(uk(s))
pi
k ds

≥ Si(τ − ti)ui(ti), i = 1, . . . ,m.

Let u be a nondegenerate, nonnegative solution of (1.1), i.e. no compo-
nent vanishes identically on RN×(0, T ). If (xi, ti) are such that ui(xi, ti) > 0,
i = 1, . . . ,m, then in view of the positivity of Si(t) the above variation of con-
stants formula implies that ui(τ) > 0 for τ > ti. Consequently, ui(x, τ) > 0
for x ∈ RN , τ > t∗ = maxi=1,...,m ti.

Lemma 2.1. Let u = (u1, . . . , um) be a nondegenerate solution of (1.1).
Then we can choose τ = τ(u01, . . . , u0m) and some constants c > 0 and a > 0

such that min ui(τ) ≥ ce−a|x|2.

P r o o f. We know that there exists t0 such that ui(x, τ) > 0 for τ > t0.
Thus, if necessary, we can shift the initial time from zero to some t > t0 to
obtain the positivity of the initial data. We can assume that for some R > 0,

νi = inf{u0i(x) : |x| < R} > 0.

Using (2.2) we have, by positivity of uk,

ui(t) ≥ Si(t)u0i ≥ νi(4diπt)
−N/2 exp

(

−|x|2

4dit

) \
|y|≤R

exp

(

−|y|2

4dit

)

dy.

We define

ui(t) = ui(t+ τ0) for some τ0 > 0,

ai =
1

4diτ0
, ci = νi(4diπτ0)

−N/2
\

|y|≤R

exp

(

−|y|2

4diτ0

)

dy.
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Then

ui(0) = ui(τ0) > ci exp(−ai|x|
2).

To get the assertion, we choose a, c, τ0 suitable for all ui.

We introduce the following kinetic system, corresponding to (1.1):
{

u′
i =

∏m
k=1 u

pi
k

k , i = 1, . . . ,m,

ui(0) = u0i.
(2.3)

Definition 2.2 ([H], Definition 6.1.1). A setD ⊂ R×RN is an invariant

manifold for an equation du/dt+Au = f(t, u) provided for any (t0, u0) ∈ D,
there exists a solution u of the equation on an interval containing t0 with
u(t0) = u0 and (t, u(t)) ∈ D on this interval.

Lemma 2.3. The set

∂M = {(u1, . . . , um) | F (u1, . . . , um) = (F1, . . . , Fm−1) = Θ;

Fj(u1, . . . , um) = uj+1 − aj+1u
bj+1/bj
j , j = 1, . . . ,m− 1; ui ≥ 0},

where Θ = (0, . . . , 0) and aj are constants given by the conditions

a1 = 1, bi

i
∏

j=1

a
bi/bj
j =

m
∏

k=1

(

k
∏

j=1

a
bk/bj
j

)pi
k

, i = 2, . . . ,m,(2.4)

is an invariant manifold for (2.3).

P r o o f. Notice that along the set F = Θ we have

uk = aku
bk/bk−1

k−1 =
k
∏

j=1

a
bk/bj
j ubk

1 .(2.5)

Computing the derivative of Fi, i = 1, . . . ,m− 1, with respect to t and using
(2.3) and (2.5) we have

∂Fi

∂t
(u1, . . . , um)

∣

∣

∣

∣

F=Θ

= u′
i+1 − ai+1

bi+1

bi
u
bi+1/bi−1
i u′

i

∣

∣

∣

∣

F=Θ

=

m
∏

k=1

u
pi+1

k

k − ai+1
bi+1

bi
u
bi+1/bi−1
i

m
∏

k=1

u
pi
k

k

∣

∣

∣

∣

F=Θ

=
m
∏

k=1

(

k
∏

j=1

a
bk/bj
j ubk

1

)pi+1

k

− ai+1
bi+1

bi

(

i
∏

j=1

a
bi/bj
j ubi

1

)bi+1/bi−1

×

m
∏

k=1

(

k
∏

j=1

a
bk/bj
j ubk

1

)pi
k

.
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By (1.5)–(1.6), we check

m
∑

k=1

bkp
i+1
k =

1 + αi+1

α1
=

1 + αi

α1
+

αi+1 − αi

α1
=

m
∑

k=1

bkp
i
k + bi+1 − bi.

Therefore, using (2.4) we get

∂Fi

∂t
(u1, . . . , um)

∣

∣

∣

∣

F=Θ

= 0.

Lemma 2.4. (i) If r ≤ 1, then any nonnegative solution of (2.3) exists

globally.

(ii) If r > 1, then any nonnegative nontrivial solution of (2.3) blows up

in finite time.

P r o o f. First, we take u0 ∈ ∂M , i.e. u0(i+1) = ai+1u0i, i = 1, . . . ,m− 1,
u01 ≥ 0. By Lemma 2.3, ∂M is an invariant manifold for the system (2.3),
so u(t) = (u1(t), . . . , um(t)) ∈ ∂M , because u(0) ∈ ∂M . This means that
ui+1(t) = ai+1[ui(t)]

bi+1/bi for any t ∈ [0, T ). Hence, system (2.3) on ∂M
reduces to the scalar equation

u′
1 = aur

1, u1(0) = u01 > 0,

where a1/r =
∏m

k=1(
∏k

j=1 a
1/bj
j ).

We can easily obtain the solution u1 of this equation by integrating, and
the conclusions (i) and (ii) hold on ∂M .

Next, we assume u0 6∈ ∂M . We consider two cases:

a) r ≤ 1. Then we choose u01 in such a way that

0 ≤ u0i ≤
(

i
∏

j=1

a
1/bj
j u01

)bi
= u0i, i = 1, . . . ,m.

By (2.5) we get u0(i+1) = ai+1u0i for i = 1, . . . ,m − 1, therefore u0 =
(u01, . . . , u0m) ∈ ∂M . Then for the supersolution u = (u1, . . . , um) of (2.3)
we can apply Lemma 2.3 to infer (i). Moreover, the comparison principle
(see [LS], Theorem 1.2) gives

0 ≤ u(t) ≤ u(t),

whence the conclusion (i) holds for u(t).

b) r > 1. Then by the Lipschitz condition we have uniqueness, so u0 6= 0
implies u(t) > 0, t ≥ t0. By this condition we can assume u0 > 0 and take
u01 such that

0 < u0i =
(

i
∏

j=1

a
1/bj
j u01

)bi
≤ u0i, i = 1, . . . ,m.
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Since u0(i+1) = ai+1u
bi+1/bi
0i , it follows that u(t) ∈ ∂M (by Lemma 2.3)

and for the subsolution u(t) to (2.3) we obtain part (ii). The same property
remains true for u(t) by the comparison theorem, i.e. 0 ≤ u(t) ≤ u(t). Thus
the proof is complete.

Definition 2.5. Let du/dt+Au = f(t, u), u = (u1, . . . , um). A regionD
is called a regular invariant region for this system if the conditions u0 ∈ C2,
u0 ∈ ∂D imply that (t, u(x, t)) ∈ D (where u denotes a solution of this
system).

Lemma 2.6. Let u = (u1, . . . , um), F (u) = (F1(u), . . . , Fm−1(u)), and

Fi(u) = ui+1 − ai+1u
bi+1/bi
i , i = 1, . . . ,m− 1;

M = {u | F (u) ≤ Θ, ui ≥ 0, (di+1 − di)∆u0i ≤ 0

for u0i = ui(0) ∈ C2, i = 1, . . . ,m}.

Then M is a regular invariant region for (1.1) if bi+1/bi≤1, i=1, . . . ,m−1.

P r o o f. We assume that u0 ∈ ∂M , u0 ∈ C2, i.e. u0(i+1) = ai+1u
bi+1/bi
0i ,

u0i ≥ 0, (di+1 − di)∆u0i ≤ 0. Using (2.5) we have

(2.6)
∂Fi(u1(x, t), . . . , um(x, t))

∂t

∣

∣

∣

∣

F=Θ, t=0

=
∂

∂t
ui+1 − ai+1

bi+1

bi
u
bi+1/bi−1
i

∂

∂t
ui

∣

∣

∣

∣

F=Θ, t=0

= di+1∆u0(i+1) − ai+1
bi+1

bi
u
bi+1/bi−1
0i di∆u0i

+

[ m
∏

k=1

u
pi+1

k

0k − ai+1
bi+1

bi
u
bi+1/bi−1
0i

m
∏

k=1

u
pi
k

0k

]∣

∣

∣

∣

F=Θ

= (di+1 − di)ai+1
bi+1

bi
u
bi+1/bi−1
0i ∆u0i

+ di+1ai+1
bi+1

bi

(

bi+1

bi
− 1

)

u
bi+1/bi−2
0i |∇u0i|

2 ≤ 0

for i = 1, . . . ,m− 1 since bi+1 ≤ bi.
If (di = dj or ∆u0i ≡ 0) and simultaneously ∇u0i ≡ 0 then ∂M is

a regular invariant manifold for (1.1).
By (2.6) we infer

∂F (u(x, t))

∂t

∣

∣

∣

∣

F=Θ, t=0

≤ Θ.

We now proceed to prove that M is locally invariant , i.e. u(x, t) ∈ M
for all x ∈ RN and t sufficiently small.
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By (2.5),

|∇u0i(x)| = bi

i
∏

j=1

a
bi/bj
j (u01(x))

bi−1|∇u01(x)|.(2.7)

Let x0 ∈ RN and |∇u01(x0)| > 0. Then, by (2.6), (2.7) and assuming
bi+1 < bi we get Ft(u(x0, 0)) < Θ (if bi+1 = bi we can repeat our considera-
tions taking y0 such that ∆u01(y0) > 0).

Since F |t=0 = Θ, it follows that there exists δi(x0) satisfying

Fi(u(x0, t)) < 0 for 0 < t < δi(x0),

whence
F (u(x0, t)) < Θ for 0 < t < min

i
δi(x0).

If Ft(u(x0, 0)) = Θ, then we can choose ε > 0 and x∗ = (x1, x0,1, . . . , x0N )
such that

|∇u01(x
∗)| > 0 for 0 < |x1 − x01| < ε

and then Ft(u(x
∗, 0)) < Θ. It follows that for some δ(x∗) > 0,

F (x∗, t) < F (x∗, 0) = Θ for 0 < t < δ(x∗)

and there exists ε(x∗) > 0 such that

F (x, t) < Θ for |x− x∗| < ε(x∗), 0 < t < δ(x∗).

We note that assuming F (x0, t) > Θ we would get a contradiction. Indeed,
this condition implies F (x, t) > Θ for some x in a neighbourhood of x0 and
this is incompatible with the above result. Thus, we have proved the local
invariance of M .

Now, we want to verify that u(x, t) ∈ M for any x ∈ RN and t ∈ [0, T ).
Assume that this condition is not satisfied, i.e. there exist t0, x0 ∈ RN such
that

F (x, t) < Θ, x ∈ R
N , t < t0,(2.8)

and
F (x0, t) > Θ, t0 < t < t0 + δ0(x0).

Take a regular supersolution u(x, t) of (1.1) with initial values u(x, t0) such
that

ui+1(x, t0) = ai+1(ui(x, t0))
bi+1/bi , u1(x, t0) = u1(x, t0),

(di+1 − di)∆ui(x, t0) ≤ 0.

Then, since u(x, t0) ≥ u(x, t0), the comparison theorem gives

u(x, t) ≤ u(x, t), x ∈ R
N , t ∈ [t0, T

∗).
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Using (2.8), we also obtain

ui+1(x, t) > ui+1(x0, t) > ai+1(ui(x0, t))
bi+1/bi

for i = 1, . . . ,m− 1, t0 < t < t0 + δ0(x0), and by continuity

ui+1(x, t) > ai+1(ui(x, t))
bi+1/bi , |x− x0| < η, t0 < t < t0 + δ0(x0).

Therefore, putting

εi(x, t) = ui+1(x, t)− ai+1(ui(x, t))
bi+1/bi

we have εi(x, t) > 0 for t0 < t < t0 + δ0(x), |x− x0| < η. We can also choose
δ1(x) > 0 satisfying

0 ≤ a2u
b2
1 (x, t)− a2u

b2
1 (x, t) < 1

2ε1(x, t), t0 < t < t0 + δ1(x).

Let δ(x) = min{δ0(x), δ1(x)}. Then

ε1(x, t) > 0, 0 ≤ a2u
b2
1 (x, t) − a2u

b2
1 (x, t) < 1

2ε1(x, t),

for |x− x0| < η, t0 < t < t0 + δ(x). Therefore,

a2u
b2
1 (x, t) < a2u

b2
1 (x, t) + 1

2ε1(x, t)(2.9)

= a2u
b2
1 (x, t) + 1

2u2(x, t) −
1
2a2u

b2
1 (x, t)

= − 1
2a2u

b2
1 (x, t) + 1

2u2(x, t) < u2(x, t)

for |x− x0| < η, t0 < t < t0 + δ(x).
By assumption, u(x, t0) ∈ ∂M so it follows that locally u(x, t) ∈ M , and

in particular

u2(x, t) ≤ a2u
b2
1 (x, t), x ∈ R

N , t0 < t < t0 + δ′(x).

Thus, for |x− x0| < η, t0 < t < t0 +min{δ(x), δ′(x)} we have a contradiction
with (2.9). Finally, we infer that

F (u(x, t)) ≤ Θ for x ∈ R
N , t ∈ [0, T ),

i.e. M is globally invariant.

Remark 2.7. We can always make the numbers αi into a decreasing
sequence. Namely, we find a permutation σ such that σ−1(i + 1) ≤ σ−1(i),
i = 1, . . . ,m − 1. Then, putting σ−1(i) instead of i in ui, i = 1, . . . ,m, and
consequently in αi, di, p

i
k, we get αj+1 ≤ αj . Thus, the assumption bj+1 ≤ bj

is natural.

3. Case p11 > 1. In this part we consider separately the case p11 > 1
proving Theorem 1. The method used to obtain blow up results in this case
is based on some lower bounds and does not require applying an invariant
region.

In further considerations we use the notion of a subsolution and a su-
persolution of the system (1.1) and the comparison principles. The related
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definitions and theorems can be found in [EL] (Lemmas A1, A2 in Appen-
dices) and [LS] (Definition 1.1, Theorem 1.2).

First, our goal is to show the existence of global solutions of (1.1) under
the assumptions of part A of Theorem 1. To establish this assertion, we look
for a global supersolution of the form

ui = εi(t+ t0)
βi−N/2 exp

(

−|x|2

4di(t+ t0)

)

(3.1)

with some positive constants εi, βi, i = 1, . . . ,m.
Consider the system

uit − di∆ui ≥

m
∏

k=1

u
pi
k

k .(3.2)

Substituting (3.1) to (3.2) we obtain

N

2

(

m
∑

k=1

pik − 1
)

− 1 >
m
∑

k=1

pikβi − βi, i = 1, . . . ,m,(3.3)

provided that εi are sufficiently small and t0 is large enough. By assumption
∑m

k=1 p
i
k ≥

∑m
k=1 p

1
k > 2/N + 1, so the left-hand sides of (3.3) are positive

and we can find small positive βi, i = 1, . . . ,m, which satisfy (3.3). Thus,
the functions ui, i = 1, . . . ,m, are supersolutions of (1.1), so the system has
global solutions.

Now we prove the blow up results. We shall derive some lower bounds
for solutions of (1.1) which eventually lead to establishing the assertions of
Theorem 1. For simplicity, we denote here p11 by p.

Lemma 3.1. Suppose that p=p11 > 1. Let t1∈(0, T ) and for all x∈ RN ,
v(x) = mini ui(x, t1) > 0. Then

u1(x, t) ≥

j
∑

n=0

(θt)(p
n−1)/(p−1)(dN/2Smin(t)v(x))

πn(3.4)

for j = 1, 2, . . . , x ∈ RN , t ∈ (0, T − 2t1) where θ, d > 0 are some constants ,
Smin is the semigroup operator for the heat equation with diffusion coefficient

mink dk, and

πn = pn +

m
∑

k=2

p1k
pn − 1

p− 1
.

P r o o f. Using a rescaling argument in formulas (2.2) we observe that

ui(t) ≥ Si(t)v ≥ dN/2Smin(t)v(3.5)

where d = mink dk/maxk dk and t ∈ (0, T − 2t1). To obtain the estimate we
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apply (3.5) in (2.2) for i = 1 and the Jensen inequality for
∑m

k=1 p
1
k ≥ p > 1

to get

u1(t) ≥ dN/2Smin(t)v(3.6)

+ d(N/2)(1+
∑

m

k=1
p1
k)

t\
0

Smin(t− s)(Smin(s)v)
∑

m

k=1
p1
k ds

≥ dN/2Smin(t)v + d(N/2)(1+
∑

m

k=1
p1
k)t(Smin(t)v)

∑

m

k=1
p1
k .

In this way, we have established our lemma for j = 1. Further, we assume
that

u1(t) ≥

j
∑

n=0

Cndnt
γn(Smin(t)v)

πn(3.7)

where

γn+1 = γnp+ 1, πn+1 = πnp+
∑m

k=2 p
1
k,

Cn+1 = Cp
n/γn+1, dn+1 = dpnd

(N/2)(
∑

m

k=2
p1
k+1),

(3.8)

We see that π0 = 1, and since p > 1 we find that πn > 1 for all n and we
can use Jensen’s inequality. By applying the inequality (a + b)p ≥ ap + bp

for a, b > 0, p ≥ 1, we deduce from (2.2), (3.5), (3.7) that

u1(t)− dN/2Smin(t)v

≥

t\
0

S1(t− s)

m
∏

k=2

(Sk(s)v)
p1
k

(

j
∑

n=0

Cns
γndn(Smin(s)v)

πn

)p

ds

≥ d(N/2)(1+
∑

m

k=2
p1
k)

t\
0

Smin(t− s)(Smin(s)v)
∑

m

k=2
p1
k

×

j
∑

n=0

dpnC
p
ns

pγn(Smin(s)v)
pπn ds

≥ d(N/2)(1+
∑

m

k=2
p1
k)

j
∑

n=0

Cp
n

pγn + 1
tpγn+1dpn(Smin(t)v)

pπn+
∑

m

k=2
p1
k ,

i.e.

u1(t) ≥

j+1
∑

n=0

Cndnt
γn(Smin(t)v)

πn .(3.9)

Notice that (3.9) is (3.7) for j + 1 and by (3.8) we can compute that

γn =
pn − 1

p− 1
, πn = pn +

m
∑

k=2

p1k
pn − 1

p− 1
, dn = dNπn/2,

Cn =
Cp

n−1

pn − 1
(p− 1) =

Cp2

n−2(p− 1)p+1

(pn − 1)(pn−1 − 1)p
=

n
∏

l=1

(

p− 1

pl − 1

)pn−l

.

(3.10)
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To estimate Cn from below we observe that

lnCn ≥

n
∑

l=1

pn−l[ln(p− 1)− ln(pl − 1)](3.11)

≥
pn − 1

p− 1
ln(p− 1)−

n
∑

l=1

lpn−l ln p

≥
pn − 1

p− 1
ln(p− 1)− pn−1 ln p

∞
∑

l=1

lp−l+1

≥
pn − 1

p− 1

(

ln(p− 1)−
p2

(p− 1)2
ln p

)

=
pn − 1

p− 1
ln((p− 1)/pp2/(p−1)2).

Therefore we have found θ = (p − 1)p−p2/(p−1)2 > 0 such that Cn ≥ θγn .
Thus, by (3.7) and (3.10), the proof is complete.

Proof of Theorem 1A. The existence of nonglobal solutions in the case
p11 > 1 (Theorem 1A) is now a consequence of Lemma 3.1. Lemma 2.1

implies that mini ui(x, t) ≥ Ce−A|x|2 , so

Smin(t)v(x) ≥ C(1 + 4A0t)
−N/2 exp

(

−A|x|2

1 + 4A0t

)

(3.12)

where A0 = A(mini di).

Now put x = 0 and fix t0 such that θt0 > 1 (i.e. t0 > pp
2/(p−1)2/(p−1) by

(3.11)). We remark that by the assumption on the initial data we can make
C as large as we wish. In particular, we can take C > 2[(1 + 4A0t0)/d]

N/2.
Then, by (3.4),

u1(0, t0) > 2(j + 1) for j = 1, 2, . . .(3.13)

and this contradicts the boundedness of u1. Thus, u is nonglobal.

Lemma 3.2. Suppose that p11 = p > 1 and (
∑m

k=1 p
1
k − 1)N/2 ≤ 1. If

u = (u1, . . . , um) is a nondegenerate solution of (1.1) satisfying, for some

C0 and A > 0,

min
i

ui(0) ≥ C0 exp(−A|x|2)(3.14)

then there exist positive C, θ > 0 such that

(3.15) u1(x, t) > C(1+4At)−N/2

j
∑

n=0

[

θ ln(1+4Ad0t)
γn exp

(

−Aπn|x|
2

1 + 4Ad0t

)]

where d0 = min(d1, . . . , dm, 1), j = 1, 2, . . . and γn, πn are given by (3.10).
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P r o o f. By Lemma 2.1, the assumption (3.14) is satisfied. Then using
formulas (2.2) we obtain

min
i

ui(x, t) ≥ min
i
(Si(t)u0i) ≥ dN/2 min

i
(S0(t)u0i)(3.16)

≥ dN/2C0(1 + 4Ad0t)
−N/2 exp

(

−A|x|2

1 + 4Ad0t

)

where S0 is the semigroup operator for the heat equation with diffusion
coefficient d0 and d = d0/maxk dk.

The proof is very similar to that of Lemma 3.1. Using (3.16) in (2.2) we
want to get (3.15) for j = 1. We have

u1(x, t) ≥ dN/2C0(1 + 4Ad0t)
−N/2 exp

(

−A|x|2

1 + 4Ad0t

)

+ d(N/2)(
∑

m

k=1
p1
k+1)C

∑

m

k=1
p1
k

0

t\
0

(1 + 4Ad0s)
−(N/2)

∑

m

k=1
p1
k

× S0(t− s) exp

(

−A
∑m

k=1 p
1
k|x|

2

1 + 4Ad0s

)

ds

= dN/2C0(1 + 4Ad0t)
−N/2 exp

(

−A|x|2

1 + 4Ad0t

)

+ dN/2(dN/2C0)
∑

m

k=1
p1
k

t\
0

(1 + 4Ad0s)
−(N/2)(

∑

m

k=1
p1
k−1)

×
[

1 + 4Ad0s+ 4A
m
∑

k=1

p1k(t− s)
]−N/2

× exp

(

−A
∑m

k=1 p
1
k|x|

2

1 + 4Ad0s+ 4A
∑m

k=1 p
1
k(t− s)

)

ds.

Putting

f(s) = 1 + 4Ad0s+ 4A

m
∑

k=1

p1k(t− s)

we notice that f ′(s) = 4A(d0 −
∑m

k=1 p
1
k) < 0 as

∑m
k=1 p

1
k ≥ p > 1 ≥ d0.

This implies

u1(x, t) ≥ dN/2C0(1 + 4Ad0t)
−N/2 exp

(

−A|x|2

1 + 4Ad0t

)

+ dN/2(dN/2C0)
∑

m

k=1
p1
k

(

1 + 4A

m
∑

k=1

p1kt
)−N/2

× exp

(

−A
∑m

k=1 p
1
k|x|

2

1 + 4Ad0t

) t\
0

(1 + 4Ad0s)
−(N/2)(

∑

m

k=1
p1
k−1) ds.
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Finally, using (
∑m

k=1 p
1
k − 1)N/2 ≤ 1 we obtain

u1(x, t) ≥ C0(dd0)
N/2(1 + 4Ad0t)

−N/2 exp

(

−A|x|2

1 + 4Ad0t

)

(3.17)

+
(dd0)

N/2(dN/2C0)
∑

m

k=1
p1
k

(
∑m

k=1 p
1
k)

N/2
(1 + 4Ad0t)

−N/2

× exp

(

−A
∑m

k=1 p
1
k|x|

2

1 + 4Ad0t

)

ln(1 + 4Ad0t),

which is our statement for j = 1. Arguing by induction, we assume that

(3.18) u1(x, t)

≥ (1 + 4Ad0t)
−N/2

j
∑

n=0

Cn exp

(

−Aπn|x|
2

1 + 4Ad0t

)

[ln(1 + 4Ad0t)]
γn

where

Cn+1 =
(C0d

N/2)
∑

m

k=2
p1
k(dd0)

N/2Cp
n

(pπn +
∑m

k=2 p
1
k)

N/2(γnp+ 1)
,

γn+1 = pγn + 1, γ0 = 0,

πn+1 = pπn +

m
∑

k=2

p1k, π0 = 1.

(3.19)

We employ (3.18) and (3.16) in (2.2). Then

u1(x, t)

≥C0d
N/2(1+4At)−N/2exp

(

−A|x|2

1 + 4Ad0t

)

+ d(N/2)(
∑

m

k=2
p1
k+1)C

∑

m

k=2
p1
k

0

×

t\
0

(1 + 4Ad0s)
−(N/2)

∑

m

k=1
p1
k exp

(

−A
∑m

k=2 p
1
k|x|

2

1 + 4Ad0s

)

× S0(t− s)

[ j
∑

n=1

Cn exp

(

−Aπn|x|
2

1 + 4Ad0s

)

(ln(1 + 4Ad0s))
γn

]p

ds

≥ C0d
N/2(1 + 4At)−N/2 exp

(

−A|x|2

1 + 4Ad0t

)

+ d(N/2)(
∑

m

k=2
p1
k+1)C

∑

m

k=2
p1
k

0

t\
0

(1 + 4Ad0s)
−(N/2)

∑

m

k=1
p1
k

× S0(t− s)

j
∑

n=1

Cp
n exp

(

−A(pπn +
∑m

k=2 p
1
k)|x|

2

1 + 4Ad0s

)

× (ln(1 + 4Ad0s))
pγn ds
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≥ C0d
N/2(1 + 4At)−N/2 exp

(

−A|x|2

1 + 4Ad0t

)

+ dN/2(C0d
N/2)

∑

m

k=2
p1
k

t\
0

(1 + 4Ad0s)
−(N/2)(

∑

m

k=1
p1
k−1)

×

j
∑

n=1

Cp
n(1 + 4Ad0s+ 4Aπn+1(t− s))−N/2(ln(1 + 4Ad0s))

pγn

× exp

(

−A(pπn +
∑m

k=2 p
1
k)|x|

2

1 + 4Ad0s+ 4A(pπn +
∑m

k=2 p
1
k)(t− s)

)

ds.

As in the case j = 1 we observe that

fk(s) = 1 + 4Ad0s+ 4A
(

pπn +

m
∑

k=2

p1k

)

(t− s)

satisfies

f ′
k(s) = 4A

(

d0 −
(

pπn +

m
∑

k=2

p1k

))

s < 0

because πn+1 ≥ πn ≥ p > d0 for n = 1, . . . ,m by (3.19). Employing also
(
∑m

k=1 p
1
k − 1)N/2 ≤ 1 we obtain

(3.20) u1(x, t)

≥ C0d
N/2(1 + 4At)−N/2 exp

(

−A|x|2

1 + 4Ad0t

)

+ dN/2(C0d
N/2)

∑

m

k=2
p1
k

×

j
∑

n=1

(Cn)
p(1 + 4Aπn+1t)

−N/2 exp

(

−Aπn+1|x|
2

1 + 4Ad0t

)

×

t\
0

[ln(1 + 4Ad0s)]
pγn

1 + 4Ad0s
ds

≥ C0(dd0)
N/2(1 + 4Ad0t)

−N/2 exp

(

−A|x|2

1 + 4Ad0t

)

+(1 + 4Ad0t)
−N/2dN/2(C0d

N/2)
∑

m

k=2
p1
k

×

j
∑

n=1

(Cn)
pd

N/2
0

π
N/2
n+1(pγn + 1)

exp

(

−Aπn+1|x|
2

1 + 4Ad0t

)

[ln(1 + 4Ad0t)]
pγn+1

≥ (1 + 4Ad0t)
−N/2

j+1
∑

n=0

Cn exp

(

−Aπn|x|
2

1 + 4Ad0t

)

[ln(1 + 4Ad0t)]
γn ,

so we have proved that (3.18) holds with j + 1 in place of j. It remains to
estimate Cn, because by (3.19), πn and γn are as in the preceding lemma,
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i.e.

γn =
pn − 1

p− 1
, πn = pn +

m
∑

k=2

p1k
pn − 1

p− 1
.(3.21)

We compute

lnCn+1 = p lnCn +
N

2
ln d0 +

N

2

(

m
∑

k=2

p1k + 1
)

ln d

+

m
∑

k=2

p1k lnC0 −
N

2
lnπn − ln γn

≥ p lnCn −
N

2
ln

[(

1 +
m
∑

k=2

p1k
1

p− 1

)

pn
]

− ln
pn

p− 1

+
N

2

(

ln d0 +
(

m
∑

k=2

p1k + 1
)

ln d
)

+

m
∑

k=2

p1k lnC0

≥ p lnCn −

(

N

2
+ 1

)

n ln p− a

where a does not depend on n. This implies

lnCn+1 ≥ pn lnC0 +
a(pn+1 − 1)

p− 1
− ln p

(

N

2
+ 1

) n
∑

k=0

(n− k)pk(3.22)

≥ pn+1

[

lnC0

p
−

a(1− p−n−1)

p− 1
− ln p

(

N

2
+ 1

) ∞
∑

k=0

kp−k−1

]

≥ pn+1

[

lnC0

p
−

|a|

p− 1
− ln p

(

N

2
+ 1

)

p2

(p− 1)2

]

.

By (3.22) we can find D > 0 such that

lnCn ≥ −pnD ≥ −Dp
pn − 1

p− 1
= ln θγn

where θ = e−Dp > 0. Thus Cn ≥ θγn and therefore, by (3.20) and (3.21)
the proof is complete.

Proof of Theorem 1B. Let us take into account (3.15). For x = 0 and t0
such that θ ln(1 + 4Ad0t0) ≥ 1 we obtain

u1(0, t0) ≥ C(1 + 4At0)
−N/2(j + 1) for j = 1, 2, . . . ,(3.23)

which implies that for t ≥ t0 the solution of (1.1) is not bounded. This
establishes Theorem 1B.

4. Case p11 < 1. We prove Theorem 2 using comparison principles (see
Lemmas A1, A2 in [EL], Theorem 1.2 in [LS]). Applying a minimal subsolu -
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tion or maximal supersolution instead of a subsolution or supersolution, we
can omit the Lipschitz continuity requirement for the nonlinear functions in
the system. This makes it possible to establish blow up or global existence
of solutions.

Proof of Theorem 2A. Consider a solution u∗(t) of the kinetic system
(2.3) with initial value u∗

0 defined as follows:

u∗
0i = sup

RN

u0i(x) ≥ u0i(x), i = 1, . . . ,m.(4.1)

Then u∗(t) is also a space-independent solution of (1.1) and by the compar-
ison theorem

0 ≤ u(x, t) ≤ u∗(t).

As 0 < r < 1 we apply Lemma 2.4(i) to the solution u∗(t) of (2.3). Therefore,
(4.1) implies that u(x, t) exists globally since u∗(t) does.

Proof of Theorem 2B. First, we take u0(x) ∈ ∂M , so by Lemma 2.6,
u(x, t) ∈ M , i.e. 0 ≤ ui+1(x, t) ≤ ai+1(ui(x, t))

bi+1/bi for (x, t) ∈ RN × [0, T ).
Applying this inequality to the system (1.1), we get, by (2.5),

uit − di∆ui ≤
(

m
∏

k=1

k
∏

j=1

a
1/bj
j u1

)(1+αi)/α1

, i = 1, . . . ,m.

Thus, (1.1) can be compared with the following supersystem:
{

uit − di∆ui = Aiu
(1+αi)/α1

1

ui(x, 0) = u0i(x), i = 1, . . . ,m,
(4.2)

where Ai = (
∏m

k=1

∏k
j=1 a

1/bj
j )(1+αi)/α1 , and then

u(x, t) ≥ u(x, t).(4.3)

We note that (1 + α1)/α1 = r > 1 + 2/N . We apply the Fujita theorem
to the first equation of (4.2). Thus, for u01(x) sufficiently small, u1(x, t)
exists globally. Using (4.2)i we infer that ui(x, t) also exists globally for
i = 2, . . . ,m and hence so does u(x, t) = (u1(x, t), . . . , um(x, t)) by (4.3).

Next, we take u0(x) 6∈ ∂M and choose u∗
01(x) such that

0 ≤ u0i ≤

i
∏

j=1

a
bi/bj
j (u∗

01)
bi = u∗

0i.

Then a solution u∗(x, t) of (1.1) has its initial values u∗
0(x) on ∂M and we

can apply the above considerations. Moreover, by comparison,

0 ≤ u(x, t) ≤ u∗(x, t),

so by the global existence of u∗(x, t) we get the assertion for u(x, t).



60 J. RENC lAWOWICZ

Next, we argue similarly. If u0(x) ∈ ∂M , then by Lemma 2.6, u(x, t) ∈
M , and (1.1) takes the form

uit − di∆ui ≥
(

m
∏

k=1

m
∏

j=k+1

a
−1/bj
j u1/bm

m

)(1+αi)/α1

because uk ≥ (
∏m

j=k+1 a
−1/bj
j u

1/bm
m )bk .

We consider a subsystem corresponding to (1.1):
{

u it − di∆u i = Biu
(1+αi)/αm
m ,

u i(x, 0) = u0i(x), i = 1, . . . ,m,
(4.4)

where Bi = (
∏m

k=1

∏m
j=k+1 a

−1/bj
j )(1+αi)/α1 . Using the comparison principle

to systems (1.1) and (4.4) we have

u(x, t) ≤ u(x, t).(4.5)

By assumption

1 + αm

αm
= 1 +

1

αm
≥ 1 +

1

α1
= r > 1 +

2

N

so we can apply the Fujita theorem to the last equation of (4.4). Hence,
um(x, t) blows up in finite time provided um(x, 0) = u0m(x) is large enough.
By (4.4)i, i = 1, . . . ,m − 1, we see that u i(x, t) does not exist globally;
by (4.5) also u(x, t) = (u1(x, t), . . . , um(x, t)) blows up in finite time.

If u0(x) 6∈ ∂M , by Lemma 2.1 we can choose u∗
01(x) satisfying

0 ≤ u∗
0i =

i
∏

j=1

a
bi/bj
j (u∗

01)
bi ≤ u0i.

Next, we complete the proof using the same argument as in the proof of the
previous part.

The proof of Theorem 2C is based on a construction of subsolutions to
a system of reaction-diffusion equations (see [LS]). Adapting this result to
a system of m equations, we get the following lemma.

Lemma 4.1. Let
{

uit = di∆ui + fi(u1, . . . , um),

ui(x, 0) = u0i(x) ≥ 0, i = 1, . . . ,m.
(4.6)

Let ui = φi(t, u01, . . . , um0
), i = 1, . . . ,m, be a solution of the kinetic system

{

uit = fi(u1, . . . , um),

ui(0) = u0i, i = 1, . . . ,m.
(4.7)

Putting z(x, t) = Sm(t)v∗ (then zt = dm∆z, z(0) = v∗(x)) we define

Φi(x, t) = φi(t, 0, . . . , 0, z(x, t)), i = 1, . . . ,m.(4.8)
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Then Φ(x, t) = (Φ1(x, t), . . . , Φm(x, t)) is a subsolution to (4.6) iff Φ1(0) =
v∗(x) ≤ u0m(x) and φivv ≥ 0, i = 1, . . . ,m.

Proof of Theorem 2C. Let fi(u1, . . . , um) =
∏m

k=1 u
pi
k

k . Then (4.6) takes
the form of (1.1). Assume that mink αk = αm, i.e. bk ≥ bm, i = 1, . . . ,m.
Setting the initial values in the kinetic system (4.7) as follows: um(0) = v,

ui(0) =
∏m

j=i+1 a
−bi/bj
j vbi/bm , i = 1, . . . ,m − 1, we obtain the following

solution of this system:

φi(t, v) = ci[v
1−q −A∗(q − 1)t]−bi/(bm(q−1)),(4.9)

where cm = 1, ci =
∏m

j=i+1 a
−bi/bj
j , A∗ = bmc

1/α1

1 and q = 1 + 1/αm. Thus

φi(t) = ciφ
bi/bm
m (t).(4.10)

We assume that 0 ≤ v∗(x) ≤ u0m(x), ci(v
∗(x))bi/bm ≤ u0i(x), where

u0(x) is the initial value in (1.1). Let Φ(t, z(x, t)) be given by (4.8) and
(4.9). Then, by Lemma 4.1, if φivv ≥ 0, i = 1, . . . ,m, then Φ(t, z(x, t)) is
a subsolution to (1.1).

By (4.9) we get

φmvv = φq
mqv−1−q

[(

φm

v

)q−1

− 1

]

,

and so, since φ1−q
m < v1−q, φmvv ≥ 0 for t ≥ 0. Using (4.10), we also have,

for i = 1, . . . ,m− 1,

φivv = ci
bi
bm

φbi/bm−1+q
m v−1−q

[(

bi
bm

+ q − 1

)(

φm

v

)q−1

− q

]

so φivv ≥ 0 for i = 1, . . . ,m− 1 iff

A∗(q − 1)t ≥
bm − bi
bmq

v1−q.

This inequality holds for t ≥ 0 since q > 1 and bi ≥ bm, i = 1, . . . ,m.
Next, we show that the subsolution Φ(x, t) to (1.1) blows up in finite

time. Putting x = 0 in Φm(x, t) we have

Φm(0, t) = [z1−q(0, t)−A∗(q − 1)t]−1/(q−1) = f(t)−1/(q−1)

so f(0) = z1−q(0, 0) = v∗(0) > 0.
Since 1 < q < 1 + 2/N , there exists t∗ > 0 such that f(t∗) = 0, namely

t∗ =
[

A∗(q − 1)
( \
RN

(4d1π)
−N/2e−|ξ|2/(4d1t

∗)v∗(ξ) dξ
)q−1]1/(N(q−1)/2−1)

.

Therefore, for some t∗∗ ∈ (0, t∗], limt→t∗∗ Φm(0, t) = +∞. Consequently, also
u(x, t) blows up in finite time.



62 J. RENC lAWOWICZ

5. Growth rate estimates. This section establishes an upper and a
lower bound on the growth rate near the blow up time T . To get both
estimates, we use an idea of invariant regions to replace (1.1) by a corre-
sponding sub- or supersystem. The utility of the concept lies in reducing
our system to another one, involving a scalar equation. It is remarkable that
such a significant modification of nonlinear terms yields the bounds which
are suggested by the kinetic system.

First, we prove a lower estimate on the blow up rate.

Proof of Theorem 3. Retaining the notations of Section 2 we check
whether the initial values u0 belong to ∂M . If this assumption is satis-
fied, we will consider a corresponding subsolution of (1.1) starting from the
same initial data. Otherwise, we have to choose u01(x) such that

0 ≤ u0i =
i
∏

j=1

a
bi/bj
j (u01)

bi ≤ u0i.(5.1)

We consider u∗(x, t) satisfying (1.1) with initial values u0. Since u0 ∈ ∂M
by (5.1), Lemma 2.6 implies that u∗(x, t) ∈ M , so (1.1) leads to

{

u∗
it − di∆u∗

i ≥ Bi(u
∗
m)(1+αi)/αm ,

u∗
i (x, 0) = u0i(x), i = 1, . . . ,m,

where Bi = (
∏m

k=1

∏m
j=k+1 a

−1/bj
j )(1+αi)/α1 .

If we take into account a subsystem

{

u it − di∆u i = Biu
(1+αi)/αm
m ,

u i(x, 0) = u0i(x),
(5.2)

then by comparison u i(x, t) < ui(x, t), i = 1, . . . ,m. Moreover, we remark
that the last equation in (5.2) has the form

umt − di∆um = Bmu1+1/αm

m .(5.3)

For any compact set Ω ⊂ RN and Um(t) = maxx∈Ω um(x, t) we prove

Lemma 5.1. If um satisfies (5.3) then Um(t) is Lipschitz continuous and

U ′
m(t) ≤ U rm

m a.e., where rm = 1 + 1/αm.(5.4)

P r o o f. Suppose that xi ∈ Ω is such that

Um(ti) = u(xi, ti) for i = 1, 2.

Putting h = t2 − t1 > 0 we can estimate
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Um(t2)− Um(t1) ≥ um(x1, t2)− um(x1, t1)

= humt(x1, t1) + o(h),

Um(t2)− Um(t1) ≤ um(x2, t2)− um(x2, t1)

= humt(x2, t2) + o(h).

(5.5)

This yields the Lipschitz continuity. By definition of Um, ∆um(xi, ti) ≤ 0,
so (5.5) implies

Um(t2)− Um(t1)

t2 − t1
≤ umt(x2, t2) + o(1)

≤ (um(x2, t2))
rm + o(1) = Um(t2)

rm + o(1)

and the assertion follows.

Continuation of the proof of Theorem 3. We conclude that (5.4) takes
the form

Um(τ)\
Um(t)

d(Um)

U rm
m

≤ T − t(5.6)

provided that
T∞
0

s−rm ds < ∞. By integration, we get

Um ≥ C0(T − t)−1/(rm−1) = C0(T − t)−αm(5.7)

with C0 = α−1
m . Since u i(x, t) ∈ M we also have

max
x∈Ω

u i(x, t) ≥
(

m
∏

j=i+1

a
−1/bj
j U1/bm

m

)bi
≥ CiU

αi/αm

m ≥ C(T − t)−αi .(5.8)

Thus, because u(x, t) is a subsolution,

max
x∈Ω

ui(x, t) ≥ C(T − t)−αi , i = 1, . . . ,m,

which concludes the proof.

Next, we prove an upper bound.

Proof of Theorem 4. We will proceed similarly to the previous proof to
obtain the assertion for some supersolution. Then by comparison the same
bound from above remains true for the solution of (1.1).

We set u0i(x) in the following way: if u0(x) ∈ ∂M then u0i(x) = u0i(x),
whereas for u0(x) 6∈ ∂M we find u01(x) such that

0 ≤ u0i ≤
i
∏

j=1

a
bi/bj
j (u01)

bi = u0i.

Then a solution u∗ of (1.1) with u∗(0) = u0 belongs to M , so it satisfies
{

u∗
it − di∆u∗

i ≤ Ai(u
∗
1)

(1+αi)/α1 ,

u∗
i (x, 0) = u0i(x), i = 1, . . . ,m,

(5.9)
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where Ai = (
∏m

k=1

∏k
j=1 a

1/bj
j )(1+αi)/α1 , i = 1, . . . ,m. This yields a super-

system corresponding to (1.1) of the form
{

uit − di∆ui = Aiu
(1+αi)/α1

1 ,

ui(x, 0) = u0i(x),
(5.10)

with constants Ai as above. Thus ui(x, t) ≤ ui(x, t). We notice that the first
equation in (5.10) is scalar, i.e.

u1t − d1∆u1 = A1u
r
1, where r = 1 + 1/α1,

u1(x, 0) = u01(x).
(5.11)

Let us now consider this equation. We have two separate cases when a so-
lution of (1.1) blows up in finite time. If p11 ≤ 1 (assuming that mini

∑m
k=1 p

i
k

=
∑m

k=1 p
1
k) then by Theorem 2 we have α1 = maxi αi > 0. If p11 > 1 then

by Theorem 1 we can only claim that
∑m

k=1 p
1
k − 1 > 0. On the other hand

1 = (p11 − 1)α1 +
m
∑

k=2

p1kαk ≤
(

m
∑

k=1

p1k − 1
)

max
k

αk

so maxk αk = α1 ≥ (
∑m

k=1 p
1
k − 1)−1 > 0. It follows that r > 1.

Lemma 5.2. Let v(x, t) be a solution of

vt − d∆v = Avr, x ∈ RN , t ∈ (0, T ),

v(x, 0) = v0(x), x ∈ RN ,

where r > 1, v0(x) > 0, d,A > 0. Then

v(x, t) ≤ C(T − t)−α with α =
1

r − 1
(5.12)

provided that either

d∆v0 +Avr0 > 0(5.13)

or

N = 1, 2 or N ≥ 3 and α ≥
N − 2

4
.(5.14)

P r o o f. Suppose that (5.13) holds. Set

F = vt − δAvr(5.15)

where δ > 0 is a constant to be determined. The function F satisfies

Ft − d∆F = A(vr)′vt − δA2(vr)′vr + δAd(vr)′′|∇v|2

and by (5.15),

Ft − d∆F = Arvr−1F = δAdr(r − 1)vr−2|∇v|2.

This implies, as r > 1,

Ft − d∆F −Arvr−1F ≥ 0.(5.16)
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We remark that we can choose δ > 0 small enough to guarantee
that F (0)>0. Indeed, by (5.13) we have vt(0) ≥ c > 0, and clearly vr(0) ≤ c′

as long as T > 0. Then, by comparison and (5.15), (5.16), it follows that F
cannot be negative, i.e. there exists δ > 0 such that

vt ≥ δAvr.(5.17)

This is equivalent to

−
∂

∂t

(

v−r+1

r − 1

)

≥ δA

or, by integration,

v(x, t)−r+1

r − 1
≥ δA(T − t).

Finally, we obtain

v(x, t) ≤ C(T − t)−α, where α =
1

r − 1
, C = ((r − 1)δA)−α.

It remains to consider the case where (5.14) holds. Then, by assumption,

N ≤ 2 or N ≥ 3 and 1 < r ≤
N + 2

N − 2

and we can apply the relevant result proved in [GK] (cf. Theorem 3.7). Thus,
our assertion follows.

Continuation of the proof of Theorem 4. Employing Lemma 5.2 in (5.11)
we conclude that

u1(x, t) ≤ u1(x, t) ≤ C(T − t)−α1 .

Notice that starting from u∗(x, t) (which is also a solution of (1.1)) instead
of u(x, t) we can obtain the same bound:

u∗
1(x, t) ≤ C(T − t)−α1 .(5.18)

Moreover, since u∗(x, t) ∈ M , we have

u∗
1 ≤

(

i
∏

j=1

a
1/bj
j u∗

1

)bi
≤ Ci(T − t)−α1bi = Ci(T − t)−αi .(5.19)

It remains to observe that u∗
i (x, t) is, by construction, a supersolution

to (1.1). Therefore, the upper estimate (5.19) also holds for a solution u(x, t)
of (1.1). This establishes our assertion.
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