COLLOQUIUM MATHEMATICUM

VOL. 86

2000

NO. 2

A DUALITY PRINCIPLE FOR STATIONARY RANDOM SEQUENCES

 $_{\rm BY}$

K. URBANIK (WROCŁAW)

Abstract. The paper is devoted to the study of stationary random sequences. A concept of dual sequences is discussed. The main aim of the paper is to establish a relationship between the errors of linear least squares predictions for sequences and their duals.

1. Preliminaries and notation. This paper is organized as follows. Section 1 collects together some basic facts and notation concerning stationary random sequences needed in what follows. In Section 2 a concept of dual sequences is discussed. In the last section a relationship between the errors of linear least squares predictions for sequences and their duals is established.

We suppose, as usual, that there is a probability measure defined on a σ algebra of sets of some space Ω . Let M be the set of all complex-valued random variables whose squares are integrable. The set M is a Hilbert space under the inner product $(X, Y) = EX\overline{Y}$ where E stands for the expectation of random variables. Throughout this paper \mathbb{Z} will denote the set of all integers.

A sequence $\mathbf{X} = \{X_n\}$ $(n \in \mathbb{Z})$ of random variables from M is said to be *stationary* if the inner product (X_{n+m}, X_m) does not depend on m. The function $R(n) = (X_{n+m}, X_m)$ $(n \in \mathbb{Z})$ is called the *covariance function* of the sequence in question. The Herglotz Theorem describes the covariance function as a Fourier transform

$$R(n) = \int_{-\pi}^{\pi} e^{inx} \,\mu(dx)$$

where the measure μ is concentrated on the interval $[-\pi, \pi)$. Of course, the correspondence $R \leftrightarrow \mu$ is one-to-one ([1], Chapter 10.3). The measure μ is called the *spectral measure* of the sequence **X**.

For the empty set \emptyset we put $[\mathbf{X}, \emptyset] = \{0\}$. For a non-empty subset Q of \mathbb{Z} we denote by [X, Q] the closed linear manifold of M generated by the random variables X_n with $n \in Q$. For the sake of brevity we put $[\mathbf{X}, \mathbb{Z}] = [\mathbf{X}]$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 60G10.

Research supported by the KBN grant No. 2 PO3A 029 14.

^[153]

Each stationary sequence $\mathbf{X} = \{X_n\}$ $(n \in \mathbb{Z})$ induces a unitary operator T on $[\mathbf{X}]$ satisfying the condition $TX_n = X_{n+1}$ $(n \in \mathbb{Z})$ ([1], Chapter 10.1).

In what follows we shall use the notation

$$A_n = \{k : k < n\}$$
 and $B_n = \{k : k > n\}$ $(n \in \mathbb{Z}).$

Two stationary sequences \mathbf{X} and \mathbf{Y} are said to be *retrospectively* or *pro*gressively connected if $[\mathbf{X}, A_n] = [\mathbf{Y}, A_n]$ for all $n \in \mathbb{Z}$ or $[\mathbf{X}, B_n] = [\mathbf{Y}, B_n]$ for all $n \in \mathbb{Z}$ respectively.

A stationary sequence \mathbf{X} is called *deterministic* if

(1.1)
$$[\mathbf{X}, A_n] = [\mathbf{X}] \quad (n \in \mathbb{Z})$$

A stationary sequence ${\bf X}$ is called *completely non-deterministic* if

$$[\mathbf{X}] \neq \{0\}$$
 and $\bigcap_{n \in \mathbb{Z}} [\mathbf{X}, A_n] = \{0\}.$

Each non-deterministic stationary sequence \mathbf{X} has a unique Wold decomposition $\mathbf{X} = \mathbf{X}' + \mathbf{X}''$ into two stationary sequences \mathbf{X}' and \mathbf{X}'' where \mathbf{X}' is completely non-deterministic, \mathbf{X}'' is deterministic,

$$(1.2) [\mathbf{X}'] \perp [\mathbf{X}'']$$

and $[\mathbf{X}]$ is the orthogonal sum of $[\mathbf{X}']$ and $[\mathbf{X}'']$,

(1.3)
$$[\mathbf{X}] = [\mathbf{X}'] \oplus [\mathbf{X}'']$$

([1], Chapter 12.4). Moreover,

(1.4)
$$[\mathbf{X}, A_n] = [\mathbf{X}', A_n] \oplus [\mathbf{X}''] \quad (n \in \mathbb{Z}),$$

which yields the equality

(1.5)
$$[\mathbf{X}, S] = [\mathbf{X}', S] \oplus [\mathbf{X}'']$$

whenever $S \supset A_k$ for some $k \in \mathbb{Z}$. For each subset Q of Z we have the inclusion

(1.6)
$$[\mathbf{X}, Q] \subset [\mathbf{X}', Q] \oplus [\mathbf{X}'', Q].$$

The Hardy class H_p (p > 0) consists of functions f analytic on |z| < 1and satisfying the condition

$$\lim_{r \to 1^{-}} \int_{-\pi}^{\pi} |f(re^{ix})|^p \, dx < \infty$$

It is well known that for $f \in H_p$ the radial limit

$$\lim_{r \to 1-} f(re^{ix}) = f(e^{ix})$$

exists almost everywhere ([4], Chapter 2.2). By H_p^+ we denote the subset of H_p consisting of functions f satisfying the conditions f(0) > 0 and $f(z) \neq 0$ for |z| < 1.

In what follows δ_n will denote the Kronecker δ -function: $\delta_0 = 1$ and $\delta_n = 0$ for $n \neq 0$. A sequence $\mathbf{U} = \{U_n\}$ $(n \in \mathbb{Z})$ of random variables from M is called *orthonormal* if δ_n is its covariance function.

The main representation theorem says that each completely non-deterministic sequence \mathbf{X} has a unique representation $\mathbf{X} = (F, \mathbf{U})$ where $F \in H_2^+$ and the orthonormal sequence \mathbf{U} and the sequence \mathbf{X} are retrospectively connected. This means that \mathbf{X} is the moving average

$$X_n = \sum_{k=0}^{\infty} a_k U_{n-k} \quad (n \in \mathbb{Z})$$

where $F(z) = \sum_{k=0}^{\infty} a_k z^k$ for |z| < 1 ([1], Chapter 12.4). Moreover, the spectral measure μ of **X** is of the form

$$\mu(dx) = \frac{1}{2\pi} |F(e^{-ix})|^2 dx.$$

2. Dual sequences. Let $\mathbf{X} = \{X_n\}$ $(n \in \mathbb{Z})$ be a stationary sequence. A sequence $\mathbf{X}^* = \{X_n^*\}$ $(n \in \mathbb{Z})$ of random variables from $[\mathbf{X}]$ is called the *dual* of \mathbf{X} if

(2.1)
$$(X_n, X_m^*) = \delta_{n-m} \quad (n, m \in \mathbb{Z}).$$

It is clear that the dual sequence is uniquely determined provided it exists. Thus, taking the unitary operator T induced by \mathbf{X} on $[\mathbf{X}]$, we conclude that for every $r \in \mathbb{Z}$ the sequence $\{T^r X_{n-r}^*\}$ $(n \in \mathbb{Z})$ is also the dual of \mathbf{X} and, consequently, $X_n^* = T^r X_{n-r}^*$ $(n, r \in \mathbb{Z})$. This shows that the sequence \mathbf{X}^* is also stationary.

EXAMPLE 2.1. For orthonormal sequences U we have $U^* = U$.

EXAMPLE 2.2. Let **X** be a stationary Markov sequence with covariance function $R(n) = a^n R(0)$ where $n \ge 0$, R(0) > 0 and |a| < 1 ([1], p. 477). Then we have

$$X_n^* = (1 - |a|^2)^{-1} ((1 + |a|^2)X_n - aX_{n-1} - \overline{a}X_{n+1}) \quad (n \in \mathbb{Z}).$$

In what follows K will stand for the set of all stationary sequences admitting the dual sequence. Further, K_0 will denote the subset of K consisting of sequences \mathbf{X} satisfying $[\mathbf{X}^*] = [\mathbf{X}]$. The following statement is evident.

PROPOSITION 2.1. If $\mathbf{X} \in K_0$, then $\mathbf{X}^* \in K_0$ and $(\mathbf{X}^*)^* = \mathbf{X}$.

PROPOSITION 2.2. $\mathbf{X} \in K$ if and only if \mathbf{X} is non-deterministic and $\mathbf{X}' \in K$. Then the formula $(\mathbf{X}')^* = \mathbf{X}^*$ is true.

Proof. Let $\mathbf{X} \in K$. First we shall prove that the sequence \mathbf{X} is nondeterministic. Suppose the contrary. Since $X_0^* \perp [\mathbf{X}, A_0]$ we have, by (1.1), $X_0^* = 0$, which contradicts the equality $(X_0, X_0^*) = 1$. Thus the sequence \mathbf{X} is non-deterministic. Consider its Wold decomposition $\mathbf{X} = \mathbf{X}' + \mathbf{X}''$. Since $X_m^* \perp [\mathbf{X}, A_n]$ for n < m we have, by (1.4),

$$X_m^* \perp \bigcap_{n \in \mathbb{Z}} [\mathbf{X}, A_n] = [\mathbf{X}''] \quad (m \in \mathbb{Z}).$$

Consequently, by (1.2), $X_m^* \in [\mathbf{X}']$ $(m \in \mathbb{Z})$ and $(X'_n, X_m^*) = (X_n, X_m^*) = \delta_{n-m}$, which shows that \mathbf{X}^* is the dual of \mathbf{X}' .

Conversely, suppose that $\mathbf{X}' \in K$. Then, by (1.3), $(X'_m)^* \in [\mathbf{X}]$ and $(X'_m)^* \perp [\mathbf{X}'']$. Consequently, $(X_n, (X'_m)^*) = (X'_n, (X'_m)^*) = \delta_{n-m}$ $(n, m \in \mathbb{Z})$, which yields $\mathbf{X} \in K$. This completes the proof.

The next result is less trivial.

PROPOSITION 2.3. Let X be a completely non-deterministic sequence with the representation (F, \mathbf{U}) such that $F^{-1} \in H_2$. Then $\mathbf{X} \in K_0$,

(2.2)
$$X_n^* = \sum_{k=0}^{\infty} \overline{b}_k U_{k+n},$$

with the coefficients b_k determined by the expansion $F^{-1}(z) = \sum_{k=0}^{\infty} b_k z^k$ for |z| < 1 and the sequences \mathbf{X}^* and \mathbf{U} are progressively connected.

Proof. Observe that $\sum_{k=0}^{\infty} |b_k|^2 < \infty$. This shows that the right-hand side of (2.2) is well defined. Denote it by Y_n . It is clear that

$$Y_n \in [\mathbf{U}, B_{n-1}] \subset [\mathbf{X}] \quad (n \in \mathbb{Z}),$$

which yields the relation $Y_n \perp [\mathbf{U}, A_n]$ $(n \in \mathbb{Z})$. Since the sequences **X** and **U** are retrospectively connected the last relation implies the equalities $(X_k, Y_n) = 0$ if k < n. Further, if k = n + r and $r \ge 0$, then

$$(X_k, Y_n) = \sum_{s,j=0}^{\infty} a_j b_s(U_{n+r-j}, U_{n+s}) = \sum_{j=0}^r a_j b_{r-j} = \delta_r,$$

which shows that the sequence $\{Y_n\}$ $(n \in \mathbb{Z})$ is the dual of **X**. Formula (2.2) and the relation $\mathbf{X} \in K$ are thus proved.

Now we shall prove that the sequences \mathbf{X}^* and \mathbf{U} are progressively connected. By formula (2.2) we have the inclusion

$$(2.3) \qquad \qquad [\mathbf{X}^*, B_0] \subset [\mathbf{U}, B_0].$$

To prove the reverse inclusion we suppose that a random variable Y satisfies

$$(2.4) Y \perp [\mathbf{X}^*, B_0]$$

and belongs to $[\mathbf{U}, B_0]$. Consequently, it can be written in the form

$$(2.5) Y = \sum_{k=1}^{\infty} c_k U_k$$

where $\sum_{k=1}^{\infty} |c_k|^2 < \infty$. From (2.4) we get the equalities

(2.6)
$$(Y, X_n) = \sum_{s=0}^{\infty} \sum_{k=1}^{\infty} c_k b_s \delta_{k-s-n} = 0 \quad (n \ge 1).$$

Introduce the notation

(2.7)
$$f(z) = \sum_{k=0}^{\infty} \overline{a}_k z^k, \quad g(z) = \sum_{k=0}^{\infty} \overline{b}_k z^k, \quad h(z) = \sum_{k=1}^{\infty} c_k z^k \quad (|z| < 1).$$

It is clear that

$$(2.8) f,g,h \in H_2$$

and

(2.9)
$$f(z)g(z) = 1 \quad (|z| < 1)$$

By Parseval's formula and (2.6) we get the equalities

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} h(e^{ix}) \overline{g}(e^{ix}) e^{-inx} \, dx = \sum_{s=0}^{\infty} \sum_{k=1}^{\infty} c_k b_s \delta_{k-s-n} = 0 \quad (n \ge 1).$$

Consequently, the function $\overline{h}(e^{ix})g(e^{ix})$ integrable on the interval $[-\pi,\pi]$ has the Fourier expansion of the form $\sum_{k=0}^{\infty} p_k e^{ikx}$. Setting $p(z) = \sum_{k=0}^{\infty} p_k z^k$ (|z| < 1) we infer, by Theorem 6.1 in [1], Chapter 4, that

$$(2.10) p \in H_1$$

and

(2.11)
$$p(e^{ix}) = \overline{h}(e^{ix})g(e^{ix})$$

almost everywhere. Put q(z) = p(z)f(z) (|z| < 1). Taking into account (2.8), (2.10) and the inequality

$$|q(z)|^{1/2} \le |p(z)| + |f(z)|$$

we conclude that $q \in H_{1/2}$ and, by (2.9) and (2.11),

(2.12)
$$q(e^{ix}) = \overline{h}(e^{ix})$$

almost everywhere. Thus, by (2.8), the radial limit $q(e^{ix})$ is square integrable on the interval $[-\pi, \pi]$. Applying Smirnov's theorem ([4], p. 116) we have $q \in H_2$. Consequently, from (2.12) it follows that

$$h(e^{ix}) = \sum_{k=0}^{\infty} d_k e^{-ikx}$$

for some coefficients d_k with $\sum_{k=0}^{\infty} |d_k|^2 < \infty$. Comparing this with (2.7) we have $c_k = 0$ for $k \ge 1$, which, by (2.6), yields Y = 0. This completes the proof of the inclusion $[\mathbf{X}^*, B_0] \supset [\mathbf{U}, B_0]$, which together with (2.3) yields the equality $[\mathbf{X}^*, B_0] = [\mathbf{U}, B_0]$. Since

$$[\mathbf{X}^*, B_n] = T^n [\mathbf{X}^*, B_0], \quad [\mathbf{U}, B_n] = T^n [\mathbf{U}, B_0] \quad (n \in \mathbb{Z}),$$

where T is the unitary operator induced by the sequence \mathbf{X} on $[\mathbf{X}]$, we have

$$[\mathbf{X}^*, B_n] = [\mathbf{U}, B_n] \quad (n \in \mathbb{Z}).$$

In other words, the sequences \mathbf{X}^* and \mathbf{U} are progressively connected. Hence in particular it follows that $[\mathbf{X}^*] = [\mathbf{U}]$. On the other hand, $[\mathbf{X}] = [\mathbf{U}]$ because the sequences X and U are retrospectively connected. Thus $[\mathbf{X}^*] = [\mathbf{X}]$ and, consequently, $\mathbf{X} \in K_0$, which completes the proof.

We are now in a position to prove a characterization of the class K. In what follows we shall use the notation $C_n = A_{-n} \cup B_n$ $(n \ge 0)$.

THEOREM 2.1. The following conditions are equivalent:

(i) $\mathbf{X} \in K$,

(ii) $[\mathbf{X}, C_0] \neq [\mathbf{X}],$

(iii) **X** is non-deterministic and $\mathbf{X}' = (F, \mathbf{U})$ with $F^{-1} \in H_2$,

(iv) **X** is non-deterministic and $\mathbf{X}' \in K_0$.

Proof. (i)⇒(ii). Since $X_0^* \neq 0$ and $X_0^* \perp [\mathbf{X}, C_0]$ we have condition (ii). (ii)⇒(iii). Condition (ii) and equalities (1.3) and (1.5) yield the condition $[\mathbf{X}', C_0] \neq [\mathbf{X}']$. Taking the representation $\mathbf{X}' = (F, \mathbf{U})$ we have, by Kolmogorov's Theorem ([5], Chapter 2, Theorem 10.2), $\int_{-\pi}^{\pi} |F(e^{-ix})|^{-2} dx < \infty$. Since $F(z) \neq 0$ for |z| < 1 we have $F^{-1} \in H_2$.

 $(iii) \Rightarrow (iv)$ and $(iv) \Rightarrow (i)$ are immediate consequences of Propositions 2.3 and 2.2 respectively. The theorem is thus proved.

Given $Q \subset \mathbb{Z}$ we denote by Q^c the complement $\mathbb{Z} \setminus Q$. Let $\mathbf{X} \in K$. Since $(X_n, X_m^*) = 0$ for $n \in Q$ and $m \in Q^c$, we have the inclusion (2.13) $[\mathbf{X}, Q] \subset [\mathbf{X}^*, Q^c]^{\perp}$

where the orthogonal complement is taken in the space $[\mathbf{X}]$. We shall denote by $\Lambda(\mathbf{X})$ the family of all subsets Q of \mathbb{Z} satisfying

$$[\mathbf{X}, Q] = [\mathbf{X}^*, Q^c]^{\perp}.$$

Since $[\mathbf{X}, \mathbb{Z}] = [\mathbf{X}]$ and $[\mathbf{X}^*, \emptyset] = \{0\}$ we conclude that $\mathbb{Z} \in \Lambda(\mathbf{X})$ for every $\mathbf{X} \in K$.

PROPOSITION 2.4. Let $\mathbf{X} \in K$. Suppose that Q and S are disjoint subsets of \mathbb{Z} and the set Q is finite. Then $S \cup Q \in \Lambda(\mathbf{X})$ if and only if $S \in \Lambda(\mathbf{X})$.

Proof. Suppose that

$$V \in [\mathbf{X}, Q] \cap [\mathbf{X}^*, S^c]^{\perp}.$$

The random variable V can be written in the form $V = \sum_{n \in Q} c_n X_n$ where $c_n \ (n \in Q)$ are complex numbers. Since $Q \subset S^c$ the random variable $V_0 = \sum_{n \in Q} c_n X_n^*$ belongs to $[\mathbf{X}^*, S^c]$. Consequently, $0 = (V, V_0) = \sum_{n \in Q} |c_n|^2$, which yields the equality V = 0. Thus we have the formula

(2.14)
$$[\mathbf{X}, Q] \cap [\mathbf{X}^*, S^c]^{\perp} = \{0\}.$$

Further, taking into account (2.13), we get $[\mathbf{X}, Q] \cap [\mathbf{X}, S] = \{0\}$. Since the subspace $[\mathbf{X}, Q]$ is finite-dimensional we conclude that the subspace $[\mathbf{X}, S \cup Q]$ can be represented as a direct sum

$$(2.15) \qquad \qquad [\mathbf{X}, S \cup Q] = [\mathbf{X}, S] + [\mathbf{X}, Q].$$

Using (2.13) we get the inclusion

(2.16)
$$[\mathbf{X}, Q] + [\mathbf{X}^*, S^c]^{\perp} \subset [\mathbf{X}^*, S^c \cap Q^c]^{\perp}.$$

To prove the reverse inclusion we assume that

$$W \in [\mathbf{X}^*, S^{\mathbf{c}} \cap Q^{\mathbf{c}}]^{\perp}.$$

Setting

$$W_Q = \sum_{n \in Q} (W, X_n^*) X_n$$

we have the relations $W_Q \in [\mathbf{X}, Q], W_Q \perp [\mathbf{X}^*, Q^c]$ and $W - W_Q \perp [\mathbf{X}^*, Q]$. Moreover, by the formula $S^c = Q \cup (S^c \cap Q^c)$, we have $W - W_Q \perp [\mathbf{X}^*, S^c]$. Consequently, $W \in [\mathbf{X}, Q] + [\mathbf{X}^*, S^c]^{\perp}$, which, by (2.16), yields

$$[\mathbf{X}^*, S^{\mathrm{c}} \cap Q^{\mathrm{c}}]^{\perp} = [\mathbf{X}^*, S^{\mathrm{c}}]^{\perp} + [\mathbf{X}, Q].$$

Comparing this with (2.14) and (2.15) we conclude that $[\mathbf{X}, S] = [\mathbf{X}^*, S^c]^{\perp}$ if and only if $[\mathbf{X}, S \cup Q] = [\mathbf{X}^*, S^c \cap Q^c]^{\perp}$, which completes the proof.

PROPOSITION 2.5. If $\mathbf{X} \in K_0$ and $Q \in \Lambda(\mathbf{X}^*)$, then $Q^c \in \Lambda(\mathbf{X}^*)$.

Proof. First observe that the complementations in $[\mathbf{X}]$ and $[\mathbf{X}^*]$ coincide. Now our assertion is a consequence of Proposition 2.1 and the formula

$$[\mathbf{X}^*, Q^{c}] = [\mathbf{X}, Q]^{\perp} = [(\mathbf{X}^*)^*, (Q^{c})^{c}]^{\perp}.$$

PROPOSITION 2.6. If $\mathbf{X} \in K_0$, then $A_n, B_n \in \Lambda(\mathbf{X})$ for all $n \in \mathbb{Z}$.

Proof. Let $\mathbf{X} \in K_0$. Then, by Proposition 2.2, the sequence \mathbf{X} is competely non-deterministic and, consequently, has a representation $\mathbf{X} = (F, \mathbf{U})$, where the sequences \mathbf{X} and \mathbf{U} are retrospectively connected. Further, by Proposition 2.4, the sequences \mathbf{X}^* and \mathbf{U} are progressively connected. Hence we get the equalities

$$[\mathbf{X}, A_n] = [\mathbf{U}, A_n] = [\mathbf{U}, A_n^c]^{\perp} = [\mathbf{X}^*, A_n^c]^{\perp}$$

which yields $A_n \in \Lambda(\mathbf{X})$ for $\mathbf{X} \in K_0$ and $n \in \mathbb{Z}$. According to Proposition 2.1, $\mathbf{X}^* \in K_0$. Thus $A_n \in \Lambda(\mathbf{X}^*)$, which, by Proposition 2.5, implies $A_n^c \in \Lambda(\mathbf{X})$. Since $A_{n+1}^c = B_n$ we get the assertion.

PROPOSITION 2.7. If Q is a finite subset of \mathbb{Z} and $\mathbf{X} \in K_0$, then $Q, Q^c \in \Lambda(\mathbf{X})$.

Proof. By Proposition 2.1, $\mathbf{X}^* \in K_0$. Applying Proposition 2.5 to the evident relation $\mathbb{Z} \in \Lambda(\mathbf{X}^*)$ we get $\emptyset = \mathbb{Z}^c \in \Lambda(\mathbf{X})$. Setting $S = \emptyset$ in Proposition 2.4 we conclude that every finite subset Q of \mathbb{Z} belongs to $\Lambda(\mathbf{X})$. Now

K. URBANIK

the remaining relation $Q^{c} \in \Lambda(\mathbf{X})$ is an immediate consequence of Proposition 2.5. This completes the proof.

3. Prediction problems. The linear least squares prediction problem for stationary sequences $\{X_n\}$ $(n \in \mathbb{Z})$ based on the observations X_n with $n \in Q$ consists in approximating X_r by linear combinations of X_n with $n \in Q$ minimizing the mean square error. The unique solution $\hat{X}_r(Q)$ to this problem is the orthogonal projection of X_r on the subspace $[\mathbf{X}, Q]$.

Some special cases of this problem have drawn much attention and have a long history. The extrapolation problem based on the past $Q = A_n$ for some $n \in \mathbb{Z}$ and the interpolation problem corresponding to sets Q with finite complement Q^c were treated by A. N. Kolmogorov in [2] and [3] and N. Wiener in [6].

By the stationarity of the sequence in question the prediction problem can be reduced to the case r = 0. In what follows $\sigma(\mathbf{X}, Q)$ will denote the mean square error $||X_0 - \hat{X}_0(Q)||$. It is clear that

(3.1)
$$\lim_{n \to \infty} \sigma(\mathbf{X}, Q_n) = \sigma(\mathbf{X}, Q)$$

whenever $Q_1 \subset Q_2 \subset \ldots$ and $Q = \bigcup_{n=1}^{\infty} Q_n$. For non-deterministic sequences **X** with the Wold decomposition $\mathbf{X} = \mathbf{X}' + \mathbf{X}''$ we have, by (1.6), the inequality

(3.2)
$$\sigma^2(\mathbf{X}, Q) \ge \sigma^2(\mathbf{X}', Q) + \sigma^2(\mathbf{X}'', Q)$$

for every subset Q of \mathbb{Z} . Moreover, by (1.5),

(3.3)
$$\sigma(\mathbf{X}, S) = \sigma(\mathbf{X}', S)$$

if $S \supset A_n$ for some $n \in \mathbb{Z}$.

For $Q \subset C_0$ we put $Q^* = C_0 \setminus Q$. Of course, $(Q^*)^* = Q$. The following statements can be regarded as a duality principle for stationary sequences and their duals.

THEOREM 3.1. If
$$\mathbf{X} \in K_0$$
, $Q \subset C_0$ and $Q \in \Lambda(\mathbf{X})$, then
 $\sigma(\mathbf{X}, Q)\sigma(\mathbf{X}^*, Q^*) = 1.$

Proof. We note that, by Proposition 2.1, $\mathbf{X}^* \in K_0$. Since $Q \subset C_0$ we have, by Theorem 2.1 (part (ii)), $[\mathbf{X}^*, Q^*] \neq [\mathbf{X}^*]$, which yields the inequality $\sigma(\mathbf{X}^*, Q^*) > 0$. Put

$$Y = X_0 - \sigma^{-2}(\mathbf{X}^*, Q^*)(X_0^* - \widehat{X}_0^*(Q^*)).$$

It is clear that $\widehat{X}_0^*(Q^*) \in [\mathbf{X}^*, Q^*]$ and $X_0^* - \widehat{X}_0^*(Q^*) \perp [\mathbf{X}^*, Q^*]$. Consequently,

$$(X_0^* - \widehat{X}_0^*(Q^*), X_0^*) = \sigma^2(\mathbf{X}^*, Q^*),$$

which yields the relations $Y \perp [\mathbf{X}^*, Q^*]$ and $(Y, X_0^*) = 0$. As $Q^c = Q^* \cup \{0\}$ the last relations can be written in the form $Y \perp [\mathbf{X}^*, Q^c]$. From this and

A DUALITY PRINCIPLE

the assumption $Q \in \Lambda(\mathbf{X})$ we get $Y \in [X, Q]$. It is clear that $X_0^* - \hat{X}_0^*(Q^*) \in [\mathbf{X}^*, Q^c]$. Consequently, $X_0 - Y \in [\mathbf{X}^*, Q^c]$. Since, by Proposition 2.5, $Q^c \in \Lambda(\mathbf{X}^*)$ the last relation can be written in the form $X_0 - Y \perp [\mathbf{X}, Q]$, which shows that the random variable Y is the orthogonal projection of X_0 on $[\mathbf{X}, Q]$. Thus $Y = \hat{X}_0(Q)$ and, consequently,

$$\sigma(\mathbf{X}, Q) = \|X_0 - Y\| = \sigma^{-2}(\mathbf{X}^*, Q^*) \|X_0^* - \widehat{X}_0^*(Q^*)\| = \sigma^{-1}(\mathbf{X}^*, Q^*),$$

which completes the proof.

THEOREM 3.2. Let $\mathbf{X} \in K$. Then for every $Q \subset C_0$,

$$\sigma(\mathbf{X}, Q)\sigma(\mathbf{X}^*, Q^*) \ge 1.$$

Proof. Given $Q \subset C_0$ we define an auxiliary sequence $\{R_n\}$ $(n \ge 1)$ of subsets of C_0 by setting $R_n = Q^* \cap C_n^c$ $(n \ge 1)$. Of course, $R_1 \subset R_2 \subset \ldots$ and $Q^* = \bigcup_{n=1}^{\infty} R_n$, which, by formula (3.1), yields

(3.4)
$$\lim_{n \to \infty} \sigma(\mathbf{X}^*, R_n) = \sigma(\mathbf{X}^*, Q^*).$$

By Theorem 2.1 (part (iv)) and Propositions 2.1 and 2.2 we infer that $\mathbf{X}^* \in K_0$ and $(\mathbf{X}^*)^* = \mathbf{X}'$. Moreover, by Proposition 2.7, the finite sets R_n belong to $\Lambda(\mathbf{X}^*)$. Consequently, by Theorem 3.1, we have the equality

(3.5)
$$\sigma(\mathbf{X}^*, R_n)\sigma(\mathbf{X}', R_n^*) = 1 \quad (n = 1, 2, ...).$$

Observe that $R_n^* = Q \cup C_n \supset Q$, which, by (3.2), yields $\sigma(\mathbf{X}', R_n^*) \leq \sigma(\mathbf{X}, Q)$. Thus, by (3.5),

$$\sigma(\mathbf{X}^*, R_n)\sigma(\mathbf{X}, Q) \ge 1 \quad (n = 1, 2, \ldots)$$

and this, by (3.4), completes the proof.

Let \mathbf{X} be a stationary sequence. A stationary sequence \mathbf{Y} is said to be a generalized dual of \mathbf{X} if for every subset Q of C_0 the inequality

$$\sigma(\mathbf{X}, Q)\sigma(\mathbf{Y}, Q^*) \ge 1$$

is true. In what follows $D(\mathbf{X})$ will denote the set of all generalized duals of X.

THEOREM 3.3. $D(\mathbf{X}) \neq \emptyset$ if and only if $\mathbf{X} \in K$. Then $\mathbf{X}^* \in D(\mathbf{X})$ and (3.6) $\sigma(\mathbf{X}^*, Q) = \min\{\sigma(\mathbf{Y}, Q) : \mathbf{Y} \in D(\mathbf{X})\}$

for every subset Q of C_0 .

Proof. Suppose that $D(\mathbf{X}) \neq \emptyset$. Then $\sigma(\mathbf{X}, C_0) > 0$ and, consequently, $[\mathbf{X}, C_0] \neq [\mathbf{X}]$, which, by Theorem 2.1 (part (ii)), yields $\mathbf{X} \in K$. The reverse implication and the relation $\mathbf{X}^* \in D(\mathbf{X})$ are an immediate consequence of Theorem 3.2.

It remains to prove formula (3.6). Suppose that $\mathbf{X} \in K$ and $Q \subset C_0$. By Theorem 2.1 and Proposition 2.2 we conclude that $\mathbf{X}' \in K_0$ and $(\mathbf{X}')^* = \mathbf{X}^*$. Put $S_n = Q^* \cup C_n$ $(n \ge 1)$. Since S_n^c are finite we deduce, by Proposition 2.7, that $S_n \in \Lambda(\mathbf{X}')$. Applying Theorem 3.1 we get the equalities

(3.7)
$$\sigma(\mathbf{X}', S_n)\sigma(\mathbf{X}^*, S_n^*) = 1 \quad (n = 1, 2, \ldots).$$

Observe that $S_n \supset A_{-n}$. Consequently, by (3.3), $\sigma(\mathbf{X}', S_n) = \sigma(\mathbf{X}, S_n)$, which, by (3.7), yields

$$\sigma(\mathbf{X}, S_n)\sigma(\mathbf{X}^*, S_n^*) = 1 \quad (n = 1, 2, \ldots).$$

Comparing this with the inequality

$$\sigma(\mathbf{X}, S_n)\sigma(\mathbf{Y}, S_n^*) \ge 1 \quad (n = 1, 2, \ldots)$$

for $\mathbf{Y} \in D(\mathbf{X})$ we get

(3.8)
$$\sigma(\mathbf{X}^*, S_n^*) \le \sigma(\mathbf{Y}, S_n^*) \quad (n = 1, 2, \ldots).$$

From the formula $S_n^* = Q \cap C_n^c$ it follows that $S_1^* \subset S_2^* \subset \ldots$ and $Q = \bigcup_{n=1}^{\infty} S_n^*$. Thus letting $n \to \infty$ in (3.8) we get, by (3.1), the inequality $\sigma(\mathbf{X}^*, Q) \leq \sigma(\mathbf{Y}, Q)$ for all $\mathbf{Y} \in D(\mathbf{X})$. This completes the proof of (3.6).

REFERENCES

- [1] J. L. Doob, Stochastic Processes, Wiley, New York, 1953.
- A. N. Kolmogorov, Sur l'interpolation et extrapolation des suites stationnaires, C. R. Acad. Sci. Paris 208 (1939), 2043–2045.
- [3] —, Interpolation und Extrapolation von stationären zufälligen Folgen, Bull. Acad. Sci. U.R.S.S. Sér. Math. 5 (1941), 3–14.
- [4] I. I. Privalov, *Limit Properties of Analytic Functions*, G.I.T.-T.L., Moscow, 1950 (in Russian).
- [5] Yu. A. Rozanov, Stationary Random Processes, G.I.F.-M.L., Moscow, 1963 (in Russian).
- [6] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series. With Engineering Applications, The Technology Press of MIT, Cambridge, MA, 1949.

Institute of Mathematics Wrocław University Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland E-mail: urbanik@math.uni.wroc.pl

Received 24 May 1999

(3764)