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Abstract. We give simple randomized algorithms leading to new upper bounds for
combinatorial problems of Choi and Erd8s: For an arbitrary additive group G let Ppn(G)
denote the set of all subsets S of G with n elements having the property that 0 is not in
S+S. Call asubset A of G admissible with respect to a set S from Py, (G) if the sum of each
pair of distinct elements of A lies outside S. Suppose first that S is a subset of the positive
integers in the interval [2n,4n). Denote by f(S) the number of elements in a maximum
subset of [n,2n) admissible with respect to S. Choi showed that f(n) := min{|S|+ f(S) |
S C[2n,4n)} = O(n3/4). We improve this bound to O((n1n n)2/3). Turning to a problem
of Erdds, suppose that S is an element of P, (G), where G is an arbitrary additive group,
and denote by h(S) the maximum cardinality of a subset A of S admissible with respect
to S. We show h(n) := min{h(S) | G a group, S € Pn(G)} = O((Inn)?).

Our approach relies on the existence of large Sidon sets.

1. Introduction. In this paper we are concerned with the following
question of Erdés [2]:

Let a1,...,ay, be distinct real numbers. A subset a;,,...,a;, is called
strongly sum-free if a;; + a;, # a, forall 1 <j <1<k, 1 <r <n. Let g(n)
be the maximum cardinality of a strongly sum-free set. How large is g(n)?

The best known bounds so far have been given by Choi [1] who proved
that

g(n) >1Inn
and, using sieve methods, showed
g(n) = O(*/>+°),

Moreover, Choi observed that in Erd6s’s problem it is enough to consider
the case when all a1, ..., a, are non-negative integers. Choi also considered
the following variant of the problem:
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Let us call a set A of non-negative integers admissible with respect to a
set S of non-negative integers if the sum of each pair of distinct elements of
A lies outside S. Let n € N, and suppose that S is a subset of the interval
[2n,4n). Denote by f(S) the number of elements in a maximum subset of
[n,2n) admissible with respect to S, and define f(n) by

f(n) == min{|S|+ f(S) | S C [2n,4n)}.

How large is f(n)?

It is easy to see that f(n) > /n: Given |S| < y/n one can construct an
admissible set A by successively selecting a; € [n,2n) \ D;, where D; := ()
and D;y; := —a; + S. In each step we remove at most |S| elements, so
the procedure can be carried out at least n/|S| > /n times yielding an
admissible set of the claimed size.

For an upper bound Choi proved that f(n) = O(n3/*) and conjectured
f(n) = O(n'/?+e).

In this article we show that f(n) = O(n2/31n*/®n) improving the pre-
vious upper bound given by Choi (Theorem 2). As a consequence, the
function g(n) which appears in Erdds’s problem is bounded from above by
O(n%?1n*/® n) (Corollary 3). The probabilistic proof of this result is based
on a deep theorem of Komlds, Sulyok, and Szemerédi [4] who showed that
every set A C N contains a Sidon set of size O(1/|A]).

Finally, we study the following more general version of Erdds’s problem
(see [2] and [3]). Let G be an arbitrary additive group with at least n ele-
ments and let P,,(G) denote the set of all subsets S of G satisfying |S| = n
and 0 ¢ S+5. (The latter condition prevents us from taking S as a subgroup
of G.) If the maximum cardinality of a subset A of S € P,,(G) admissible
with respect to S is h(S), how large is

h(n) := min{h(S) | G a group, S € P,(G)}?

It is shown in [5] that h(n) > 3 for abelian groups. We estimate h(n) from
above by showing that h(n) = O(In’n).

NOTATIONS. As we consider only intervals of positive integers we abbre-
viate [a,b] NN, (a,b] NN, and [a,b) NN (for positive numbers a and b) by
[a,b], (a,b], and [a,b). If z is an integer and S, T are sets of integers we
define:

o2+ S:={z+s|s€eS},

o z:—S:={z—s|seS}

ez -S:={z-s|s€eS},

e S+T:={s+t|seS, teT},

e S+T:={s+t|seS, teT, s#t}.

In our approach Sidon sets play a key role.
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A Sidon set is a set of integers with the property that all pairwise sums
of its elements are distinct. For us the crucial property of a Sidon set S is

(1) 1S+ 8| = (’g’).

By ¢, ¢, ¢1, ca we denote absolute constants, which depend neither on
the size of the group G, nor on the choice of its subset S.

2. Strongly sum-free sets in N. Komlés, Sulyok, and Szemerédi
proved the following remarkable theorem generalizing the celebrated Erdos—
Turdn theorem that the size of a Sidon set in [1,n] is O(y/n).

LEMMA 1 (Komlds, Sulyok and Szemerédi). There is an absolute constant
c > 0, such that each finite set A of positive integers contains a Sidon set
with at least ¢ - |A|'/? elements.

THEOREM 2. f(n) = O(n2/31n?/3 n).

Proof. Choose a random subset S C [2n,4n) by picking each element
independently with probability p = ((In?n)/n)'/3. Let

= [2(nInn)'/3]
and define
Sy :={R C[n,2n) | R a Sidon set, |R| =r}.
For every R € S, we consider the indicator random variable
Xx :_{1 if (R+R)NS =0,
0 otherwise.

Then the random variable X := s Xp counts the number of Sidon sets
R C [n,2n) with |R| =r and (R+ R)N S = (). We have

E(X)= Y E(Xg)= Y P(R+R)NS=0)

RES; RES;
= Z P(a+0b ¢ S for all a,b € R where a # b).
RGST

As R is a Sidon set, all of the sums a + b are distinct. Since due to (1)

for each R we have |R + R| = (lgl) = (r? — r)/2 independent events, the
probability that none of the elements of R+ R belongs to the random set S
is equal to (1 — p)"("=1/2, This yields

E(X)= 3 (1-p)" 2 < <Z> (1= p)r-n)2

ReS,

<ern>r[(1 — p)/p|r=rIp/2

IN
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- en " - en \ - en
= \relrp=p)/2 )] = \yerp/2 ] — 2(nlnn)l/3n’

Since the above expression can be made arbitrarily small by choosing n large
enough,

P(|S| > 4(nlnn)?3) +P(X > 1) <1/2+E(X) < 1.

Hence there exists S C [2n, 4n) of size O(n2/3 In?® n) such that every Sidon
set R of size at least r satisfies (R+ R) NS # ().

Let A be a (maximum) subset of [n,2n) with (A + A) NS = 0. From
Lemma 1 we know that A contains a Sidon set R with cardinality c- /] A].
Obviously, (R+ R) NS = () and thus

1 1
|A| = C—2|R] < 6—27“2 = O(n*?3 In%/3 n).

We conclude that f(n) < |S| + |A| = O(n2/3 1?3 n). =
COROLLARY 3. g(n) = O(n?>1n*° n).

Proof. Let m := |[n%°|. From Theorem 2 we know that there ex-
ists S’ C [2m,4m) of size at most c;(mInm)?/3 such that any subset
A’ C [m,2m) admissible with respect to S’ has no more than cy(m Inm)?/3
elements. Obviously, for any k € N the set 2=1 . S’ has the property that
no subset of 271 - [m, 2m) consisting of more than cy(m Inm)?/3 elements
is admissible with respect to S”.

Now choose
n— |5

m

k=

and define X

S = (U 2071 [m, 2m)) u2k=t. g,
i=1
We have
IS|=k-m+|S'| =n.

Let A C S be a set of maximum cardinality admissible with respect to .S.
Clearly, 28=1.8" C A. Further, A contains at most 2 elements from each set
201 . [m,2m), i € {1,...,k — 1}, and at most cz(mInm)?/3 elements from
2k=1.[m, 2m). Thus |A| <2(k —1)+(c1 4 c2)(mInm)*3 =005 n*°n). =

3. Strongly sum-free sets in Z,
THEOREM 4. h(n) = O(In®n).
Proof. We shall show a slightly stronger statement, proving that there

exists S € P,(Zant1) such that each A C Zg,11 admissible with respect
to S has no more than O(In n) elements.
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Choose a random subset T' C [1, n] by selecting each element with prob-
ability p = 1/2. Set

S:=TuU{n+1,2n]\(2n+1-T)}.

Clearly, 0 ¢ S+ S and |S| = |T| + (n —|T|) = n.

Let X}, X2, X3 and X? be random variables counting the number of
Sidon sets R of size r in [1,n/2], (n/2,n], (n,3n/2] and (3n/2,2n] respec-
tively, where R satisfies (R + R) NS = . (Note that any such R is a Sidon
set in Zsay,+1 if and only if it is a Sidon set in N.)

As in the proof of Theorem 2 we estimate

e < (") a-n0 < (5n) s e

and /
i n/2 () en " )
B(X,) < < r >p U= <2re(r—1)/4> o ie{2,4}).
Choosing
r:=4In(en)
we get
. 61/4 1
E(X;) < -
(Xr) < 81n(en) <1

and hence by Markov’s inequality
P(X; > 1) +P(X7> 1) +P(X; > 1) +P(X; >1) < L.
Thus there exists S € P, (Zan+1) such that every Sidon set R in [1,n/2],
(n/2,n], (n,3n/2] or (3n/2,2n] of size at least 4In(en) has the property
(R+R)NS #0.
Let A be a subset of [1,2n] admissible with respect to S and let
A= AN[1,n/2], Ay:=AnN(n/2,n|,
As :=AN(n,3n/2], Ay:=AN(3n/2,2n].
The pigeon-hole principle gives
4] > |Al/4
for some j € {1,2,3,4}. From Lemma 1, ¢\/|A4;| elements in A; form a
Sidon set, and we conclude that [A| < 4-|A4;| < (4/c¢?) -r? = O(In®n). =
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