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PROBABILISTIC CONSTRUCTION OF SMALL STRONGLY
SUM-FREE SETS VIA LARGE SIDON SETS

BY

ANDREAS B A L T Z (KIEL), TOMASZ S C H O E N (KIEL AND POZNAŃ)
AND ANAND S R I V A S T A V (KIEL)

Abstract. We give simple randomized algorithms leading to new upper bounds for
combinatorial problems of Choi and Erdős: For an arbitrary additive group G let Pn(G)
denote the set of all subsets S of G with n elements having the property that 0 is not in
S+S. Call a subset A of G admissible with respect to a set S from Pn(G) if the sum of each
pair of distinct elements of A lies outside S. Suppose first that S is a subset of the positive
integers in the interval [2n, 4n). Denote by f(S) the number of elements in a maximum
subset of [n, 2n) admissible with respect to S. Choi showed that f(n) := min{|S|+ f(S) |
S ⊆ [2n, 4n)} = O(n3/4). We improve this bound to O((n lnn)2/3). Turning to a problem
of Erdős, suppose that S is an element of Pn(G), where G is an arbitrary additive group,
and denote by h(S) the maximum cardinality of a subset A of S admissible with respect
to S. We show h(n) := min{h(S) | G a group, S ∈ Pn(G)} = O((lnn)2).

Our approach relies on the existence of large Sidon sets.

1. Introduction. In this paper we are concerned with the following
question of Erdős [2]:

Let a1, . . . , an be distinct real numbers. A subset ai1 , . . . , aik is called
strongly sum-free if aij + ail 6= ar for all 1 ≤ j < l ≤ k, 1 ≤ r ≤ n. Let g(n)
be the maximum cardinality of a strongly sum-free set. How large is g(n)?

The best known bounds so far have been given by Choi [1] who proved
that

g(n) ≥ lnn

and, using sieve methods, showed

g(n) = O(n2/5+ε).

Moreover, Choi observed that in Erdős’s problem it is enough to consider
the case when all a1, . . . , an are non-negative integers. Choi also considered
the following variant of the problem:
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Let us call a set A of non-negative integers admissible with respect to a
set S of non-negative integers if the sum of each pair of distinct elements of
A lies outside S. Let n ∈ N, and suppose that S is a subset of the interval
[2n, 4n). Denote by f(S) the number of elements in a maximum subset of
[n, 2n) admissible with respect to S, and define f(n) by

f(n) := min{|S|+ f(S) | S ⊆ [2n, 4n)}.
How large is f(n)?

It is easy to see that f(n) ≥
√
n: Given |S| <

√
n one can construct an

admissible set A by successively selecting ai ∈ [n, 2n) \Di, where D1 := ∅
and Di+1 := −ai + S. In each step we remove at most |S| elements, so
the procedure can be carried out at least n/|S| >

√
n times yielding an

admissible set of the claimed size.
For an upper bound Choi proved that f(n) = O(n3/4) and conjectured

f(n) = O(n1/2+ε).

In this article we show that f(n) = O(n2/3 ln2/3 n) improving the pre-
vious upper bound given by Choi (Theorem 2). As a consequence, the
function g(n) which appears in Erdős’s problem is bounded from above by

O(n2/5 ln2/5 n) (Corollary 3). The probabilistic proof of this result is based
on a deep theorem of Komlós, Sulyok, and Szemerédi [4] who showed that
every set A ⊆ N contains a Sidon set of size Θ(

√
|A|).

Finally, we study the following more general version of Erdős’s problem
(see [2] and [3]). Let G be an arbitrary additive group with at least n ele-
ments and let Pn(G) denote the set of all subsets S of G satisfying |S| = n
and 0 /∈ S+S. (The latter condition prevents us from taking S as a subgroup
of G.) If the maximum cardinality of a subset A of S ∈ Pn(G) admissible
with respect to S is h(S), how large is

h(n) := min{h(S) | G a group, S ∈ Pn(G)}?
It is shown in [5] that h(n) ≥ 3 for abelian groups. We estimate h(n) from
above by showing that h(n) = O(ln2 n).

Notations. As we consider only intervals of positive integers we abbre-
viate [a, b] ∩ N, (a, b] ∩ N, and [a, b) ∩ N (for positive numbers a and b) by
[a, b], (a, b], and [a, b). If z is an integer and S, T are sets of integers we
define:

• z + S := {z + s | s ∈ S},
• z − S := {z − s | s ∈ S},
• z · S := {z · s | s ∈ S},
• S + T := {s+ t | s ∈ S, t ∈ T},
• S +̇ T := {s+ t | s ∈ S, t ∈ T, s 6= t}.
In our approach Sidon sets play a key role.
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A Sidon set is a set of integers with the property that all pairwise sums
of its elements are distinct. For us the crucial property of a Sidon set S is

(1) |S +̇ S| =
(
|S|
2

)
.

By c, c′, c1, c2 we denote absolute constants, which depend neither on
the size of the group G, nor on the choice of its subset S.

2. Strongly sum-free sets in N. Komlós, Sulyok, and Szemerédi
proved the following remarkable theorem generalizing the celebrated Erdős–
Turán theorem that the size of a Sidon set in [1, n] is Θ(

√
n).

Lemma 1 (Komlós, Sulyok and Szemerédi). There is an absolute constant
c > 0, such that each finite set A of positive integers contains a Sidon set
with at least c · |A|1/2 elements.

Theorem 2. f(n) = O(n2/3 ln2/3 n).

P r o o f. Choose a random subset S ⊆ [2n, 4n) by picking each element
independently with probability p = ((ln2 n)/n)1/3. Let

r := d2(n lnn)1/3e
and define

Sr := {R ⊆ [n, 2n) | R a Sidon set, |R| = r}.
For every R ∈ Sr we consider the indicator random variable

XR :=

{
1 if (R +̇R) ∩ S = ∅,
0 otherwise.

Then the random variable X :=
∑

R∈Sr XR counts the number of Sidon sets

R ⊆ [n, 2n) with |R| = r and (R +̇R) ∩ S = ∅. We have

E(X) =
∑
R∈Sr

E(XR) =
∑
R∈Sr

P((R +̇R) ∩ S = ∅)

=
∑
R∈Sr

P(a+ b /∈ S for all a, b ∈ R where a 6= b).

As R is a Sidon set, all of the sums a + b are distinct. Since due to (1)

for each R we have |R +̇ R| =
( |R|

2

)
= (r2 − r)/2 independent events, the

probability that none of the elements of R +̇R belongs to the random set S
is equal to (1− p)r(r−1)/2. This yields

E(X) =
∑
R∈Sr

(1− p)(r
2−r)/2 ≤

(
n

r

)
(1− p)(r

2−r)/2

≤
(
en

r

)r

[(1− p)1/p](r
2−r)p/2
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≤
(

en

re(rp−p)/2

)r

≤
(

en

rerp/2

)r

≤ en

2(n lnn)1/3n
.

Since the above expression can be made arbitrarily small by choosing n large
enough,

P(|S| ≥ 4(n lnn)2/3) + P(X ≥ 1) ≤ 1/2 + E(X) < 1.

Hence there exists S ⊆ [2n, 4n) of size O(n2/3 ln2/3 n) such that every Sidon
set R of size at least r satisfies (R +̇R) ∩ S 6= ∅.

Let A be a (maximum) subset of [n, 2n) with (A +̇ A) ∩ S = ∅. From
Lemma 1 we know that A contains a Sidon set R with cardinality c ·

√
|A|.

Obviously, (R +̇R) ∩ S = ∅ and thus

|A| = 1

c2
|R| < 1

c2
r2 = O(n2/3 ln2/3 n).

We conclude that f(n) ≤ |S|+ |A| = O(n2/3 ln2/3 n).

Corollary 3. g(n) = O(n2/5 ln2/5 n).

P r o o f. Let m := bn3/5c. From Theorem 2 we know that there ex-
ists S′ ⊆ [2m, 4m) of size at most c1(m lnm)2/3 such that any subset
A′ ⊆ [m, 2m) admissible with respect to S′ has no more than c2(m lnm)2/3

elements. Obviously, for any k ∈ N the set 2k−1 · S′ has the property that
no subset of 2k−1 · [m, 2m) consisting of more than c2(m lnm)2/3 elements
is admissible with respect to S′.

Now choose

k :=
n− |S′|
m

and define

S :=
( k⋃

i=1

2i−1 · [m, 2m)
)
∪ 2k−1 · S′.

We have
|S| = k ·m+ |S′| = n.

Let A ⊆ S be a set of maximum cardinality admissible with respect to S.
Clearly, 2k−1 ·S′ ⊆ A. Further, A contains at most 2 elements from each set
2i−1 · [m, 2m), i ∈ {1, . . . , k − 1}, and at most c2(m lnm)2/3 elements from

2k−1 · [m, 2m). Thus |A|≤2(k−1)+(c1 + c2)(m lnm)2/3 =O(n2/5 ln2/5 n).

3. Strongly sum-free sets in Zn

Theorem 4. h(n) = O(ln2 n).

P r o o f. We shall show a slightly stronger statement, proving that there
exists S ∈ Pn(Z2n+1) such that each A ⊆ Z2n+1 admissible with respect
to S has no more than O(ln2 n) elements.
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Choose a random subset T ⊆ [1, n] by selecting each element with prob-
ability p = 1/2. Set

S := T ∪ {[n+ 1, 2n] \ (2n+ 1− T )}.
Clearly, 0 /∈ S + S and |S| = |T |+ (n− |T |) = n.

Let X1
r , X2

r , X3
r , and X4

r be random variables counting the number of
Sidon sets R of size r in [1, n/2], (n/2, n], (n, 3n/2] and (3n/2, 2n] respec-
tively, where R satisfies (R +̇R) ∩ S = ∅. (Note that any such R is a Sidon
set in Z2n+1 if and only if it is a Sidon set in N.)

As in the proof of Theorem 2 we estimate

E(Xi
r) ≤

(
n/2

r

)
(1− p)(

r
2) ≤

(
en

2re(r−1)/4

)r

, i ∈ {1, 3},

and

E(Xi
r) ≤

(
n/2

r

)
p(

r
2) ≤

(
en

2re(r−1)/4

)r

, i ∈ {2, 4}.

Choosing

r := 4 ln(en)

we get

E(Xi
r) ≤ e1/4

8 ln(en)
<

1

4

and hence by Markov’s inequality

P(X1
r ≥ 1) + P(X2

r ≥ 1) + P(X3
r ≥ 1) + P(X4

r ≥ 1) < 1.

Thus there exists S ∈ Pn(Z2n+1) such that every Sidon set R in [1, n/2],
(n/2, n], (n, 3n/2] or (3n/2, 2n] of size at least 4 ln(en) has the property
(R +̇R) ∩ S 6= ∅.

Let A be a subset of [1, 2n] admissible with respect to S and let

A1 := A ∩ [1, n/2], A2 := A ∩ (n/2, n],

A3 := A ∩ (n, 3n/2], A4 := A ∩ (3n/2, 2n].

The pigeon-hole principle gives

|Aj | ≥ |A|/4

for some j ∈ {1, 2, 3, 4}. From Lemma 1, c
√
|Aj | elements in Aj form a

Sidon set, and we conclude that |A| ≤ 4 · |Aj | ≤ (4/c2) · r2 = O(ln2 n).
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