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A DUALITY PRINCIPLE FOR STATIONARY RANDOM SEQUENCES

BY

K. URBANIK (WROCLAW)

Abstract. The paper is devoted to the study of stationary random sequences. A con-
cept of dual sequences is discussed. The main aim of the paper is to establish a relationship
between the errors of linear least squares predictions for sequences and their duals.

1. Preliminaries and notation. This paper is organized as follows.
Section 1 collects together some basic facts and notation concerning sta-
tionary random sequences needed in what follows. In Section 2 a concept
of dual sequences is discussed. In the last section a relationship between
the errors of linear least squares predictions for sequences and their duals is
established.

We suppose, as usual, that there is a probability measure defined on a o-
algebra of sets of some space §2. Let M be the set of all complex-valued ran-
dom variables whose squares are integrable. The set M is a Hilbert space un-
der the inner product (X,Y) = EXY where E stands for the expectation of
random variables. Throughout this paper Z will denote the set of all integers.

A sequence X = {X,,} (n € Z) of random variables from M is said to
be stationary if the inner product (X, 4m, X ) does not depend on m. The
function R(n) = (Xpntm, Xm) (n € Z) is called the covariance function of
the sequence in question. The Herglotz Theorem describes the covariance
function as a Fourier transform

R(n) = | € u(dr)
where the measure p is concentrated on the interval [—m, 7). Of course, the
correspondence R <> p is one-to-one ([1], Chapter 10.3). The measure p is
called the spectral measure of the sequence X.
For the empty set () we put [X, ] = {0}. For a non-empty subset @ of Z
we denote by [X, Q] the closed linear manifold of M generated by the ran-
dom variables X,, with n € Q. For the sake of brevity we put [X,Z] = [X].
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Each stationary sequence X = {X,,} (n € Z) induces a unitary operator T'
on [X] satisfying the condition T'X,, = X,,+1 (n € Z) ([1], Chapter 10.1).
In what follows we shall use the notation
A, ={k:k<n} and B,={k:k>n} (neZ).

Two stationary sequences X and Y are said to be retrospectively or pro-
gressively connected if [X, A,] = [Y,A,] for all n € Z or [X, B,,] = [Y, B,)]
for all n € Z respectively.

A stationary sequence X is called deterministic if
(1.1) X, A, =1X] (neZ).

A stationary sequence X is called completely non-deterministic if
X] # {0} and (7)[X.A4.] = {0}.
neZ

FEach non-deterministic stationary sequence X has a unique Wold decompo-
sition X = X’ + X” into two stationary sequences X' and X" where X' is
completely non-deterministic, X” is deterministic,

(1.2) X LX)

and [X] is the orthogonal sum of [X'] and [X"],

(13) X] = [X'] & [X]

([1], Chapter 12.4). Moreover,

(1.4) X, A4, =X A4,]®X"] (neZ),
which yields the equality

(1.5) X, S]=[X',S] @ [X"]

whenever S D Ay for some k € Z. For each subset ) of Z we have the
inclusion

(1.6) X,Q] c [X',Ql& X", Q).
The Hardy class H, (p > 0) consists of functions f analytic on |z| < 1
and satisfying the condition

e

lim S |f (re™®)|P dz < oco.
r—1— o

It is well known that for f € H, the radial limit
lim f(re'™) = f(e®)
r—1—

exists almost everywhere ([4], Chapter 2.2). By H," we denote the subset of
H,, consisting of functions f satisfying the conditions f(0) > 0 and f(z) # 0
for |z| < 1.
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In what follows §,, will denote the Kronecker J-function: dg = 1 and
0, =0 for n # 0. A sequence U = {U,,} (n € Z) of random variables from
M is called orthonormal if é,, is its covariance function.

The main representation theorem says that each completely non-deter-
ministic sequence X has a unique representation X = (F, U) where F € H,"
and the orthonormal sequence U and the sequence X are retrospectively
connected. This means that X is the moving average

X, = ZakUn_k (TL € Z)
k=0

where F(z) = > po,arz" for |z| < 1 ([1], Chapter 12.4). Moreover, the
spectral measure u of X is of the form
1 .
pde) = o |F(e™")Pdx.
2. Dual sequences. Let X = {X,,} (n € Z) be a stationary sequence.

A sequence X* = {X} (n € Z) of random variables from [X] is called the
dual of X if

(2.1) (X, X2) = 0nem  (nym € Z0).

It is clear that the dual sequence is uniquely determined provided it exists.
Thus, taking the unitary operator T induced by X on [X], we conclude that
for every r € Z the sequence {T"X*_,} (n € Z) is also the dual of X and,
consequently, X =T"X*__ (n,r € Z). This shows that the sequence X* is
also stationary.

ExaMPLE 2.1. For orthonormal sequences U we have U* = U.
EXAMPLE 2.2. Let X be a stationary Markov sequence with covariance
function R(n) = a"R(0) where n > 0, R(0) > 0 and |a| < 1 ([1], p. 477).
Then we have
Xi=1—]a?) A+ Xy — aXpo1 —aXnq1) (n€ 7).

In what follows K will stand for the set of all stationary sequences admit-
ting the dual sequence. Further, Ky will denote the subset of K consisting
of sequences X satisfying [X*] = [X]. The following statement is evident.

PropoSITION 2.1. If X € K, then X* € Ky and (X*)* = X.

ProrosITION 2.2. X € K if and only if X is non-deterministic and
X" € K. Then the formula (X')* = X* is true.

Proof. Let X € K. First we shall prove that the sequence X is non-
deterministic. Suppose the contrary. Since X§ L [X, Ag] we have, by (1.1),
X} =0, which contradicts the equality (Xo, X§) = 1. Thus the sequence X
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is non-deterministic. Consider its Wold decomposition X = X’ + X", Since
X, L [X,A,] for n < m we have, by (1.4),

X5 L (X A = [X"] (mez).
nez
Consequently, by (1.2), X} € [X'] (m € Z) and (X, X}})) = (X, X)) =
0n—m, Which shows that X* is the dual of X'.
Conversely, suppose that X’ € K. Then, by (1.3), (X],)* € [X] and
(X)) L [X"]. Consequently, (X,,(X,,)") = (X],(X],)*) = 0n—m (n,m €
Z), which yields X € K. This completes the proof.

The next result is less trivial.

PROPOSITION 2.3. LetX be a completely non-deterministic sequence with
the representation (F,U) such that F~! € Hy. Then X € Ko,

[e.e]
(2.2) X5 = bpUssn,

k=0
with the coefficients by determined by the expansion F~'(z) = Y77, br2"
for |z] <1 and the sequences X* and U are progressively connected.

Proof. Observe that Y ;- |bx|> < co. This shows that the right-hand
side of (2.2) is well defined. Denote it by Y,,. It is clear that

Y, € [U,B,_1] C [X] (ne€Z),

which yields the relation Y,, L [U,A,] (n € Z). Since the sequences X
and U are retrospectively connected the last relation implies the equalities
(X, Y,) =0if k < n. Further, if k =n+r and r > 0, then

(X, Yn) = > abe(Ungr—js Unss) = > ajbr_j = br,
S,jZO ]ZO

which shows that the sequence {Y,,} (n € Z) is the dual of X. Formula (2.2)
and the relation X € K are thus proved.

Now we shall prove that the sequences X* and U are progressively con-
nected. By formula (2.2) we have the inclusion

(2.3) [X*, By| C [U, By.
To prove the reverse inclusion we suppose that a random variable Y satisfies
(2.4) Y L [X*, Bo]

and belongs to [U, By]. Consequently, it can be written in the form

(2'5) Y = chUk
k=1



A DUALITY PRINCIPLE 157

where Y77, |cx]? < oo. From (2.4) we get the equalities

(2.6) (V. Xn) =D ewbsbpsn =0 (n>1)
s=0 k=1
Introduce the notation
27) fl2)=> @t gla)=> bz h(z)=> azt (]2 <1).
k=0 k=0 k=1

It is clear that
(28) fagaheHQ
and
(2.9) f(2)g(z) =1 (lz[ <1).
By Parseval’s formula and (2.6) we get the equalities

1 0 1T\ =( 1T ,—iNT —

o S h(e*)g(e*)e dx = Zchbsék,s,n =0 (n>1).

-7 s=0 k=1

Consequently, the function h(e’*)g(e?®) integrable on the interval [—, 7] has
the Fourier expansion of the form Y o pre*®. Setting p(z) = > pe prz®
(|z| < 1) we infer, by Theorem 6.1 in [1], Chapter 4, that

(2.10) p € Hy
and
(2.11) p(e’™) = h(e*)g(e™)

almost everywhere. Put ¢(z) = p(2)f(2) (|]z| < 1). Taking into account
(2.8), (2.10) and the inequality

la(2)['/? < [p(2)] + 1 £(2)]
we conclude that ¢ € H;/ and, by (2.9) and (2.11),
(2.12) q(e™) = h(e™)
almost everywhere. Thus, by (2.8), the radial limit g(e®) is square integrable

on the interval [—m,7]. Applying Smirnov’s theorem ([4], p. 116) we have
q € Hy. Consequently, from (2.12) it follows that

h(ezr) — Z dke—ikx
k=0

for some coefficients dj, with > ;—,|dx|? < co. Comparing this with (2.7)
we have ¢, = 0 for k > 1, which, by (2.6), yields Y = 0. This completes the
proof of the inclusion [X*, By] D [U, By|, which together with (2.3) yields
the equality [X*, By] = [U, By]. Since

X*,B,] = T"[X*,By], [U,B,]=T"[U,B,] (neZ)
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where T is the unitary operator induced by the sequence X on [X], we have
(X*, B, =[U,B,] (n€Z).

In other words, the sequences X* and U are progressively connected. Hence
in particular it follows that [X*] = [U]. On the other hand, [X] = [U] be-
cause the sequences X and U are retrospectively connected. Thus [X*]=[X]
and, consequently, X € Ky, which completes the proof.

We are now in a position to prove a characterization of the class K. In
what follows we shall use the notation C,, = A_, U B,, (n > 0).

THEOREM 2.1. The following conditions are equivalent:
(i) X € K,

(i) [X, Co] # [X],

(iii) X is non-deterministic and X' = (F,U) with F~! € Ho,

(iv) X is non-deterministic and X' € K.

Proof. (i)=(ii). Since X§ # 0 and X§ L [X, Cy] we have condition (ii).

(ii)=-(iii). Condition (ii) and equalities (1.3) and (1.5) yield the condition
[X’,Cp] # [X']. Taking the representation X’ = (F,U) we have, by Kol-
mogorov’s Theorem ([5], Chapter 2, Theorem 10.2), {* [F(e™™)|"2dz <
oo. Since F(z) # 0 for 2] < 1 we have F~! € H,.

(iii)=(iv) and (iv)=-(i) are immediate consequences of Propositions 2.3
and 2.2 respectively. The theorem is thus proved.

Given @@ C Z we denote by Q¢ the complement Z\Q. Let X € K. Since
(Xn, X}) =0 for n € Q and m € Q°, we have the inclusion
(2.13) X, Q] c [X*, QT
where the orthogonal complement is taken in the space [X]. We shall denote
by A(X) the family of all subsets @ of Z satisfying

(X, Q) = [X*, Q™.

Since [X,Z] = [X] and [X*, 0] = {0} we conclude that Z € A(X) for every
XeK.

PROPOSITION 2.4. Let X € K. Suppose that QQ and S are disjoint subsets
of Z and the set Q is finite. Then SUQ € A(X) if and only if S € A(X).

Proof. Suppose that

Ve [X,Q]n[X*, S .

The random variable V' can be written in the form V = ZneQ cp X, where
¢n (n € Q) are complex numbers. Since ) C S° the random variable Vy =
> neo Cn Xy, belongs to [X*, 5], Consequently, 0 = (V, Vo) = >_, ¢ lenl?,
which yields the equality V' = 0. Thus we have the formula

(2.14) [X,Q] N [X*, S+ = {0}
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Further, taking into account (2.13), we get [X,Q] N [X,S] = {0}. Since
the subspace [X, Q)] is finite-dimensional we conclude that the subspace
[X, S UQ)] can be represented as a direct sum

(2.15) X,5UQ| = X, 5]+ [X, Q.
Using (2.13) we get the inclusion
(2.16) (X, Q] + [X*, S+ C [X*,5°NQ* .

To prove the reverse inclusion we assume that

W e [X*,8°nQ .
Setting

Wo =) (W.X3)X,

neq
we have the relations Wg € [X, Q], Wo L [X*,Q°] and W — Wq L [X*, Q).
Moreover, by the formula S¢ = QU (S°NQ°), we have W — Wg L [X*, 5.
Consequently, W € [X, Q] + [X*, S|+, which, by (2.16), yields
X", $°NQTH =X, 5T + X, Q.
Comparing this with (2.14) and (2.15) we conclude that [X, S] = [X*, S¢]*+
if and only if [X, S U Q] = [X*, S¢ N Q]+, which completes the proof.
PROPOSITION 2.5. If X € K and Q € A(X*), then Q° € A(X*).

Proof. First observe that the complementations in [X] and [X*] coin-
cide. Now our assertion is a consequence of Proposition 2.1 and the formula

X, Q7 = [X, Q" = [(X*)", (Q°)]*.
PROPOSITION 2.6. If X € Ky, then A,, B, € A(X) for alln € Z.
Proof. Let X € Ky. Then, by Proposition 2.2, the sequence X is
competely non-deterministic and, consequently, has a representation X =
(F,U), where the sequences X and U are retrospectively connected. Further,

by Proposition 2.4, the sequences X* and U are progressively connected.
Hence we get the equalities

[X’An] = [U’An] = [U’AZ]J_ = [X*’A%]J—’

which yields A4, € A(X) for X € Ky and n € Z. According to Proposi-
tion 2.1, X* € Ky. Thus A, € A(X*), which, by Proposition 2.5, implies
Ay € A(X). Since A5, | = B, we get the assertion.

PROPOSITION 2.7. If Q is a finite subset of Z and X € Kg, then @, Q¢ €
A(X).

Proof. By Proposition 2.1, X* € Ky. Applying Proposition 2.5 to the
evident relation Z € A(X*) we get ) = Z¢ € A(X). Setting S = ) in Propo-
sition 2.4 we conclude that every finite subset @ of Z belongs to A(X). Now
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the remaining relation Q¢ € A(X) is an immediate consequence of Proposi-
tion 2.5. This completes the proof.

3. Prediction problems. The linear least squares prediction problem
for stationary sequences {X,} (n € Z) based on the observations X,, with
n € (@ consists in approximating X, by linear combinations of X, with
n € ) minimizing the mean square error. The unique solution )/(\'T(Q) to
this problem is the orthogonal projection of X, on the subspace [X, Q).

Some special cases of this problem have drawn much attention and have
a long history. The extrapolation problem based on the past @@ = A,, for
some n € Z and the interpolation problem corresponding to sets () with
finite complement Q¢ were treated by A. N. Kolmogorov in [2] and [3] and
N. Wiener in [6].

By the stationarity of the sequence in question the prediction problem
can be reduced to the case r = 0. In what follows o(X, @) will denote the
mean square error || Xo — Xo(Q)|. It is clear that

(31) Jim 0(X.Q,) = o(X,Q)

whenever Q1 C Q2C ...and Q = |J,—; Q. For non-deterministic sequences
X with the Wold decomposition X = X’ + X" we have, by (1.6), the in-
equality

(3.2) *(X,Q) > o*(X',Q) + o* (X", Q)
for every subset @ of Z. Moreover, by (1.5),
(3.3) o(X,S)=0(X',9)

if S O A, for some n € Z.

For Q C Cy we put Q* = Cp\Q. Of course, (Q*)* = Q. The following
statements can be regarded as a duality principle for stationary sequences
and their duals.

THEOREM 3.1. If X € Ky, Q C Cy and Q € A(X), then
o(X,Q)o(X", Q") = 1.

Proof. We note that, by Proposition 2.1, X* € K. Since Q C Cy we
have, by Theorem 2.1 (part (ii)), [X*, Q*] # [X*], which yields the inequal-
ity o(X*,Q*) > 0. Put

Y = Xo -0 (X", Q) (X5 - X5(Q).
It is clear that )?S(Q*) € [X*,Q*] and X — )?S(Q*) 1 [X*,Q*]. Conse-
quently, N
(X5 = X5(Q), X5) = 0*(X",Q"),
which yields the relations Y L [X*, Q*] and (Y, Xj) =0. As Q° = Q*U{0}
the last relations can be written in the form Y L [X*, Q°]. From this and
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the assumption Q € A(X) we get Y € [X, Q). It is clear that X — Xz (Q*) €
[X*,Q°]. Consequently, Xo—Y € [X* Q°|. Since, by Proposition 2.5, Q° €
A(X*) the last relation can be written in the form Xy — Y L [X, @], which
shows that the random variable Y is the orthogonal projection of X on
[X,Q]. Thus Y = Xo(Q) and, consequently,

o(X,Q) = [|Xo — Y| = 072(X*, Q"I X5 — X5(Q")|| = 01 (X",Q"),
which completes the proof.

THEOREM 3.2. Let X € K. Then for every Q C Cp,

o(X,Q)o(X*, Q") > 1.

Proof. Given @ C Cj we define an auxiliary sequence {R,,} (n > 1) of
subsets of Cy by setting R, = Q* N CS (n > 1). Of course, Ry C Ry C ...
and Q* = |J,—_, R,,, which, by formula (3.1), yields

(3.4) lim o(X*, R,) = o(X*, Q).

n— o0

By Theorem 2.1 (part (iv)) and Propositions 2.1 and 2.2 we infer that
X* € Ky and (X*)* = X’. Moreover, by Proposition 2.7, the finite sets
R, belong to A(X*). Consequently, by Theorem 3.1, we have the equality

(3.5) oX*R,)o(X" R})=1 (n=1,2,...).

Observe that R = QUC,, D @, which, by (3.2), yields o(X', R}) < 0(X, Q).
Thus, by (3.5),

o(X*R,)o(X,Q)>1 (n=12,...)
and this, by (3.4), completes the proof.

Let X be a stationary sequence. A stationary sequence Y is said to be
a generalized dual of X if for every subset Q) of Cy the inequality

o(X,Q)r(Y,Q") > 1
is true. In what follows D(X) will denote the set of all generalized duals of X.
THEOREM 3.3. D(X) # 0 if and only if X € K. Then X* € D(X) and
(3.6) o(X*,Q) =min{o(Y,Q) : Y € D(X)}
for every subset Q of Cy.

Proof. Suppose that D(X) # (). Then o(X,Cy) > 0 and, consequently,
[X, Cy] # [X], which, by Theorem 2.1 (part (ii)), yields X € K. The reverse
implication and the relation X* € D(X) are an immediate consequence of
Theorem 3.2.

It remains to prove formula (3.6). Suppose that X € K and @ C Cy. By
Theorem 2.1 and Proposition 2.2 we conclude that X’ € Ky and (X')* = X*.
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Put S, = Q*UC,, (n > 1). Since S¢ are finite we deduce, by Proposition 2.7,
that S, € A(X’). Applying Theorem 3.1 we get the equalities

(3.7) o(X',Sp)e(X*,S5) =1 (n=1,2,...).

Observe that S, D A_,. Consequently, by (3.3), o(X',S,) = o(X,S,),
which, by (3.7), yields

o(X,S,)0(X*,Sr)=1 (n=1,2,...).
Comparing this with the inequality
o(X,S,)0(Y,S)>1 (n=1,2,...)
for Y € D(X) we get
(3.8) o(X*, S <o(Y,S:) (n=12,...).

From the formula S;; = Q N C5 it follows that ST C S5 C ... and @ =
U>2, Si. Thus letting n — oo in (3.8) we get, by (3.1), the inequality
o(X*,Q) <o(Y,Q) for all Y € D(X). This completes the proof of (3.6).
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