PROBABILISTIC CONSTRUCTION OF SMALL STRONGLY SUM-FREE SETS VIA LARGE SIDON SETS

ANDREAS B ALTZ (KIEL), TOMASZ SCHOEN (KIEL and POZNAŃ)

 and ANAND SRIVASTAV (KIEL)
Abstract

We give simple randomized algorithms leading to new upper bounds for combinatorial problems of Choi and Erdős: For an arbitrary additive group G let $\mathcal{P}_{n}(G)$ denote the set of all subsets S of G with n elements having the property that 0 is not in $S+S$. Call a subset A of G admissible with respect to a set S from $\mathcal{P}_{n}(G)$ if the sum of each pair of distinct elements of A lies outside S. Suppose first that S is a subset of the positive integers in the interval $[2 n, 4 n)$. Denote by $f(S)$ the number of elements in a maximum subset of $[n, 2 n)$ admissible with respect to S. Choi showed that $f(n):=\min \{|S|+f(S) \mid$ $S \subseteq[2 n, 4 n)\}=\mathcal{O}\left(n^{3 / 4}\right)$. We improve this bound to $\mathcal{O}\left((n \ln n)^{2 / 3}\right)$. Turning to a problem of Erdős, suppose that S is an element of $\mathcal{P}_{n}(G)$, where G is an arbitrary additive group, and denote by $h(S)$ the maximum cardinality of a subset A of S admissible with respect to S. We show $h(n):=\min \left\{h(S) \mid G\right.$ a group, $\left.S \in \mathcal{P}_{n}(G)\right\}=\mathcal{O}\left((\ln n)^{2}\right)$.

Our approach relies on the existence of large Sidon sets.

1. Introduction. In this paper we are concerned with the following question of Erdős [2]:

Let a_{1}, \ldots, a_{n} be distinct real numbers. A subset $a_{i_{1}}, \ldots, a_{i_{k}}$ is called strongly sum-free if $a_{i_{j}}+a_{i_{l}} \neq a_{r}$ for all $1 \leq j<l \leq k, 1 \leq r \leq n$. Let $g(n)$ be the maximum cardinality of a strongly sum-free set. How large is $g(n)$?

The best known bounds so far have been given by Choi [1] who proved that

$$
g(n) \geq \ln n
$$

and, using sieve methods, showed

$$
g(n)=\mathcal{O}\left(n^{2 / 5+\varepsilon}\right)
$$

Moreover, Choi observed that in Erdős's problem it is enough to consider the case when all a_{1}, \ldots, a_{n} are non-negative integers. Choi also considered the following variant of the problem:

[^0]Let us call a set A of non-negative integers admissible with respect to a set S of non-negative integers if the sum of each pair of distinct elements of A lies outside S. Let $n \in \mathbb{N}$, and suppose that S is a subset of the interval [$2 n, 4 n$). Denote by $f(S)$ the number of elements in a maximum subset of $[n, 2 n)$ admissible with respect to S, and define $f(n)$ by

$$
f(n):=\min \{|S|+f(S) \mid S \subseteq[2 n, 4 n)\}
$$

How large is $f(n)$?
It is easy to see that $f(n) \geq \sqrt{n}$: Given $|S|<\sqrt{n}$ one can construct an admissible set A by successively selecting $a_{i} \in[n, 2 n) \backslash D_{i}$, where $D_{1}:=\emptyset$ and $D_{i+1}:=-a_{i}+S$. In each step we remove at most $|S|$ elements, so the procedure can be carried out at least $n /|S|>\sqrt{n}$ times yielding an admissible set of the claimed size.

For an upper bound Choi proved that $f(n)=\mathcal{O}\left(n^{3 / 4}\right)$ and conjectured $f(n)=\mathcal{O}\left(n^{1 / 2+\varepsilon}\right)$.

In this article we show that $f(n)=\mathcal{O}\left(n^{2 / 3} \ln ^{2 / 3} n\right)$ improving the previous upper bound given by Choi (Theorem 2). As a consequence, the function $g(n)$ which appears in Erdős's problem is bounded from above by $\mathcal{O}\left(n^{2 / 5} \ln ^{2 / 5} n\right)$ (Corollary 3). The probabilistic proof of this result is based on a deep theorem of Komlós, Sulyok, and Szemerédi [4] who showed that every set $A \subseteq \mathbb{N}$ contains a Sidon set of size $\Theta(\sqrt{|A|})$.

Finally, we study the following more general version of Erdős's problem (see [2] and [3]). Let G be an arbitrary additive group with at least n elements and let $\mathcal{P}_{n}(G)$ denote the set of all subsets S of G satisfying $|S|=n$ and $0 \notin S+S$. (The latter condition prevents us from taking S as a subgroup of G.) If the maximum cardinality of a subset A of $S \in \mathcal{P}_{n}(G)$ admissible with respect to S is $h(S)$, how large is

$$
h(n):=\min \left\{h(S) \mid G \text { a group, } S \in \mathcal{P}_{n}(G)\right\} ?
$$

It is shown in [5] that $h(n) \geq 3$ for abelian groups. We estimate $h(n)$ from above by showing that $h(n)=\mathcal{O}\left(\ln ^{2} n\right)$.

Notations. As we consider only intervals of positive integers we abbreviate $[a, b] \cap \mathbb{N},(a, b] \cap \mathbb{N}$, and $[a, b) \cap \mathbb{N}$ (for positive numbers a and b) by $[a, b],(a, b]$, and $[a, b)$. If z is an integer and S, T are sets of integers we define:

- $z+S:=\{z+s \mid s \in S\}$,
- $z-S:=\{z-s \mid s \in S\}$,
- $z \cdot S:=\{z \cdot s \mid s \in S\}$,
- $S+T:=\{s+t \mid s \in S, t \in T\}$,
- $S \dot{+} T:=\{s+t \mid s \in S, t \in T, s \neq t\}$.

In our approach Sidon sets play a key role.

A Sidon set is a set of integers with the property that all pairwise sums of its elements are distinct. For us the crucial property of a Sidon set S is

$$
\begin{equation*}
|S \dot{+} S|=\binom{|S|}{2} \tag{1}
\end{equation*}
$$

By $c, c^{\prime}, c_{1}, c_{2}$ we denote absolute constants, which depend neither on the size of the group G, nor on the choice of its subset S.
2. Strongly sum-free sets in \mathbb{N}. Komlós, Sulyok, and Szemerédi proved the following remarkable theorem generalizing the celebrated ErdősTurán theorem that the size of a Sidon set in $[1, n]$ is $\Theta(\sqrt{n})$.

Lemma 1 (Komlós, Sulyok and Szemerédi). There is an absolute constant $c>0$, such that each finite set A of positive integers contains a Sidon set with at least $c \cdot|A|^{1 / 2}$ elements.

Theorem 2. $f(n)=\mathcal{O}\left(n^{2 / 3} \ln ^{2 / 3} n\right)$.
Proof. Choose a random subset $S \subseteq[2 n, 4 n)$ by picking each element independently with probability $p=\left(\left(\ln ^{2} n\right) / n\right)^{1 / 3}$. Let

$$
r:=\left\lceil 2(n \ln n)^{1 / 3}\right\rceil
$$

and define

$$
\mathcal{S}_{r}:=\{R \subseteq[n, 2 n) \mid R \text { a Sidon set, }|R|=r\}
$$

For every $R \in \mathcal{S}_{r}$ we consider the indicator random variable

$$
X_{R}:= \begin{cases}1 & \text { if }(R \dot{+} R) \cap S=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

Then the random variable $X:=\sum_{R \in \mathcal{S}_{r}} X_{R}$ counts the number of Sidon sets $R \subseteq[n, 2 n)$ with $|R|=r$ and $(R \dot{+} R) \cap S=\emptyset$. We have

$$
\begin{aligned}
\mathbb{E}(X) & =\sum_{R \in \mathcal{S}_{r}} \mathbb{E}\left(X_{R}\right)=\sum_{R \in \mathcal{S}_{r}} \mathbb{P}((R \dot{+} R) \cap S=\emptyset) \\
& =\sum_{R \in \mathcal{S}_{r}} \mathbb{P}(a+b \notin S \text { for all } a, b \in R \text { where } a \neq b) .
\end{aligned}
$$

As R is a Sidon set, all of the sums $a+b$ are distinct. Since due to (1) for each R we have $|R \dot{+} R|=\binom{|R|}{2}=\left(r^{2}-r\right) / 2$ independent events, the probability that none of the elements of $R \dot{+} R$ belongs to the random set S is equal to $(1-p)^{r(r-1) / 2}$. This yields

$$
\begin{aligned}
\mathbb{E}(X) & =\sum_{R \in \mathcal{S}_{r}}(1-p)^{\left(r^{2}-r\right) / 2} \leq\binom{ n}{r}(1-p)^{\left(r^{2}-r\right) / 2} \\
& \leq\left(\frac{e n}{r}\right)^{r}\left[(1-p)^{1 / p}\right]^{\left(r^{2}-r\right) p / 2}
\end{aligned}
$$

$$
\leq\left(\frac{e n}{r e^{(r p-p) / 2}}\right)^{r} \leq\left(\frac{e n}{r e^{r p / 2}}\right)^{r} \leq \frac{e n}{2(n \ln n)^{1 / 3} n} .
$$

Since the above expression can be made arbitrarily small by choosing n large enough,

$$
\mathbb{P}\left(|S| \geq 4(n \ln n)^{2 / 3}\right)+\mathbb{P}(X \geq 1) \leq 1 / 2+\mathbb{E}(X)<1 .
$$

Hence there exists $S \subseteq[2 n, 4 n)$ of size $\mathcal{O}\left(n^{2 / 3} \ln ^{2 / 3} n\right)$ such that every Sidon set R of size at least r satisfies $(R \dot{+} R) \cap S \neq \emptyset$.

Let A be a (maximum) subset of $[n, 2 n)$ with $(A \dot{+} A) \cap S=\emptyset$. From Lemma 1 we know that A contains a Sidon set R with cardinality $c \cdot \sqrt{|A|}$. Obviously, $(R+R) \cap S=\emptyset$ and thus

$$
|A|=\frac{1}{c^{2}}|R|<\frac{1}{c^{2}} r^{2}=\mathcal{O}\left(n^{2 / 3} \ln ^{2 / 3} n\right) .
$$

We conclude that $f(n) \leq|S|+|A|=\mathcal{O}\left(n^{2 / 3} \ln ^{2 / 3} n\right)$.
Corollary 3. $g(n)=\mathcal{O}\left(n^{2 / 5} \ln ^{2 / 5} n\right)$.
Proof. Let $m:=\left\lfloor n^{3 / 5}\right\rfloor$. From Theorem 2 we know that there exists $S^{\prime} \subseteq[2 m, 4 m)$ of size at most $c_{1}(m \ln m)^{2 / 3}$ such that any subset $A^{\prime} \subseteq[m, 2 m)$ admissible with respect to S^{\prime} has no more than $c_{2}(m \ln m)^{2 / 3}$ elements. Obviously, for any $k \in \mathbb{N}$ the set $2^{k-1} \cdot S^{\prime}$ has the property that no subset of $2^{k-1} \cdot[m, 2 m)$ consisting of more than $c_{2}(m \ln m)^{2 / 3}$ elements is admissible with respect to S^{\prime}.

Now choose

$$
k:=\frac{n-\left|S^{\prime}\right|}{m}
$$

and define

$$
S:=\left(\bigcup_{i=1}^{k} 2^{i-1} \cdot[m, 2 m)\right) \cup 2^{k-1} \cdot S^{\prime} .
$$

We have

$$
|S|=k \cdot m+\left|S^{\prime}\right|=n .
$$

Let $A \subseteq S$ be a set of maximum cardinality admissible with respect to S. Clearly, $2^{k-1} \cdot S^{\prime} \subseteq A$. Further, A contains at most 2 elements from each set $2^{i-1} \cdot[m, 2 m), i \in\{1, \ldots, k-1\}$, and at most $c_{2}(m \ln m)^{2 / 3}$ elements from $2^{k-1} \cdot[m, 2 m)$. Thus $|A| \leq 2(k-1)+\left(c_{1}+c_{2}\right)(m \ln m)^{2 / 3}=\mathcal{O}\left(n^{2 / 5} \ln ^{2 / 5} n\right)$.

3. Strongly sum-free sets in \mathbb{Z}_{n}

Theorem 4. $h(n)=\mathcal{O}\left(\ln ^{2} n\right)$.
Proof. We shall show a slightly stronger statement, proving that there exists $S \in \mathcal{P}_{n}\left(\mathbb{Z}_{2 n+1}\right)$ such that each $A \subseteq \mathbb{Z}_{2 n+1}$ admissible with respect to S has no more than $\mathcal{O}\left(\ln ^{2} n\right)$ elements.

Choose a random subset $T \subseteq[1, n]$ by selecting each element with probability $p=1 / 2$. Set

$$
S:=T \cup\{[n+1,2 n] \backslash(2 n+1-T)\}
$$

Clearly, $0 \notin S+S$ and $|S|=|T|+(n-|T|)=n$.
Let $X_{r}^{1}, X_{r}^{2}, X_{r}^{3}$, and X_{r}^{4} be random variables counting the number of Sidon sets R of size r in $[1, n / 2],(n / 2, n],(n, 3 n / 2]$ and $(3 n / 2,2 n]$ respectively, where R satisfies $(R \dot{+} R) \cap S=\emptyset$. (Note that any such R is a Sidon set in $\mathbb{Z}_{2 n+1}$ if and only if it is a Sidon set in \mathbb{N}.)

As in the proof of Theorem 2 we estimate

$$
\mathbb{E}\left(X_{r}^{i}\right) \leq\binom{ n / 2}{r}(1-p)^{\binom{r}{2}} \leq\left(\frac{e n}{2 r e^{(r-1) / 4}}\right)^{r}, \quad i \in\{1,3\}
$$

and

$$
\mathbb{E}\left(X_{r}^{i}\right) \leq\binom{ n / 2}{r} p^{\binom{r}{2}} \leq\left(\frac{e n}{2 r e^{(r-1) / 4}}\right)^{r}, \quad i \in\{2,4\}
$$

Choosing

$$
r:=4 \ln (e n)
$$

we get

$$
\mathbb{E}\left(X_{r}^{i}\right) \leq \frac{e^{1 / 4}}{8 \ln (e n)}<\frac{1}{4}
$$

and hence by Markov's inequality

$$
\mathbb{P}\left(X_{r}^{1} \geq 1\right)+\mathbb{P}\left(X_{r}^{2} \geq 1\right)+\mathbb{P}\left(X_{r}^{3} \geq 1\right)+\mathbb{P}\left(X_{r}^{4} \geq 1\right)<1
$$

Thus there exists $S \in \mathcal{P}_{n}\left(\mathbb{Z}_{2 n+1}\right)$ such that every Sidon set R in [1, $\left.n / 2\right]$, $(n / 2, n],(n, 3 n / 2]$ or $(3 n / 2,2 n]$ of size at least $4 \ln (e n)$ has the property $(R \dot{+} R) \cap S \neq \emptyset$.

Let A be a subset of $[1,2 n]$ admissible with respect to S and let

$$
\begin{aligned}
A_{1}:=A \cap[1, n / 2], \quad A_{2}:=A \cap(n / 2, n], \\
A_{3}:=A \cap(n, 3 n / 2], \quad A_{4}:=A \cap(3 n / 2,2 n] .
\end{aligned}
$$

The pigeon-hole principle gives

$$
\left|A_{j}\right| \geq|A| / 4
$$

for some $j \in\{1,2,3,4\}$. From Lemma $1, c \sqrt{\left|A_{j}\right|}$ elements in A_{j} form a Sidon set, and we conclude that $|A| \leq 4 \cdot\left|A_{j}\right| \leq\left(4 / c^{2}\right) \cdot r^{2}=\mathcal{O}\left(\ln ^{2} n\right)$.

REFERENCES

[1] S. L. G. Choi, On a combinatorial problem in number theory, Proc. London Math. Soc. (3) 23 (1971), 629-642.
[2] P. Erdős, Extremal problems in number theory, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, RI, 1965, 181-189.
[3] R. F. Guy, Unsolved Problems in Number Theory, Springer, New York, 1994, Problem C14, 128-129.
[4] J. Komlós, M. Sulyok and E. Szemerédi, Linear problems in combinatorial number theory, Acta Math. Acad. Sci. Hungar. 26 (1975), 113-121.
[5] T. Łuczak and T. Schoen, On strongly sum-free subsets of abelian groups, Colloq. Math. 71 (1996), 149-151.

Mathematisches Seminar
Christian-Albrechts-Universität zu Kiel
Ludewig-Meyn-Str. 4
D-24098 Kiel, Germany
E-mail: aba@numerik.uni-kiel.de tos@numerik.uni-kiel.de asr@numerik.uni-kiel.de

[^0]: 2000 Mathematics Subject Classification: 05D05.
 The first author is supported by the graduate school "Effiziente Algorithmen und Mehrskalenmethoden", Deutsche Forschungsgesellschaft.

