A DUALITY PRINCIPLE FOR STATIONARY RANDOM SEQUENCES

BY
K. URBANIK (WROCEAW)

Abstract

The paper is devoted to the study of stationary random sequences. A concept of dual sequences is discussed. The main aim of the paper is to establish a relationship between the errors of linear least squares predictions for sequences and their duals.

1. Preliminaries and notation. This paper is organized as follows. Section 1 collects together some basic facts and notation concerning stationary random sequences needed in what follows. In Section 2 a concept of dual sequences is discussed. In the last section a relationship between the errors of linear least squares predictions for sequences and their duals is established.

We suppose, as usual, that there is a probability measure defined on a σ algebra of sets of some space Ω. Let M be the set of all complex-valued random variables whose squares are integrable. The set M is a Hilbert space under the inner product $(X, Y)=E X \bar{Y}$ where E stands for the expectation of random variables. Throughout this paper \mathbb{Z} will denote the set of all integers.

A sequence $\mathbf{X}=\left\{X_{n}\right\}(n \in \mathbb{Z})$ of random variables from M is said to be stationary if the inner product (X_{n+m}, X_{m}) does not depend on m. The function $R(n)=\left(X_{n+m}, X_{m}\right)(n \in \mathbb{Z})$ is called the covariance function of the sequence in question. The Herglotz Theorem describes the covariance function as a Fourier transform

$$
R(n)=\int_{-\pi}^{\pi} e^{i n x} \mu(d x)
$$

where the measure μ is concentrated on the interval $[-\pi, \pi)$. Of course, the correspondence $R \leftrightarrow \mu$ is one-to-one ([1], Chapter 10.3). The measure μ is called the spectral measure of the sequence \mathbf{X}.

For the empty set \emptyset we put $[\mathbf{X}, \emptyset]=\{0\}$. For a non-empty subset Q of \mathbb{Z} we denote by $[X, Q]$ the closed linear manifold of M generated by the random variables X_{n} with $n \in Q$. For the sake of brevity we put $[\mathbf{X}, \mathbb{Z}]=[\mathbf{X}]$.

[^0]Each stationary sequence $\mathbf{X}=\left\{X_{n}\right\}(n \in \mathbb{Z})$ induces a unitary operator T on $[\mathbf{X}]$ satisfying the condition $T X_{n}=X_{n+1}(n \in \mathbb{Z})([1]$, Chapter 10.1).

In what follows we shall use the notation

$$
A_{n}=\{k: k<n\} \quad \text { and } \quad B_{n}=\{k: k>n\} \quad(n \in \mathbb{Z}) .
$$

Two stationary sequences \mathbf{X} and \mathbf{Y} are said to be retrospectively or progressively connected if $\left[\mathbf{X}, A_{n}\right]=\left[\mathbf{Y}, A_{n}\right]$ for all $n \in \mathbb{Z}$ or $\left[\mathbf{X}, B_{n}\right]=\left[\mathbf{Y}, B_{n}\right]$ for all $n \in \mathbb{Z}$ respectively.

A stationary sequence \mathbf{X} is called deterministic if

$$
\begin{equation*}
\left[\mathbf{X}, A_{n}\right]=[\mathbf{X}] \quad(n \in \mathbb{Z}) . \tag{1.1}
\end{equation*}
$$

A stationary sequence \mathbf{X} is called completely non-deterministic if

$$
[\mathbf{X}] \neq\{0\} \quad \text { and } \quad \bigcap_{n \in \mathbb{Z}}\left[\mathbf{X}, A_{n}\right]=\{0\}
$$

Each non-deterministic stationary sequence \mathbf{X} has a unique Wold decomposition $\mathbf{X}=\mathbf{X}^{\prime}+\mathbf{X}^{\prime \prime}$ into two stationary sequences \mathbf{X}^{\prime} and $\mathbf{X}^{\prime \prime}$ where \mathbf{X}^{\prime} is completely non-deterministic, $\mathbf{X}^{\prime \prime}$ is deterministic,

$$
\begin{equation*}
\left[\mathbf{X}^{\prime}\right] \perp\left[\mathbf{X}^{\prime \prime}\right] \tag{1.2}
\end{equation*}
$$

and $[\mathbf{X}]$ is the orthogonal sum of $\left[\mathbf{X}^{\prime}\right]$ and $\left[\mathbf{X}^{\prime \prime}\right]$,

$$
\begin{equation*}
[\mathbf{X}]=\left[\mathbf{X}^{\prime}\right] \oplus\left[\mathbf{X}^{\prime \prime}\right] \tag{1.3}
\end{equation*}
$$

([1], Chapter 12.4). Moreover,

$$
\begin{equation*}
\left[\mathbf{X}, A_{n}\right]=\left[\mathbf{X}^{\prime}, A_{n}\right] \oplus\left[\mathbf{X}^{\prime \prime}\right] \quad(n \in \mathbb{Z}) \tag{1.4}
\end{equation*}
$$

which yields the equality

$$
\begin{equation*}
[\mathbf{X}, S]=\left[\mathbf{X}^{\prime}, S\right] \oplus\left[\mathbf{X}^{\prime \prime}\right] \tag{1.5}
\end{equation*}
$$

whenever $S \supset A_{k}$ for some $k \in \mathbb{Z}$. For each subset Q of \mathbb{Z} we have the inclusion

$$
\begin{equation*}
[\mathbf{X}, Q] \subset\left[\mathbf{X}^{\prime}, Q\right] \oplus\left[\mathbf{X}^{\prime \prime}, Q\right] \tag{1.6}
\end{equation*}
$$

The Hardy class $H_{p}(p>0)$ consists of functions f analytic on $|z|<1$ and satisfying the condition

$$
\lim _{r \rightarrow 1-} \int_{-\pi}^{\pi}\left|f\left(r e^{i x}\right)\right|^{p} d x<\infty
$$

It is well known that for $f \in H_{p}$ the radial limit

$$
\lim _{r \rightarrow 1-} f\left(r e^{i x}\right)=f\left(e^{i x}\right)
$$

exists almost everywhere ([4], Chapter 2.2). By H_{p}^{+}we denote the subset of H_{p} consisting of functions f satisfying the conditions $f(0)>0$ and $f(z) \neq 0$ for $|z|<1$.

In what follows δ_{n} will denote the Kronecker δ-function: $\delta_{0}=1$ and $\delta_{n}=0$ for $n \neq 0$. A sequence $\mathbf{U}=\left\{U_{n}\right\}(n \in \mathbb{Z})$ of random variables from M is called orthonormal if δ_{n} is its covariance function.

The main representation theorem says that each completely non-deterministic sequence \mathbf{X} has a unique representation $\mathbf{X}=(F, \mathbf{U})$ where $F \in H_{2}^{+}$ and the orthonormal sequence \mathbf{U} and the sequence \mathbf{X} are retrospectively connected. This means that \mathbf{X} is the moving average

$$
X_{n}=\sum_{k=0}^{\infty} a_{k} U_{n-k} \quad(n \in \mathbb{Z})
$$

where $F(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ for $|z|<1$ ([1], Chapter 12.4). Moreover, the spectral measure μ of \mathbf{X} is of the form

$$
\mu(d x)=\frac{1}{2 \pi}\left|F\left(e^{-i x}\right)\right|^{2} d x
$$

2. Dual sequences. Let $\mathbf{X}=\left\{X_{n}\right\}(n \in \mathbb{Z})$ be a stationary sequence. A sequence $\mathbf{X}^{*}=\left\{X_{n}^{*}\right\}(n \in \mathbb{Z})$ of random variables from $[\mathbf{X}]$ is called the dual of \mathbf{X} if

$$
\begin{equation*}
\left(X_{n}, X_{m}^{*}\right)=\delta_{n-m} \quad(n, m \in \mathbb{Z}) \tag{2.1}
\end{equation*}
$$

It is clear that the dual sequence is uniquely determined provided it exists. Thus, taking the unitary operator T induced by \mathbf{X} on $[\mathbf{X}]$, we conclude that for every $r \in \mathbb{Z}$ the sequence $\left\{T^{r} X_{n-r}^{*}\right\}(n \in \mathbb{Z})$ is also the dual of \mathbf{X} and, consequently, $X_{n}^{*}=T^{r} X_{n-r}^{*}(n, r \in \mathbb{Z})$. This shows that the sequence \mathbf{X}^{*} is also stationary.

Example 2.1. For orthonormal sequences \mathbf{U} we have $\mathbf{U}^{*}=\mathbf{U}$.
Example 2.2. Let \mathbf{X} be a stationary Markov sequence with covariance function $R(n)=a^{n} R(0)$ where $n \geq 0, R(0)>0$ and $|a|<1$ ([1], p. 477). Then we have

$$
X_{n}^{*}=\left(1-|a|^{2}\right)^{-1}\left(\left(1+|a|^{2}\right) X_{n}-a X_{n-1}-\bar{a} X_{n+1}\right) \quad(n \in \mathbb{Z})
$$

In what follows K will stand for the set of all stationary sequences admitting the dual sequence. Further, K_{0} will denote the subset of K consisting of sequences \mathbf{X} satisfying $\left[\mathbf{X}^{*}\right]=[\mathbf{X}]$. The following statement is evident.

Proposition 2.1. If $\mathbf{X} \in K_{0}$, then $\mathbf{X}^{*} \in K_{0}$ and $\left(\mathbf{X}^{*}\right)^{*}=\mathbf{X}$.
Proposition 2.2. $\mathbf{X} \in K$ if and only if \mathbf{X} is non-deterministic and $\mathbf{X}^{\prime} \in K$. Then the formula $\left(\mathbf{X}^{\prime}\right)^{*}=\mathbf{X}^{*}$ is true.

Proof. Let $\mathbf{X} \in K$. First we shall prove that the sequence \mathbf{X} is nondeterministic. Suppose the contrary. Since $X_{0}^{*} \perp\left[\mathbf{X}, A_{0}\right]$ we have, by (1.1), $X_{0}^{*}=0$, which contradicts the equality $\left(X_{0}, X_{0}^{*}\right)=1$. Thus the sequence \mathbf{X}
is non-deterministic. Consider its Wold decomposition $\mathbf{X}=\mathbf{X}^{\prime}+\mathbf{X}^{\prime \prime}$. Since $X_{m}^{*} \perp\left[\mathbf{X}, A_{n}\right]$ for $n<m$ we have, by (1.4),

$$
X_{m}^{*} \perp \bigcap_{n \in \mathbb{Z}}\left[\mathbf{X}, A_{n}\right]=\left[\mathbf{X}^{\prime \prime}\right] \quad(m \in \mathbb{Z})
$$

Consequently, by (1.2), $X_{m}^{*} \in\left[\mathbf{X}^{\prime}\right](m \in \mathbb{Z})$ and $\left(X_{n}^{\prime}, X_{m}^{*}\right)=\left(X_{n}, X_{m}^{*}\right)=$ δ_{n-m}, which shows that \mathbf{X}^{*} is the dual of \mathbf{X}^{\prime}.

Conversely, suppose that $\mathbf{X}^{\prime} \in K$. Then, by (1.3), $\left(X_{m}^{\prime}\right)^{*} \in[\mathbf{X}]$ and $\left(X_{m}^{\prime}\right)^{*} \perp\left[\mathbf{X}^{\prime \prime}\right]$. Consequently, $\left(X_{n},\left(X_{m}^{\prime}\right)^{*}\right)=\left(X_{n}^{\prime},\left(X_{m}^{\prime}\right)^{*}\right)=\delta_{n-m}(n, m \in$ \mathbb{Z}), which yields $\mathbf{X} \in K$. This completes the proof.

The next result is less trivial.
Proposition 2.3. Let X be a completely non-deterministic sequence with the representation (F, \mathbf{U}) such that $F^{-1} \in H_{2}$. Then $\mathbf{X} \in K_{0}$,

$$
\begin{equation*}
X_{n}^{*}=\sum_{k=0}^{\infty} \bar{b}_{k} U_{k+n}, \tag{2.2}
\end{equation*}
$$

with the coefficients b_{k} determined by the expansion $F^{-1}(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ for $|z|<1$ and the sequences \mathbf{X}^{*} and \mathbf{U} are progressively connected.

Proof. Observe that $\sum_{k=0}^{\infty}\left|b_{k}\right|^{2}<\infty$. This shows that the right-hand side of (2.2) is well defined. Denote it by Y_{n}. It is clear that

$$
Y_{n} \in\left[\mathbf{U}, B_{n-1}\right] \subset[\mathbf{X}] \quad(n \in \mathbb{Z}),
$$

which yields the relation $Y_{n} \perp\left[\mathbf{U}, A_{n}\right](n \in \mathbb{Z})$. Since the sequences \mathbf{X} and \mathbf{U} are retrospectively connected the last relation implies the equalities $\left(X_{k}, Y_{n}\right)=0$ if $k<n$. Further, if $k=n+r$ and $r \geq 0$, then

$$
\left(X_{k}, Y_{n}\right)=\sum_{s, j=0}^{\infty} a_{j} b_{s}\left(U_{n+r-j}, U_{n+s}\right)=\sum_{j=0}^{r} a_{j} b_{r-j}=\delta_{r}
$$

which shows that the sequence $\left\{Y_{n}\right\}(n \in \mathbb{Z})$ is the dual of \mathbf{X}. Formula (2.2) and the relation $\mathbf{X} \in K$ are thus proved.

Now we shall prove that the sequences \mathbf{X}^{*} and \mathbf{U} are progressively connected. By formula (2.2) we have the inclusion

$$
\begin{equation*}
\left[\mathbf{X}^{*}, B_{0}\right] \subset\left[\mathbf{U}, B_{0}\right] . \tag{2.3}
\end{equation*}
$$

To prove the reverse inclusion we suppose that a random variable Y satisfies

$$
\begin{equation*}
Y \perp\left[\mathbf{X}^{*}, B_{0}\right] \tag{2.4}
\end{equation*}
$$

and belongs to $\left[\mathbf{U}, B_{0}\right]$. Consequently, it can be written in the form

$$
\begin{equation*}
Y=\sum_{k=1}^{\infty} c_{k} U_{k} \tag{2.5}
\end{equation*}
$$

where $\sum_{k=1}^{\infty}\left|c_{k}\right|^{2}<\infty$. From (2.4) we get the equalities

$$
\begin{equation*}
\left(Y, X_{n}\right)=\sum_{s=0}^{\infty} \sum_{k=1}^{\infty} c_{k} b_{s} \delta_{k-s-n}=0 \quad(n \geq 1) \tag{2.6}
\end{equation*}
$$

Introduce the notation

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} \bar{a}_{k} z^{k}, \quad g(z)=\sum_{k=0}^{\infty} \bar{b}_{k} z^{k}, \quad h(z)=\sum_{k=1}^{\infty} c_{k} z^{k} \quad(|z|<1) . \tag{2.7}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
f, g, h \in H_{2} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z) g(z)=1 \quad(|z|<1) \tag{2.9}
\end{equation*}
$$

By Parseval's formula and (2.6) we get the equalities

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} h\left(e^{i x}\right) \bar{g}\left(e^{i x}\right) e^{-i n x} d x=\sum_{s=0}^{\infty} \sum_{k=1}^{\infty} c_{k} b_{s} \delta_{k-s-n}=0 \quad(n \geq 1)
$$

Consequently, the function $\bar{h}\left(e^{i x}\right) g\left(e^{i x}\right)$ integrable on the interval $[-\pi, \pi]$ has the Fourier expansion of the form $\sum_{k=0}^{\infty} p_{k} e^{i k x}$. Setting $p(z)=\sum_{k=0}^{\infty} p_{k} z^{k}$ $(|z|<1)$ we infer, by Theorem 6.1 in [1], Chapter 4, that

$$
\begin{equation*}
p \in H_{1} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
p\left(e^{i x}\right)=\bar{h}\left(e^{i x}\right) g\left(e^{i x}\right) \tag{2.11}
\end{equation*}
$$

almost everywhere. Put $q(z)=p(z) f(z)(|z|<1)$. Taking into account (2.8), (2.10) and the inequality

$$
|q(z)|^{1 / 2} \leq|p(z)|+|f(z)|
$$

we conclude that $q \in H_{1 / 2}$ and, by (2.9) and (2.11),

$$
\begin{equation*}
q\left(e^{i x}\right)=\bar{h}\left(e^{i x}\right) \tag{2.12}
\end{equation*}
$$

almost everywhere. Thus, by (2.8), the radial limit $q\left(e^{i x}\right)$ is square integrable on the interval $[-\pi, \pi]$. Applying Smirnov's theorem ([4], p. 116) we have $q \in H_{2}$. Consequently, from (2.12) it follows that

$$
h\left(e^{i x}\right)=\sum_{k=0}^{\infty} d_{k} e^{-i k x}
$$

for some coefficients d_{k} with $\sum_{k=0}^{\infty}\left|d_{k}\right|^{2}<\infty$. Comparing this with (2.7) we have $c_{k}=0$ for $k \geq 1$, which, by (2.6), yields $Y=0$. This completes the proof of the inclusion $\left[\mathbf{X}^{*}, B_{0}\right] \supset\left[\mathbf{U}, B_{0}\right]$, which together with (2.3) yields the equality $\left[\mathbf{X}^{*}, B_{0}\right]=\left[\mathbf{U}, B_{0}\right]$. Since

$$
\left[\mathbf{X}^{*}, B_{n}\right]=T^{n}\left[\mathbf{X}^{*}, B_{0}\right], \quad\left[\mathbf{U}, B_{n}\right]=T^{n}\left[\mathbf{U}, B_{0}\right] \quad(n \in \mathbb{Z})
$$

where T is the unitary operator induced by the sequence \mathbf{X} on $[\mathbf{X}]$, we have

$$
\left[\mathbf{X}^{*}, B_{n}\right]=\left[\mathbf{U}, B_{n}\right] \quad(n \in \mathbb{Z})
$$

In other words, the sequences \mathbf{X}^{*} and \mathbf{U} are progressively connected. Hence in particular it follows that $\left[\mathbf{X}^{*}\right]=[\mathbf{U}]$. On the other hand, $[\mathbf{X}]=[\mathbf{U}]$ because the sequences X and U are retrospectively connected. Thus $\left[\mathbf{X}^{*}\right]=[\mathbf{X}]$ and, consequently, $\mathbf{X} \in K_{0}$, which completes the proof.

We are now in a position to prove a characterization of the class K. In what follows we shall use the notation $C_{n}=A_{-n} \cup B_{n}(n \geq 0)$.

Theorem 2.1. The following conditions are equivalent:
(i) $\mathbf{X} \in K$,
(ii) $\left[\mathbf{X}, C_{0}\right] \neq[\mathbf{X}]$,
(iii) \mathbf{X} is non-deterministic and $\mathbf{X}^{\prime}=(F, \mathbf{U})$ with $F^{-1} \in H_{2}$,
(iv) \mathbf{X} is non-deterministic and $\mathbf{X}^{\prime} \in K_{0}$.

Proof. (i) \Rightarrow (ii). Since $X_{0}^{*} \neq 0$ and $X_{0}^{*} \perp\left[\mathbf{X}, C_{0}\right]$ we have condition (ii).
(ii) \Rightarrow (iii). Condition (ii) and equalities (1.3) and (1.5) yield the condition $\left[\mathbf{X}^{\prime}, C_{0}\right] \neq\left[\mathbf{X}^{\prime}\right]$. Taking the representation $\mathbf{X}^{\prime}=(F, \mathbf{U})$ we have, by Kolmogorov's Theorem ([5], Chapter 2, Theorem 10.2), $\int_{-\pi}^{\pi}\left|F\left(e^{-i x}\right)\right|^{-2} d x<$ ∞. Since $F(z) \neq 0$ for $|z|<1$ we have $F^{-1} \in H_{2}$.
(iii) \Rightarrow (iv) and (iv) \Rightarrow (i) are immediate consequences of Propositions 2.3 and 2.2 respectively. The theorem is thus proved.

Given $Q \subset \mathbb{Z}$ we denote by $Q^{\text {c }}$ the complement $\mathbb{Z} \backslash Q$. Let $\mathbf{X} \in K$. Since $\left(X_{n}, X_{m}^{*}\right)=0$ for $n \in Q$ and $m \in Q^{\mathrm{c}}$, we have the inclusion

$$
\begin{equation*}
[\mathbf{X}, Q] \subset\left[\mathbf{X}^{*}, Q^{\mathrm{c}}\right]^{\perp} \tag{2.13}
\end{equation*}
$$

where the orthogonal complement is taken in the space $[\mathbf{X}]$. We shall denote by $\Lambda(\mathbf{X})$ the family of all subsets Q of \mathbb{Z} satisfying

$$
[\mathbf{X}, Q]=\left[\mathbf{X}^{*}, Q^{\mathrm{c}}\right]^{\perp}
$$

Since $[\mathbf{X}, \mathbb{Z}]=[\mathbf{X}]$ and $\left[\mathbf{X}^{*}, \emptyset\right]=\{0\}$ we conclude that $\mathbb{Z} \in \Lambda(\mathbf{X})$ for every $\mathbf{X} \in K$.

Proposition 2.4. Let $\mathbf{X} \in K$. Suppose that Q and S are disjoint subsets of \mathbb{Z} and the set Q is finite. Then $S \cup Q \in \Lambda(\mathbf{X})$ if and only if $S \in \Lambda(\mathbf{X})$.

Proof. Suppose that

$$
V \in[\mathbf{X}, Q] \cap\left[\mathbf{X}^{*}, S^{\mathrm{c}}\right]^{\perp} .
$$

The random variable V can be written in the form $V=\sum_{n \in Q} c_{n} X_{n}$ where $c_{n}(n \in Q)$ are complex numbers. Since $Q \subset S^{\text {c }}$ the random variable $V_{0}=$ $\sum_{n \in Q} c_{n} X_{n}^{*}$ belongs to $\left[\mathbf{X}^{*}, S^{\mathrm{c}}\right]$. Consequently, $0=\left(V, V_{0}\right)=\sum_{n \in Q}\left|c_{n}\right|^{2}$, which yields the equality $V=0$. Thus we have the formula

$$
\begin{equation*}
[\mathbf{X}, Q] \cap\left[\mathbf{X}^{*}, S^{\mathrm{c}}\right]^{\perp}=\{0\} . \tag{2.14}
\end{equation*}
$$

Further, taking into account (2.13), we get $[\mathbf{X}, Q] \cap[\mathbf{X}, S]=\{0\}$. Since the subspace $[\mathbf{X}, Q]$ is finite-dimensional we conclude that the subspace $[\mathbf{X}, S \cup Q]$ can be represented as a direct sum

$$
\begin{equation*}
[\mathbf{X}, S \cup Q]=[\mathbf{X}, S]+[\mathbf{X}, Q] . \tag{2.15}
\end{equation*}
$$

Using (2.13) we get the inclusion

$$
\begin{equation*}
[\mathbf{X}, Q]+\left[\mathbf{X}^{*}, S^{\mathrm{c}}\right]^{\perp} \subset\left[\mathbf{X}^{*}, S^{\mathrm{c}} \cap Q^{\mathrm{c}}\right]^{\perp} . \tag{2.16}
\end{equation*}
$$

To prove the reverse inclusion we assume that

$$
W \in\left[\mathbf{X}^{*}, S^{\mathrm{c}} \cap Q^{\mathrm{c}}\right]^{\perp} .
$$

Setting

$$
W_{Q}=\sum_{n \in Q}\left(W, X_{n}^{*}\right) X_{n}
$$

we have the relations $W_{Q} \in[\mathbf{X}, Q], W_{Q} \perp\left[\mathbf{X}^{*}, Q^{\mathrm{c}}\right]$ and $W-W_{Q} \perp\left[\mathbf{X}^{*}, Q\right]$. Moreover, by the formula $S^{\mathrm{c}}=Q \cup\left(S^{\mathrm{c}} \cap Q^{\mathrm{c}}\right)$, we have $W-W_{Q} \perp\left[\mathbf{X}^{*}, S^{\mathrm{c}}\right]$. Consequently, $W \in[\mathbf{X}, Q]+\left[\mathbf{X}^{*}, S^{\mathrm{c}}\right]^{\perp}$, which, by (2.16), yields

$$
\left[\mathbf{X}^{*}, S^{\mathrm{c}} \cap Q^{\mathrm{c}}\right]^{\perp}=\left[\mathbf{X}^{*}, S^{\mathrm{c}}\right]^{\perp}+[\mathbf{X}, Q] .
$$

Comparing this with (2.14) and (2.15) we conclude that $[\mathbf{X}, S]=\left[\mathbf{X}^{*}, S^{\mathrm{c}}\right]^{\perp}$ if and only if $[\mathbf{X}, S \cup Q]=\left[\mathbf{X}^{*}, S^{\mathrm{c}} \cap Q^{\mathrm{c}}\right]^{\perp}$, which completes the proof.

Proposition 2.5. If $\mathbf{X} \in K_{0}$ and $Q \in \Lambda\left(\mathbf{X}^{*}\right)$, then $Q^{\mathrm{c}} \in \Lambda\left(\mathbf{X}^{*}\right)$.
Proof. First observe that the complementations in $[\mathbf{X}]$ and $\left[\mathbf{X}^{*}\right]$ coincide. Now our assertion is a consequence of Proposition 2.1 and the formula

$$
\left[\mathbf{X}^{*}, Q^{\mathrm{c}}\right]=[\mathbf{X}, Q]^{\perp}=\left[\left(\mathbf{X}^{*}\right)^{*},\left(Q^{\mathrm{c}}\right)^{\mathrm{c}}\right]^{\perp} .
$$

Proposition 2.6. If $\mathbf{X} \in K_{0}$, then $A_{n}, B_{n} \in \Lambda(\mathbf{X})$ for all $n \in \mathbb{Z}$.
Proof. Let $\mathbf{X} \in K_{0}$. Then, by Proposition 2.2, the sequence \mathbf{X} is competely non-deterministic and, consequently, has a representation $\mathbf{X}=$ (F, \mathbf{U}), where the sequences \mathbf{X} and \mathbf{U} are retrospectively connected. Further, by Proposition 2.4, the sequences \mathbf{X}^{*} and \mathbf{U} are progressively connected. Hence we get the equalities

$$
\left[\mathbf{X}, A_{n}\right]=\left[\mathbf{U}, A_{n}\right]=\left[\mathbf{U}, A_{n}^{\mathrm{c}}\right]^{\perp}=\left[\mathbf{X}^{*}, A_{n}^{\mathrm{c}}\right]^{\perp},
$$

which yields $A_{n} \in \Lambda(\mathbf{X})$ for $\mathbf{X} \in K_{0}$ and $n \in \mathbb{Z}$. According to Proposition 2.1, $\mathbf{X}^{*} \in K_{0}$. Thus $A_{n} \in \Lambda\left(\mathbf{X}^{*}\right)$, which, by Proposition 2.5, implies $A_{n}^{\mathrm{c}} \in \Lambda(\mathbf{X})$. Since $A_{n+1}^{\mathrm{c}}=B_{n}$ we get the assertion.

Proposition 2.7. If Q is a finite subset of \mathbb{Z} and $\mathbf{X} \in K_{0}$, then $Q, Q^{\mathrm{c}} \in$ $\Lambda(\mathbf{X})$.

Proof. By Proposition 2.1, $\mathbf{X}^{*} \in K_{0}$. Applying Proposition 2.5 to the evident relation $\mathbb{Z} \in \Lambda\left(\mathbf{X}^{*}\right)$ we get $\emptyset=\mathbb{Z}^{c} \in \Lambda(\mathbf{X})$. Setting $S=\emptyset$ in Proposition 2.4 we conclude that every finite subset Q of \mathbb{Z} belongs to $\Lambda(\mathbf{X})$. Now
the remaining relation $Q^{\mathrm{c}} \in \Lambda(\mathbf{X})$ is an immediate consequence of Proposition 2.5. This completes the proof.
3. Prediction problems. The linear least squares prediction problem for stationary sequences $\left\{X_{n}\right\}(n \in \mathbb{Z})$ based on the observations X_{n} with $n \in Q$ consists in approximating X_{r} by linear combinations of X_{n} with $n \in Q$ minimizing the mean square error. The unique solution $\widehat{X}_{r}(Q)$ to this problem is the orthogonal projection of X_{r} on the subspace $[\mathbf{X}, Q]$.

Some special cases of this problem have drawn much attention and have a long history. The extrapolation problem based on the past $Q=A_{n}$ for some $n \in \mathbb{Z}$ and the interpolation problem corresponding to sets Q with finite complement $Q^{\text {c }}$ were treated by A. N. Kolmogorov in [2] and [3] and N. Wiener in [6].

By the stationarity of the sequence in question the prediction problem can be reduced to the case $r=0$. In what follows $\sigma(\mathbf{X}, Q)$ will denote the mean square error $\left\|X_{0}-\widehat{X}_{0}(Q)\right\|$. It is clear that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(\mathbf{X}, Q_{n}\right)=\sigma(\mathbf{X}, Q) \tag{3.1}
\end{equation*}
$$

whenever $Q_{1} \subset Q_{2} \subset \ldots$ and $Q=\bigcup_{n=1}^{\infty} Q_{n}$. For non-deterministic sequences \mathbf{X} with the Wold decomposition $\mathbf{X}=\mathbf{X}^{\prime}+\mathbf{X}^{\prime \prime}$ we have, by (1.6), the inequality

$$
\begin{equation*}
\sigma^{2}(\mathbf{X}, Q) \geq \sigma^{2}\left(\mathbf{X}^{\prime}, Q\right)+\sigma^{2}\left(\mathbf{X}^{\prime \prime}, Q\right) \tag{3.2}
\end{equation*}
$$

for every subset Q of \mathbb{Z}. Moreover, by (1.5),

$$
\begin{equation*}
\sigma(\mathbf{X}, S)=\sigma\left(\mathbf{X}^{\prime}, S\right) \tag{3.3}
\end{equation*}
$$

if $S \supset A_{n}$ for some $n \in \mathbb{Z}$.
For $Q \subset C_{0}$ we put $Q^{*}=C_{0} \backslash Q$. Of course, $\left(Q^{*}\right)^{*}=Q$. The following statements can be regarded as a duality principle for stationary sequences and their duals.

Theorem 3.1. If $\mathbf{X} \in K_{0}, Q \subset C_{0}$ and $Q \in \Lambda(\mathbf{X})$, then

$$
\sigma(\mathbf{X}, Q) \sigma\left(\mathbf{X}^{*}, Q^{*}\right)=1
$$

Proof. We note that, by Proposition $2.1, \mathbf{X}^{*} \in K_{0}$. Since $Q \subset C_{0}$ we have, by Theorem 2.1 (part (ii)), $\left[\mathbf{X}^{*}, Q^{*}\right] \neq\left[\mathbf{X}^{*}\right]$, which yields the inequality $\sigma\left(\mathbf{X}^{*}, Q^{*}\right)>0$. Put

$$
Y=X_{0}-\sigma^{-2}\left(\mathbf{X}^{*}, Q^{*}\right)\left(X_{0}^{*}-\widehat{X}_{0}^{*}\left(Q^{*}\right)\right)
$$

It is clear that $\widehat{X}_{0}^{*}\left(Q^{*}\right) \in\left[\mathbf{X}^{*}, Q^{*}\right]$ and $X_{0}^{*}-\widehat{X}_{0}^{*}\left(Q^{*}\right) \perp\left[\mathbf{X}^{*}, Q^{*}\right]$. Consequently,

$$
\left(X_{0}^{*}-\widehat{X}_{0}^{*}\left(Q^{*}\right), X_{0}^{*}\right)=\sigma^{2}\left(\mathbf{X}^{*}, Q^{*}\right)
$$

which yields the relations $Y \perp\left[\mathbf{X}^{*}, Q^{*}\right]$ and $\left(Y, X_{0}^{*}\right)=0$. As $Q^{c}=Q^{*} \cup\{0\}$ the last relations can be written in the form $Y \perp\left[\mathbf{X}^{*}, Q^{\mathrm{c}}\right]$. From this and
the assumption $Q \in \Lambda(\mathbf{X})$ we get $Y \in[X, Q]$. It is clear that $X_{0}^{*}-\widehat{X}_{0}^{*}\left(Q^{*}\right) \in$ $\left[\mathbf{X}^{*}, Q^{\mathrm{c}}\right]$. Consequently, $X_{0}-Y \in\left[\mathbf{X}^{*}, Q^{\mathrm{c}}\right]$. Since, by Proposition $2.5, Q^{\mathrm{c}} \in$ $\Lambda\left(\mathbf{X}^{*}\right)$ the last relation can be written in the form $X_{0}-Y \perp[\mathbf{X}, Q]$, which shows that the random variable Y is the orthogonal projection of X_{0} on $[\mathbf{X}, Q]$. Thus $Y=\widehat{X}_{0}(Q)$ and, consequently,

$$
\sigma(\mathbf{X}, Q)=\left\|X_{0}-Y\right\|=\sigma^{-2}\left(\mathbf{X}^{*}, Q^{*}\right)\left\|X_{0}^{*}-\widehat{X}_{0}^{*}\left(Q^{*}\right)\right\|=\sigma^{-1}\left(\mathbf{X}^{*}, Q^{*}\right)
$$

which completes the proof.
Theorem 3.2. Let $\mathbf{X} \in K$. Then for every $Q \subset C_{0}$,

$$
\sigma(\mathbf{X}, Q) \sigma\left(\mathbf{X}^{*}, Q^{*}\right) \geq 1
$$

Proof. Given $Q \subset C_{0}$ we define an auxiliary sequence $\left\{R_{n}\right\}(n \geq 1)$ of subsets of C_{0} by setting $R_{n}=Q^{*} \cap C_{n}^{\mathrm{c}}(n \geq 1)$. Of course, $R_{1} \subset R_{2} \subset \ldots$ and $Q^{*}=\bigcup_{n=1}^{\infty} R_{n}$, which, by formula (3.1), yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma\left(\mathbf{X}^{*}, R_{n}\right)=\sigma\left(\mathbf{X}^{*}, Q^{*}\right) \tag{3.4}
\end{equation*}
$$

By Theorem 2.1 (part (iv)) and Propositions 2.1 and 2.2 we infer that $\mathbf{X}^{*} \in K_{0}$ and $\left(\mathbf{X}^{*}\right)^{*}=\mathbf{X}^{\prime}$. Moreover, by Proposition 2.7, the finite sets R_{n} belong to $\Lambda\left(\mathbf{X}^{*}\right)$. Consequently, by Theorem 3.1, we have the equality

$$
\begin{equation*}
\sigma\left(\mathbf{X}^{*}, R_{n}\right) \sigma\left(\mathbf{X}^{\prime}, R_{n}^{*}\right)=1 \quad(n=1,2, \ldots) \tag{3.5}
\end{equation*}
$$

Observe that $R_{n}^{*}=Q \cup C_{n} \supset Q$, which, by (3.2), yields $\sigma\left(\mathbf{X}^{\prime}, R_{n}^{*}\right) \leq \sigma(\mathbf{X}, Q)$. Thus, by (3.5),

$$
\sigma\left(\mathbf{X}^{*}, R_{n}\right) \sigma(\mathbf{X}, Q) \geq 1 \quad(n=1,2, \ldots)
$$

and this, by (3.4), completes the proof.
Let \mathbf{X} be a stationary sequence. A stationary sequence \mathbf{Y} is said to be a generalized dual of \mathbf{X} if for every subset Q of C_{0} the inequality

$$
\sigma(\mathbf{X}, Q) \sigma\left(\mathbf{Y}, Q^{*}\right) \geq 1
$$

is true. In what follows $D(\mathbf{X})$ will denote the set of all generalized duals of X.
Theorem 3.3. $D(\mathbf{X}) \neq \emptyset$ if and only if $\mathbf{X} \in K$. Then $\mathbf{X}^{*} \in D(\mathbf{X})$ and

$$
\begin{equation*}
\sigma\left(\mathbf{X}^{*}, Q\right)=\min \{\sigma(\mathbf{Y}, Q): \mathbf{Y} \in D(\mathbf{X})\} \tag{3.6}
\end{equation*}
$$

for every subset Q of C_{0}.
Proof. Suppose that $D(\mathbf{X}) \neq \emptyset$. Then $\sigma\left(\mathbf{X}, C_{0}\right)>0$ and, consequently, $\left[\mathbf{X}, C_{0}\right] \neq[\mathbf{X}]$, which, by Theorem 2.1 (part (ii)), yields $\mathbf{X} \in K$. The reverse implication and the relation $\mathbf{X}^{*} \in D(\mathbf{X})$ are an immediate consequence of Theorem 3.2.

It remains to prove formula (3.6). Suppose that $\mathbf{X} \in K$ and $Q \subset C_{0}$. By Theorem 2.1 and Proposition 2.2 we conclude that $\mathbf{X}^{\prime} \in K_{0}$ and $\left(\mathbf{X}^{\prime}\right)^{*}=\mathbf{X}^{*}$.

Put $S_{n}=Q^{*} \cup C_{n}(n \geq 1)$. Since S_{n}^{c} are finite we deduce, by Proposition 2.7, that $S_{n} \in \Lambda\left(\mathbf{X}^{\prime}\right)$. Applying Theorem 3.1 we get the equalities

$$
\begin{equation*}
\sigma\left(\mathbf{X}^{\prime}, S_{n}\right) \sigma\left(\mathbf{X}^{*}, S_{n}^{*}\right)=1 \quad(n=1,2, \ldots) \tag{3.7}
\end{equation*}
$$

Observe that $S_{n} \supset A_{-n}$. Consequently, by (3.3), $\sigma\left(\mathbf{X}^{\prime}, S_{n}\right)=\sigma\left(\mathbf{X}, S_{n}\right)$, which, by (3.7), yields

$$
\sigma\left(\mathbf{X}, S_{n}\right) \sigma\left(\mathbf{X}^{*}, S_{n}^{*}\right)=1 \quad(n=1,2, \ldots)
$$

Comparing this with the inequality

$$
\sigma\left(\mathbf{X}, S_{n}\right) \sigma\left(\mathbf{Y}, S_{n}^{*}\right) \geq 1 \quad(n=1,2, \ldots)
$$

for $\mathbf{Y} \in D(\mathbf{X})$ we get

$$
\begin{equation*}
\sigma\left(\mathbf{X}^{*}, S_{n}^{*}\right) \leq \sigma\left(\mathbf{Y}, S_{n}^{*}\right) \quad(n=1,2, \ldots) \tag{3.8}
\end{equation*}
$$

From the formula $S_{n}^{*}=Q \cap C_{n}^{\mathrm{c}}$ it follows that $S_{1}^{*} \subset S_{2}^{*} \subset \ldots$ and $Q=$ $\bigcup_{n=1}^{\infty} S_{n}^{*}$. Thus letting $n \rightarrow \infty$ in (3.8) we get, by (3.1), the inequality $\sigma\left(\mathbf{X}^{*}, Q\right) \leq \sigma(\mathbf{Y}, Q)$ for all $\mathbf{Y} \in D(\mathbf{X})$. This completes the proof of (3.6).

REFERENCES

[1] J. L. Doob, Stochastic Processes, Wiley, New York, 1953.
[2] A. N. Kolmogorov, Sur l'interpolation et extrapolation des suites stationnaires, C. R. Acad. Sci. Paris 208 (1939), 2043-2045.
[3] -, Interpolation und Extrapolation von stationären zufälligen Folgen, Bull. Acad. Sci. U.R.S.S. Sér. Math. 5 (1941), 3-14.
[4] I. I. Privalov, Limit Properties of Analytic Functions, G.I.T.-T.L., Moscow, 1950 (in Russian).
[5] Yu. A. Rozanov, Stationary Random Processes, G.I.F.-M.L., Moscow, 1963 (in Russian).
[6] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series. With Engineering Applications, The Technology Press of MIT, Cambridge, MA, 1949.

Institute of Mathematics
Wrocław University
Pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland
E-mail: urbanik@math.uni.wroc.pl

[^0]: 2000 Mathematics Subject Classification: Primary 60G10.
 Research supported by the KBN grant No. 2 PO3A 02914.

