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A DUALITY PRINCIPLE FOR STATIONARY RANDOM SEQUENCES

BY

K. U R B A N I K (WROC LAW)

Abstract. The paper is devoted to the study of stationary random sequences. A con-
cept of dual sequences is discussed. The main aim of the paper is to establish a relationship
between the errors of linear least squares predictions for sequences and their duals.

1. Preliminaries and notation. This paper is organized as follows.
Section 1 collects together some basic facts and notation concerning sta-
tionary random sequences needed in what follows. In Section 2 a concept
of dual sequences is discussed. In the last section a relationship between
the errors of linear least squares predictions for sequences and their duals is
established.

We suppose, as usual, that there is a probability measure defined on a σ-
algebra of sets of some space Ω. Let M be the set of all complex-valued ran-
dom variables whose squares are integrable. The setM is a Hilbert space un-
der the inner product (X,Y ) = EXY where E stands for the expectation of
random variables. Throughout this paper Z will denote the set of all integers.

A sequence X = {Xn} (n ∈ Z) of random variables from M is said to
be stationary if the inner product (Xn+m,Xm) does not depend on m. The
function R(n) = (Xn+m,Xm) (n ∈ Z) is called the covariance function of
the sequence in question. The Herglotz Theorem describes the covariance
function as a Fourier transform

R(n) =

π\
−π

einx µ(dx)

where the measure µ is concentrated on the interval [−π, π). Of course, the
correspondence R ↔ µ is one-to-one ([1], Chapter 10.3). The measure µ is
called the spectral measure of the sequence X.

For the empty set ∅ we put [X, ∅] = {0}. For a non-empty subset Q of Z
we denote by [X,Q] the closed linear manifold of M generated by the ran-
dom variables Xn with n ∈ Q. For the sake of brevity we put [X,Z] = [X].
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Each stationary sequence X = {Xn} (n ∈ Z) induces a unitary operator T
on [X] satisfying the condition TXn = Xn+1 (n ∈ Z) ([1], Chapter 10.1).

In what follows we shall use the notation

An = {k : k < n} and Bn = {k : k > n} (n ∈ Z).

Two stationary sequences X and Y are said to be retrospectively or pro-
gressively connected if [X, An] = [Y, An] for all n ∈ Z or [X, Bn] = [Y, Bn]
for all n ∈ Z respectively.

A stationary sequence X is called deterministic if

(1.1) [X, An] = [X] (n ∈ Z).

A stationary sequence X is called completely non-deterministic if

[X] 6= {0} and
⋂

n∈Z

[X, An] = {0}.

Each non-deterministic stationary sequence X has a unique Wold decompo-
sition X = X′ +X′′ into two stationary sequences X′ and X′′ where X′ is
completely non-deterministic, X′′ is deterministic,

(1.2) [X′] ⊥ [X′′]

and [X] is the orthogonal sum of [X′] and [X′′],

(1.3) [X] = [X′]⊕ [X′′]

([1], Chapter 12.4). Moreover,

(1.4) [X, An] = [X′, An]⊕ [X′′] (n ∈ Z),

which yields the equality

(1.5) [X, S] = [X′, S]⊕ [X′′]

whenever S ⊃ Ak for some k ∈ Z. For each subset Q of Z we have the
inclusion

(1.6) [X, Q] ⊂ [X′, Q]⊕ [X′′, Q].

The Hardy class Hp (p > 0) consists of functions f analytic on |z| < 1
and satisfying the condition

lim
r→1−

π\
−π

|f(reix)|p dx < ∞.

It is well known that for f ∈ Hp the radial limit

lim
r→1−

f(reix) = f(eix)

exists almost everywhere ([4], Chapter 2.2). By H+
p we denote the subset of

Hp consisting of functions f satisfying the conditions f(0) > 0 and f(z) 6= 0
for |z| < 1.
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In what follows δn will denote the Kronecker δ-function: δ0 = 1 and
δn = 0 for n 6= 0. A sequence U = {Un} (n ∈ Z) of random variables from
M is called orthonormal if δn is its covariance function.

The main representation theorem says that each completely non-deter-
ministic sequence X has a unique representation X = (F,U) where F ∈ H+

2

and the orthonormal sequence U and the sequence X are retrospectively
connected. This means that X is the moving average

Xn =

∞∑

k=0

akUn−k (n ∈ Z)

where F (z) =
∑∞

k=0
akz

k for |z| < 1 ([1], Chapter 12.4). Moreover, the
spectral measure µ of X is of the form

µ(dx) =
1

2π
|F (e−ix)|2dx.

2. Dual sequences. Let X = {Xn} (n ∈ Z) be a stationary sequence.
A sequence X∗ = {X∗

n} (n ∈ Z) of random variables from [X] is called the
dual of X if

(2.1) (Xn,X
∗
m) = δn−m (n,m ∈ Z).

It is clear that the dual sequence is uniquely determined provided it exists.
Thus, taking the unitary operator T induced by X on [X], we conclude that
for every r ∈ Z the sequence {T rX∗

n−r} (n ∈ Z) is also the dual of X and,
consequently, X∗

n = T rX∗
n−r (n, r ∈ Z). This shows that the sequence X∗ is

also stationary.

Example 2.1. For orthonormal sequences U we have U∗ = U.

Example 2.2. Let X be a stationary Markov sequence with covariance
function R(n) = anR(0) where n ≥ 0, R(0) > 0 and |a| < 1 ([1], p. 477).
Then we have

X∗
n = (1− |a|2)−1((1 + |a|2)Xn − aXn−1 − aXn+1) (n ∈ Z).

In what follows K will stand for the set of all stationary sequences admit-
ting the dual sequence. Further, K0 will denote the subset of K consisting
of sequences X satisfying [X∗] = [X]. The following statement is evident.

Proposition 2.1. If X ∈ K0, then X∗ ∈ K0 and (X∗)∗ = X.

Proposition 2.2. X ∈ K if and only if X is non-deterministic and

X′ ∈ K. Then the formula (X′)∗ = X∗ is true.

P r o o f. Let X ∈ K. First we shall prove that the sequence X is non-
deterministic. Suppose the contrary. Since X∗

0 ⊥ [X, A0] we have, by (1.1),
X∗

0 = 0, which contradicts the equality (X0,X
∗
0 ) = 1. Thus the sequence X
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is non-deterministic. Consider its Wold decomposition X = X′ +X′′. Since
X∗

m ⊥ [X, An] for n < m we have, by (1.4),

X∗
m ⊥

⋂

n∈Z

[X, An] = [X′′] (m ∈ Z).

Consequently, by (1.2), X∗
m ∈ [X′] (m ∈ Z) and (X ′

n,X
∗
m) = (Xn,X

∗
m) =

δn−m, which shows that X∗ is the dual of X′.
Conversely, suppose that X′ ∈ K. Then, by (1.3), (X ′

m)∗ ∈ [X] and
(X ′

m)∗ ⊥ [X′′]. Consequently, (Xn, (X
′
m)∗) = (X ′

n, (X
′
m)∗) = δn−m (n,m ∈

Z), which yields X ∈ K. This completes the proof.

The next result is less trivial.

Proposition 2.3. LetX be a completely non-deterministic sequence with

the representation (F,U) such that F−1 ∈ H2. Then X ∈ K0,

(2.2) X∗
n =

∞∑

k=0

bkUk+n,

with the coefficients bk determined by the expansion F−1(z) =
∑∞

k=0
bkz

k

for |z| < 1 and the sequences X∗ and U are progressively connected.

P r o o f. Observe that
∑∞

k=0
|bk|

2 < ∞. This shows that the right-hand
side of (2.2) is well defined. Denote it by Yn. It is clear that

Yn ∈ [U, Bn−1] ⊂ [X] (n ∈ Z),

which yields the relation Yn ⊥ [U, An] (n ∈ Z). Since the sequences X

and U are retrospectively connected the last relation implies the equalities
(Xk, Yn) = 0 if k < n. Further, if k = n+ r and r ≥ 0, then

(Xk, Yn) =

∞∑

s,j=0

ajbs(Un+r−j , Un+s) =

r∑

j=0

ajbr−j = δr,

which shows that the sequence {Yn} (n ∈ Z) is the dual of X. Formula (2.2)
and the relation X ∈ K are thus proved.

Now we shall prove that the sequences X∗ and U are progressively con-
nected. By formula (2.2) we have the inclusion

(2.3) [X∗, B0] ⊂ [U, B0].

To prove the reverse inclusion we suppose that a random variable Y satisfies

(2.4) Y ⊥ [X∗, B0]

and belongs to [U, B0]. Consequently, it can be written in the form

(2.5) Y =

∞∑

k=1

ckUk
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where
∑∞

k=1
|ck|

2 < ∞. From (2.4) we get the equalities

(2.6) (Y,Xn) =

∞∑

s=0

∞∑

k=1

ckbsδk−s−n = 0 (n ≥ 1).

Introduce the notation

(2.7) f(z) =

∞∑

k=0

akz
k, g(z) =

∞∑

k=0

bkz
k, h(z) =

∞∑

k=1

ckz
k (|z| < 1).

It is clear that

(2.8) f, g, h ∈ H2

and

(2.9) f(z)g(z) = 1 (|z| < 1).

By Parseval’s formula and (2.6) we get the equalities

1

2π

π\
−π

h(eix)g(eix)e−inx dx =

∞∑

s=0

∞∑

k=1

ckbsδk−s−n = 0 (n ≥ 1).

Consequently, the function h(eix)g(eix) integrable on the interval [−π, π] has
the Fourier expansion of the form

∑∞

k=0
pke

ikx. Setting p(z) =
∑∞

k=0
pkz

k

(|z| < 1) we infer, by Theorem 6.1 in [1], Chapter 4, that

(2.10) p ∈ H1

and

(2.11) p(eix) = h(eix)g(eix)

almost everywhere. Put q(z) = p(z)f(z) (|z| < 1). Taking into account
(2.8), (2.10) and the inequality

|q(z)|1/2 ≤ |p(z)|+ |f(z)|

we conclude that q ∈ H1/2 and, by (2.9) and (2.11),

(2.12) q(eix) = h(eix)

almost everywhere. Thus, by (2.8), the radial limit q(eix) is square integrable
on the interval [−π, π]. Applying Smirnov’s theorem ([4], p. 116) we have
q ∈ H2. Consequently, from (2.12) it follows that

h(eix) =

∞∑

k=0

dke
−ikx

for some coefficients dk with
∑∞

k=0
|dk|

2 < ∞. Comparing this with (2.7)
we have ck = 0 for k ≥ 1, which, by (2.6), yields Y = 0. This completes the
proof of the inclusion [X∗, B0] ⊃ [U, B0], which together with (2.3) yields
the equality [X∗, B0] = [U, B0]. Since

[X∗, Bn] = Tn[X∗, B0], [U, Bn] = Tn[U, B0] (n ∈ Z),
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where T is the unitary operator induced by the sequence X on [X], we have

[X∗, Bn] = [U, Bn] (n ∈ Z).

In other words, the sequences X∗ and U are progressively connected. Hence
in particular it follows that [X∗] = [U]. On the other hand, [X] = [U] be-
cause the sequences X and U are retrospectively connected. Thus [X∗]=[X]
and, consequently, X ∈ K0, which completes the proof.

We are now in a position to prove a characterization of the class K. In
what follows we shall use the notation Cn = A−n ∪Bn (n ≥ 0).

Theorem 2.1. The following conditions are equivalent :

(i) X ∈ K,
(ii) [X, C0] 6= [X],
(iii) X is non-deterministic and X′ = (F,U) with F−1 ∈ H2,
(iv) X is non-deterministic and X′ ∈ K0.

P r o o f. (i)⇒(ii). Since X∗
0 6= 0 and X∗

0 ⊥ [X, C0] we have condition (ii).
(ii)⇒(iii). Condition (ii) and equalities (1.3) and (1.5) yield the condition

[X′, C0] 6= [X′]. Taking the representation X′ = (F,U) we have, by Kol-
mogorov’s Theorem ([5], Chapter 2, Theorem 10.2),

Tπ
−π

|F (e−ix)|−2 dx <

∞. Since F (z) 6= 0 for |z| < 1 we have F−1 ∈ H2.
(iii)⇒(iv) and (iv)⇒(i) are immediate consequences of Propositions 2.3

and 2.2 respectively. The theorem is thus proved.

Given Q ⊂ Z we denote by Qc the complement Z\Q. Let X ∈ K. Since
(Xn,X

∗
m) = 0 for n ∈ Q and m ∈ Qc, we have the inclusion

(2.13) [X, Q] ⊂ [X∗, Qc]⊥

where the orthogonal complement is taken in the space [X]. We shall denote
by Λ(X) the family of all subsets Q of Z satisfying

[X, Q] = [X∗, Qc]⊥.

Since [X,Z] = [X] and [X∗, ∅] = {0} we conclude that Z ∈ Λ(X) for every
X ∈ K.

Proposition 2.4. Let X ∈ K. Suppose that Q and S are disjoint subsets

of Z and the set Q is finite. Then S ∪Q ∈ Λ(X) if and only if S ∈ Λ(X).

P r o o f. Suppose that

V ∈ [X, Q] ∩ [X∗, Sc]⊥.

The random variable V can be written in the form V =
∑

n∈Q cnXn where
cn (n ∈ Q) are complex numbers. Since Q ⊂ Sc the random variable V0 =∑

n∈Q cnX
∗
n belongs to [X∗, Sc]. Consequently, 0 = (V, V0) =

∑
n∈Q |cn|

2,
which yields the equality V = 0. Thus we have the formula

(2.14) [X, Q] ∩ [X∗, Sc]⊥ = {0}.
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Further, taking into account (2.13), we get [X, Q] ∩ [X, S] = {0}. Since
the subspace [X, Q] is finite-dimensional we conclude that the subspace
[X, S ∪Q] can be represented as a direct sum

(2.15) [X, S ∪Q] = [X, S] + [X, Q].

Using (2.13) we get the inclusion

(2.16) [X, Q] + [X∗, Sc]⊥ ⊂ [X∗, Sc ∩Qc]⊥.

To prove the reverse inclusion we assume that

W ∈ [X∗, Sc ∩Qc]⊥.

Setting

WQ =
∑

n∈Q

(W,X∗
n)Xn

we have the relations WQ ∈ [X, Q], WQ ⊥ [X∗, Qc] and W −WQ ⊥ [X∗, Q].
Moreover, by the formula Sc = Q∪ (Sc ∩Qc), we have W −WQ ⊥ [X∗, Sc].
Consequently, W ∈ [X, Q] + [X∗, Sc]⊥, which, by (2.16), yields

[X∗, Sc ∩Qc]⊥ = [X∗, Sc]⊥ + [X, Q].

Comparing this with (2.14) and (2.15) we conclude that [X, S] = [X∗, Sc]⊥

if and only if [X, S ∪Q] = [X∗, Sc ∩Qc]⊥, which completes the proof.

Proposition 2.5. If X ∈ K0 and Q ∈ Λ(X∗), then Qc ∈ Λ(X∗).

P r o o f. First observe that the complementations in [X] and [X∗] coin-
cide. Now our assertion is a consequence of Proposition 2.1 and the formula

[X∗, Qc] = [X, Q]⊥ = [(X∗)∗, (Qc)c]⊥.

Proposition 2.6. If X ∈ K0, then An, Bn ∈ Λ(X) for all n ∈ Z.

P r o o f. Let X ∈ K0. Then, by Proposition 2.2, the sequence X is
competely non-deterministic and, consequently, has a representation X =
(F,U), where the sequencesX andU are retrospectively connected. Further,
by Proposition 2.4, the sequences X∗ and U are progressively connected.
Hence we get the equalities

[X, An] = [U, An] = [U, Ac
n]

⊥ = [X∗, Ac
n]

⊥,

which yields An ∈ Λ(X) for X ∈ K0 and n ∈ Z. According to Proposi-
tion 2.1, X∗ ∈ K0. Thus An ∈ Λ(X∗), which, by Proposition 2.5, implies
Ac

n ∈ Λ(X). Since Ac
n+1 = Bn we get the assertion.

Proposition 2.7. If Q is a finite subset of Z and X ∈ K0, then Q,Qc ∈
Λ(X).

P r o o f. By Proposition 2.1, X∗ ∈ K0. Applying Proposition 2.5 to the
evident relation Z ∈ Λ(X∗) we get ∅ = Z

c ∈ Λ(X). Setting S = ∅ in Propo-
sition 2.4 we conclude that every finite subset Q of Z belongs to Λ(X). Now
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the remaining relation Qc ∈ Λ(X) is an immediate consequence of Proposi-
tion 2.5. This completes the proof.

3. Prediction problems. The linear least squares prediction problem
for stationary sequences {Xn} (n ∈ Z) based on the observations Xn with
n ∈ Q consists in approximating Xr by linear combinations of Xn with
n ∈ Q minimizing the mean square error. The unique solution X̂r(Q) to
this problem is the orthogonal projection of Xr on the subspace [X, Q].

Some special cases of this problem have drawn much attention and have
a long history. The extrapolation problem based on the past Q = An for
some n ∈ Z and the interpolation problem corresponding to sets Q with
finite complement Qc were treated by A. N. Kolmogorov in [2] and [3] and
N. Wiener in [6].

By the stationarity of the sequence in question the prediction problem
can be reduced to the case r = 0. In what follows σ(X, Q) will denote the

mean square error ‖X0 − X̂0(Q)‖. It is clear that

(3.1) lim
n→∞

σ(X, Qn) = σ(X, Q)

whenever Q1⊂ Q2⊂ . . . and Q =
⋃∞

n=1
Qn. For non-deterministic sequences

X with the Wold decomposition X = X′ + X′′ we have, by (1.6), the in-
equality

(3.2) σ2(X, Q) ≥ σ2(X′, Q) + σ2(X′′, Q)

for every subset Q of Z. Moreover, by (1.5),

(3.3) σ(X, S) = σ(X′, S)

if S ⊃ An for some n ∈ Z.
For Q ⊂ C0 we put Q∗ = C0\Q. Of course, (Q∗)∗ = Q. The following

statements can be regarded as a duality principle for stationary sequences
and their duals.

Theorem 3.1. If X ∈ K0, Q ⊂ C0 and Q ∈ Λ(X), then

σ(X, Q)σ(X∗, Q∗) = 1.

P r o o f. We note that, by Proposition 2.1, X∗ ∈ K0. Since Q ⊂ C0 we
have, by Theorem 2.1 (part (ii)), [X∗, Q∗] 6= [X∗], which yields the inequal-
ity σ(X∗, Q∗) > 0. Put

Y = X0 − σ−2(X∗, Q∗)(X∗
0 − X̂∗

0 (Q
∗)).

It is clear that X̂∗
0 (Q

∗) ∈ [X∗, Q∗] and X∗
0 − X̂∗

0 (Q
∗) ⊥ [X∗, Q∗]. Conse-

quently,
(X∗

0 − X̂∗
0 (Q

∗),X∗
0 ) = σ2(X∗, Q∗),

which yields the relations Y ⊥ [X∗, Q∗] and (Y,X∗
0 ) = 0. As Qc = Q∗ ∪{0}

the last relations can be written in the form Y ⊥ [X∗, Qc]. From this and
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the assumption Q ∈ Λ(X) we get Y ∈ [X,Q]. It is clear that X∗
0 −X̂∗

0 (Q
∗) ∈

[X∗, Qc]. Consequently, X0−Y ∈ [X∗, Qc]. Since, by Proposition 2.5, Qc ∈
Λ(X∗) the last relation can be written in the form X0 − Y ⊥ [X, Q], which
shows that the random variable Y is the orthogonal projection of X0 on
[X, Q]. Thus Y = X̂0(Q) and, consequently,

σ(X, Q) = ‖X0 − Y ‖ = σ−2(X∗, Q∗)‖X∗
0 − X̂∗

0 (Q
∗)‖ = σ−1(X∗, Q∗),

which completes the proof.

Theorem 3.2. Let X ∈ K. Then for every Q ⊂ C0,

σ(X, Q)σ(X∗, Q∗) ≥ 1.

P r o o f. Given Q ⊂ C0 we define an auxiliary sequence {Rn} (n ≥ 1) of
subsets of C0 by setting Rn = Q∗ ∩ Cc

n (n ≥ 1). Of course, R1 ⊂ R2 ⊂ . . .

and Q∗ =
⋃∞

n=1
Rn, which, by formula (3.1), yields

(3.4) lim
n→∞

σ(X∗, Rn) = σ(X∗, Q∗).

By Theorem 2.1 (part (iv)) and Propositions 2.1 and 2.2 we infer that
X∗ ∈ K0 and (X∗)∗ = X′. Moreover, by Proposition 2.7, the finite sets
Rn belong to Λ(X∗). Consequently, by Theorem 3.1, we have the equality

(3.5) σ(X∗, Rn)σ(X
′, R∗

n) = 1 (n = 1, 2, . . .).

Observe that R∗
n = Q∪Cn ⊃ Q, which, by (3.2), yields σ(X′, R∗

n) ≤ σ(X, Q).
Thus, by (3.5),

σ(X∗, Rn)σ(X, Q) ≥ 1 (n = 1, 2, . . .)

and this, by (3.4), completes the proof.

Let X be a stationary sequence. A stationary sequence Y is said to be
a generalized dual of X if for every subset Q of C0 the inequality

σ(X, Q)σ(Y, Q∗) ≥ 1

is true. In what followsD(X) will denote the set of all generalized duals ofX.

Theorem 3.3. D(X) 6= ∅ if and only if X ∈ K. Then X∗ ∈ D(X) and

(3.6) σ(X∗, Q) = min{σ(Y, Q) : Y ∈ D(X)}

for every subset Q of C0.

P r o o f. Suppose that D(X) 6= ∅. Then σ(X, C0) > 0 and, consequently,
[X, C0] 6= [X], which, by Theorem 2.1 (part (ii)), yields X ∈ K. The reverse
implication and the relation X∗ ∈ D(X) are an immediate consequence of
Theorem 3.2.

It remains to prove formula (3.6). Suppose that X ∈ K and Q ⊂ C0. By
Theorem 2.1 and Proposition 2.2 we conclude thatX′ ∈ K0 and (X′)∗ = X∗.
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Put Sn = Q∗∪Cn (n ≥ 1). Since Sc
n are finite we deduce, by Proposition 2.7,

that Sn ∈ Λ(X′). Applying Theorem 3.1 we get the equalities

(3.7) σ(X′, Sn)σ(X
∗, S∗

n) = 1 (n = 1, 2, . . .).

Observe that Sn ⊃ A−n. Consequently, by (3.3), σ(X′, Sn) = σ(X, Sn),
which, by (3.7), yields

σ(X, Sn)σ(X
∗, S∗

n) = 1 (n = 1, 2, . . .).

Comparing this with the inequality

σ(X, Sn)σ(Y, S∗
n) ≥ 1 (n = 1, 2, . . .)

for Y ∈ D(X) we get

(3.8) σ(X∗, S∗
n) ≤ σ(Y, S∗

n) (n = 1, 2, . . .).

From the formula S∗
n = Q ∩ Cc

n it follows that S∗
1 ⊂ S∗

2 ⊂ . . . and Q =⋃∞

n=1
S∗
n. Thus letting n → ∞ in (3.8) we get, by (3.1), the inequality

σ(X∗, Q) ≤ σ(Y, Q) for all Y ∈ D(X). This completes the proof of (3.6).
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