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SOME SPECTRAL RESULTS ON L2(Hn) RELATED TO

THE ACTION OF U(p, q)

BY

T. GODOY AND L. S AA L (CÓRDOBA)

Abstract. Let Hn be the (2n + 1)-dimensional Heisenberg group, let p, q be two
non-negative integers satisfying p+ q = n and let G be the semidirect product of U(p, q)
and Hn. So L

2(Hn) has a natural structure of G-module. We obtain a decomposition of
L2(Hn) as a direct integral of irreducible representations of G. On the other hand, we
give an explicit description of the joint spectrum σ(L, iT ) in L2(Hn) where

L =

p∑

j=1

(X2j + Y
2
j )−

n∑

j=p+1

(X2j + Y
2
j ),

and where {X1, Y1, . . . ,Xn, Yn, T} denotes the standard basis of the Lie algebra of Hn.
Finally, we obtain a spectral characterization of the bounded operators on L2(Hn) that
commute with the action of G.

1. Introduction. Let p, q a pair of non-negative integers such that
p+ q = n. Consider the Heisenberg group Hn = Cn × R with group law
(z, t)(z′, t′) =

(
z + z′, t + t′ − 1

2
ImB(z, z′)

)
where B(z, w) =

∑p
j=1 zjwj −∑n

j=p+1 zjwj . For x = (x1, . . . , xn) ∈ Rn, we write x = (x′, x′′) with

x′ ∈ Rp, x′′ ∈ Rq. So, R2n can be identified with Cn via the map

Ψ(x′, x′′, y′, y′′) = (x′ + iy′, x′′ − iy′′), x′, y′ ∈ Rp, x′′, y′′ ∈ Rq.

This map identifies the form − ImB(z, w) with the standard symplectic form
on R2(p+q). Moreover, (x, y, t) 7→ (Ψ(x, y), t) provides a global coordinate
system on Hn and the vector fields

Xj = −1

2
yj

∂

∂t
+

∂

∂xj
, Yj =

1

2
xj

∂

∂t
+

∂

∂yj
, j = 1, . . . , n, and T =

∂

∂t

satisfy [Xj , Yj ] = T , [Xj , T ] = [Yj , T ] = 0, 1 ≤ j ≤ n. Thus Hn can be
viewed as the usual Heisenberg group Rn × Rn × R via the isomorphism
(x, y, t) 7→ (Ψ(x, y), t). From now on, we will use freely this identification.
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We note that U(p, q) acts by automorphisms on Hn via the action

(1.1) g · (z, t) = (gz, t), g ∈ U(p, q), (z, t) ∈ Hn.

Observe that the above group law is not the usual one, but it is adapted to
the action of U(p, q), q = n− p.

In [St-2], R. Strichartz proposed to define harmonic analysis on Hn to
be the joint spectral theory associated with the differential operators L0

and iT where L0 =
∑n

j=1(X
2
j +Y 2

j ). The relevance of the operators L0 and
iT is due to the fact that they are the generators of the algebra of the left
invariant differential operators which are invariant under the natural action
of U(n) on Hn.

Let L =
∑p

j=1(X
2
j + Y 2

j )−
∑n

j=p+1(X
2
j + Y 2

j ). Since L and iT generate
the algebra of left invariant and U(p, q)-invariant differential operators, it
is a natural question to look for a spectral theory on L2(Hn) related to the
operators L and iT . In [G-S] we prove that there exist tempered U(p, q)-
invariant distributions Sλ,k, λ ∈ R− {0}, k ∈ Z, satisfying

(1.2) LSλ,k = −|λ|(2k + p− q)Sλ,k, iTSλ,k = λSλ,k

and such that for f ∈ S(Rn),

f =
∑

k∈Z

∞\
−∞

f ∗ Sλ,k|λ|n dλ.

Moreover, the distributionsSλ,k are explicitly computed and it is proved that
the solution space in S′(Hn)

U(p,q) of the system (1.2) is one-dimensional (see
also [F-2] and [H-T]).

On the other hand, let G = U(p, q) ⋉Hn be the semidirect product of
U(p, q) with Hn with group law (g, z, t)(g′, z′, t′) = (gg′, (z, t) · (gz′, t′)) for
g, g′∈U(p, q) and (z, t), (z′, t′) ∈ Hn. Then G acts on Hn by (g, z, t)(z′ , t′) =
(z, t)(gz′, t′). For f : Hn → C and (g, z, t) ∈ G, we set

(1.3) ̺(g, z, t)f(z′, t′) = f((g, z, t)−1(z′, t′)).

Thus ̺ defines a unitary representation of G on L2(Hn) that, restricted to
Hn ⊂ G, agrees with the left regular representation of Hn on L2(Hn).

Our aim in this paper is to give an explicit description of the joint spec-
trum in L2(Hn) of L and iT and to obtain the decomposition of L2(Hn) as
a direct integral of irreducible representations of G. The last question was
solved in [St-2], for p = n, q = 0, using the weight theory for representations
of compact Lie groups. In order to study the general case, we will follow a
different approach, using the results in [G-S] instead of weights. Finally, we
state a spectral characterization of the bounded operators on L2(Hn) that
commute with the action ̺.
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2. Preliminaries. Let us consider, for λ ∈ R − {0}, the Schrödinger
representation of Hn = R2n × R on L2(Rn) defined by

πλ(x, y, t)u(ξ) = exp

[
−i

(
λt+ sign(λ)

√
|λ|〈x, ξ〉+ λ

2
〈x, y〉

)]
u(ξ +

√
|λ| y).

For u, v ∈ L2(Rn), let Eλ(u, v) be the matrix entry associated with πλ

corresponding to the vectors u, v given by Eλ(u, v)(x, y, t) = 〈πλ(x, y, t)u, v〉.
Also, for α = (α1, . . . , αn) ∈ (N ∪ {0})n, let hα be the Hermite function

defined by

hα(ζ) = (2|α|α!
√
π)−n/2e−|ζ|2/2

n∏

j=1

Hαj
(ζj)

with |α| = α1 + . . . + αn, α! = α1! . . . αn! and where

Hk(s) = (−1)kes
2 dk

dsk
(e−s2)

is the kth Hermite polynomial. For (z, t) ∈ Cn×R (see, for example, [F-1]),
we can write Eλ(hα, hα)(z, t) in terms of Laguerre polynomials as

Eλ(hα, hα)(z, t) = e−iλte−|λ||z|2/4
n∏

j=1

L0
αj

(
1

2
|λ||zj |2

)
.

We set ‖α‖ = α1+ . . .+αp−(αp+1+ . . .+αn). Thus {hα} is an orthonormal
basis of L2(Rn) satisfying

(2.1)
LEλ(hα, hα) = −|λ|(2‖α‖ + p− q)Eλ(hα, hα),

iTEλ(hα, hα) = λEλ(hα, hα).

We also set, for f ∈ L1(Hn),

πλ(f) =
\

Hn

f(x, y, t)πλ(x, y, t)
−1 dx dy dt.

Let R∗ = R−{0} and let us denote by HS(L2(Rn)) the space of Hilbert–
Schmidt operators on L2(Rn). Let L2(R∗) be the Hilbert space of functions
Φ : R∗ → HS(L2(Rn)) such that λ 7→ 〈Φ(λ)u, v〉 is measurable for each u, v ∈
L2(Rn) and

T∞
−∞

‖Φ(λ)‖2HS|λ|n dλ = ‖Φ‖ < ∞. The Plancherel Theorem

asserts (see e.g. [T]) that the Fourier transform f 7→ (2π)−(n+1)/2πλ(f),
initially defined, say, in S(Hn), extends to an isometry from L2(Hn) onto
L2(R∗). Moreover, for f ∈ S(Hn) we have the inversion formula

f(x, y, t) =
1

(2π)n+1

∞\
−∞

tr(πλ(f)πλ(x, y, t))|λ|n dλ.
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Since, in this case,
∑

α

T∞
−∞

|f ∗ Eλ(hα, hα)||λ|n dλ < ∞, a computation
shows that the inversion formula reads

(2.2) f(x, y, t) =
1

(2π)n+1

∑

k∈Z

∞\
−∞

∑

‖α‖=k

f ∗ Eλ(hα, hα)|λ|n dλ.

For k ∈ Z, λ ∈ R− {0} let Sλ,k be defined by

〈Sλ,k, f〉 =
1

(2π)n+1

∑

‖α‖=k

〈Eλ(hα, hα), f〉, f ∈ S(Hn).

Then Sλ,k is a well defined element in S′(Hn); moreover, Sλ,k can be ex-
plicitly computed and it is the unique (up to a constant) tempered and
U(p, q)-invariant solution of the system (1.2) (see e.g. [G-S]). Also, (2.2)
gives the decomposition

(2.3) f =
∑

k∈Z

∞\
−∞

f ∗ Sλ,k|λ|n dλ, f ∈ S(Hn).

We will also need to consider, for a fixed λ 6= 0, the quotient group Hn =
Hn/N where N = {0} × (2π/λ)Z. For (x, y, t) ∈ Hn, let [x, y, t] be its
projection on Hn. Note that for µ = λm, m ∈ Z − {0}, πµ induces in a
natural way a unitary representation πµ of Hn with matrix entries Eµ(u, v)
given by Eµ(u, v)([x, y, t]) = Eµ(u, v)(x, y, t).

Moreover, each irreducible unitary representation of Hn is unitarily
equivalent to one and only one of the following representations:

(1) the representations πµ corresponding to µ = λm, m ∈ Z,
(2) the one-dimensional representations σa,b(x, y, t) = ei(ax+by), (a, b) ∈

Rn × Rn.

Now, the Plancherel inversion formula for Hn says that, for f ∈ S(Hn),

(2.4) (2π)n+1f(x, y, t) =
∑

m 6=0

∑

k∈Z

∑

‖α‖=k

f ∗ Eλm(hα, hα)|m|n + Φ̂(−x,−y)

with Φ(a, b) = σa,b(f). Moreover,

(2π)n+1‖f‖2
L2(Hn)

=
∑

m∈Z−{0}

‖πλm(f)‖2HS|m|n +
\

Rn×Rn

|σa,b(f)|2 da db.

The proofs of these facts follow the same lines as those related to Hn

(see e.g. [T]).
For k,m ∈ Z and f ∈ S(Hn), we set

〈Sλm,k, f〉 =
1

(2π)n+1

∑

‖α‖=k

〈Eλm(hα, hα), f〉.

Thus, as in [G-S], Sλm,k ∈ S′(Hn).
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3. Some spectral facts. Let Hn be the reduced Heisenberg group,
associated with a fixed λ, defined as above. Let G = U(p, q) ⋉Hn be the
semidirect product of U(p, q) and Hn, so ̺ projects to a unitary represen-
tation ̺ of G on L2(Hn). Also, L and T can be viewed, in a natural way, as
differential operators on Hn.

Let Pk : L2(Rn) → L2(Rn), k ∈ Z, be the orthogonal projection onto
the closed subspace of L2(Rn) spanned by {hα}‖α‖=k. For each k ∈ Z,

the Plancherel theorem for Hn implies that there exists a unique bounded
operator ℘k : L2(Hn) → L2(Hn) defined by the conditions πλ℘k(f) =
Pkπλ(f), πλm℘k(f) = 0 for m 6= 1, and σa,b℘k(f) = 0 for all a, b ∈ Rn. By
the Plancherel theorem again it is immediately seen that ℘2

k = ℘k, ℘
∗
k = ℘k

and so ℘k is an orthogonal projection. Moreover, for f ∈ S(Hn), w ∈ Hn,
the inversion formula gives

℘kf(w) = tr(Pkπλ(f)πλ(w)) =
∑

‖α‖=k

(f ∗Eλ(hα, hα))(w).

Thus

(3.1) ℘kf = f ∗ Sλ,k

and so f ∗ Sλ,k ∈ L2(Hn).

Since L(f ∗Eλ(hα, hα)) = f ∗LEλ(hα, hα) in S′(Hn), and recalling (2.1),
we see that h ∈ ℘k(S(Hn)) implies Lh = −|λ|(2k + p− q)h and iTh = λh.

Also, if f ∈ L2(Hn) and k 6= k′, then πλm(℘k′℘kf) = 0 for m 6= 1 and
πλ(℘k′℘kf) = Pk′Pkπλf = 0. Thus, by the Plancherel theorem, ℘k′℘k = 0
for k 6= k′.

Proposition 3.2. ℘k(L
2(Hn)) is a ̺-irreducible module.

P r o o f. Since ℘kf = f∗Sλ,k for f ∈ S(Hn) and Sλ,k is U(p, q)-invariant,
it follows that ℘k is a ̺-morphism. Now, we proceed by contradiction.
Assume that there exists a ̺-invariant, non-zero and closed subspace W of
℘k(L

2(Hn)). Let P : ℘k(L
2(Hn)) → W be the orthogonal projection on W .

Then P and P℘k are G-morphisms. Moreover, P℘k : L2(Hn) → L2(Hn) is
a bounded operator that commutes with left translations, and hence there
exists Φ ∈ S′(Hn) such that P℘kf = f ∗ Φ for f ∈ S(Hn). Since P℘k also
commutes with the action of U(p, q), we conclude that Φ is U(p, q)-invariant.
Furthermore, LΦ = −|λ|(2k+p−q)Φ and iTΦ = λΦ. Indeed, for f ∈ S(Hn),

〈f, LΦ〉 = (f ∗ LΦ)(0) = L(f ∗ Φ)(0)
= −|λ|(2k + p− q)(f ∗ Φ)(0) = −|λ|(2k + p− q)〈f, Φ〉.

The computation of iTΦ is analogous. Thus Φ = cSλ,k for some c ∈ R−{0},
so P℘k = ℘k and then ℘k(L

2(Hn)) ⊂ W .
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For f ∈ S(Hn), a computation gives

f ∗ Eλ(hα, hα) =
∑

β

〈f,Eλ(hα, hβ)〉Eλ(hα, hβ)

and so

(3.3) f ∗ Sλ,k =
∑

‖α‖=k

∑

β

〈f,Eλ(hα, hβ)〉Eλ(hα, hβ).

In [St-1] it is proved that {Eλ(hα, hβ)(·, 0)}α,β is an orthonormal set in
L2(Rn ×Rn). So, for ‖α‖ = k, we have Eλ(hα, hβ) = Eλ(hα, hβ) ∗Sλ,k and
then, by (3.1), Eλ(hα, hβ) ∈ ℘k(L

2(Hn)). On the other hand, (3.1) also
says that, for f ∈ S(Hn), ℘k(f) belongs to the closed subspace spanned
by {Eλ(hα, hβ) : ‖α‖ = k, β arbitrary}. Thus {Eλ(hα, hβ) : ‖α‖ = k,
β arbitrary} is an orthonormal basis of ℘k(L

2(Hn)).

Following [St-2], we consider, for each λ ∈ R∗, the Hilbert space Hλ of
functions f : Hn → C such that f(x, y, t) = e−iλtF (x, y) with F ∈
L2(Rn × Rn) provided with the norm ‖f‖ = ‖f(·, 0)‖L2(Rn×Rn). Note that

each Eλ(hα, hβ)∈Hλ. We set Hλ,k= 〈{Eλ(hα, hβ)} : ‖α‖=k, β arbitrary〉,
the closure taken in Hλ. Since

̺(g, x, y, t)Eλ(hα, hβ)(x
′, y′, t′) = ̺([g, x, y, t])Eλ(hα, hβ)([x

′, y′, t′])

where [g, x, y, t] denotes the projection of (g, x, y, t) on G, and since

Eλ(hα, hβ)(x, y, t) = Eλ(hα, hβ)([x, y, t]),

we see that (Hλ,k, ̺) is a unitary representation of G.

For f ∈ S(Hn), since
∑

‖α‖=k

∑
β |〈f,Eλ(hα, hβ)〉|2 = ‖Pkπλ(f)‖2, the

Plancherel identity says that

(3.4) (2π)n+1‖f‖2L2(Hn)
=

∑

k∈Z

∞\
−∞

‖f ∗ Sλ,k‖2Hλ,k
|λ|n dλ.

Moreover, the following analogue of (3.3) holds:

f ∗ Sλ,k =
∑

‖α‖=k

∑

β

〈f,Eλ(hα, hβ)〉Eλ(hα, hβ);

thus f ∗ Sλ,k ∈ Hλ,k for a.e. λ ∈ R∗.

Let Φ : R∗ × Z →
⋃

(λ,k)∈R∗×Z
Hλ,k be such that Φ(λ, k) ∈ Hλ,k for a.e.

λ ∈ R. So

Φ(λ, k) =
∑

‖α‖=k

∑

β

cλ(α, β)Eλ(hα, hβ)

with
∑

‖α‖=k

∑
β |cλ(α, β)|2<∞ for a.e. λ∈R. We say that Φ is measurable

if for every α, β the map λ 7→ cλ(α, β) is a measurable function. Let us
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consider the direct integral of Hilbert spaces

∑

k∈Z

∞\
−∞

Hλ,k|λ|n dλ,

i.e., the space of measurable functions Φ as above satisfying

∑

k∈Z

∞\
−∞

‖Φ(λ, k)‖2Hλ,k
|λ|n dλ < ∞.

We have

Theorem 3.5. Each Hλ,k is an irreducible G-module, Hλ,k ≇ Hλ′,k′ if

(λ, k) 6= (λ′, k′) and (L2(Hn), ̺) is the direct integral of irreducible repre-

sentations

L2(Hn) =
∑

k∈Z

∞\
−∞

Hλ,k|λ|n dλ.

P r o o f. Note that if f ∈ Hλ then f is constant on each coset [x, y, t] ∈
Hn and so we can define f : Hn → C by f([x, y, t]) = f(x, y, t). We
consider the map Kλ,k : Hλ,k → ℘k(L

2(Hn)) given by Kλ,kf(x, y, t) =
f([x, y, t]). ThenKλ,k̺(θ) = ̺([θ])Kλ,k, θ ∈ G. SinceKλ,k is a bijection and
℘k(L

2(Hn)) is G-irreducible, we see that Hλ,k is irreducible. Furthermore,
(Hλ,k, ̺|Hn

) is a primary Hn-module. Indeed, for fixed α, the map hβ 7→
Eλ(hα, hβ) extends to an injective Hn-morphism between (πλ, L

2(Rn)) and
(̺|Hn

,Hλ,k). So, for λ 6= λ′ and k, k′ ∈ Z, Hλ,k ≇ Hλ′,k′ as G-modules. In
order to see that Hλ,k ≇ Hλ,k′ for k 6= k′, suppose that U : Hλ,k → Hλ,k′ is a
(bounded) G-isomorphism. Then Kλ,k′UK−1

λ,k℘k : L2(Hn) → ℘k′(L2(Hn))

is a bounded operator on L2(Hn) and a G-morphism. We argue as in the
proof of Proposition 3.2 to conclude that Kλ,k′UK−1

λ,k℘k = c℘k′ for some
constant c. Since ℘k℘k′ = 0 we obtain U = 0.

Finally, we note that by (3.4), the mapping U : f 7→ f ∗ Sλ,k ini-
tally defined on S(Hn) extends, up to a constant, to an isometry from
L2(Hn) into the direct integral H =

∑
k∈Z

T∞
−∞

Hλ,k|λ|n dλ. On the other
hand, for Φ ∈ H we can write Φ(λ, k) =

∑
‖α‖=k, β cλ(α, β)Eλ(hα, hβ) with∑

‖α‖=k, β |cλ(α, β)|2 < ∞ for a.e. λ ∈ R. Let V (Φ) ∈ L2(Hn) be defined by

〈πλ(V (Φ))hα, hβ〉 = cλ(α, β). Thus V is, up to a constant, an isometry from
H into L2(Hn) and V U = I. Since ̺(g)(U(f)(λ, k)) = (U(̺(g)(f)))(λ, k),
the theorem follows.

Our next step is to describe the joint spectrum of L and iT in L2(Rn).
This joint spectrum σ(L, iT ) is defined as the complement of the pairs
(µ, λ) ∈ C2 for which there exist bounded operators A,B on L2(Hn) such
that A(L− µI) +B(iT − λI) = I.
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We recall the orthogonal decomposition

(3.6) L2(Hn) =
⊕

m∈n+2Z

(Ker(L− imT ) ∩ L2(Hn)),

the kernels taken in the distribution sense. Moreover, if for m ∈ n + 2Z,
we set k1(m) = (−m + q − p)/2 and k2(m) = (m + q − p)/2, then (see
[G-S]) there exist orthogonal projections Pk1(m), Pk2(m) : L

2(Hn) → L2(Hn)

given, for f ∈ S(Hn), by Pk1(m)f =
T∞
0

f ∗ Sλ,k1(m)|λ|n dλ and Pk2(m)f =T0
−∞

f ∗ Sλ,k2(m)|λ|n dλ with R(Pk1(m)) ⊥ R(Pk2(m)) and satisfying

Ker(L− imT ) = R(Pk1(m))⊕R(Pk2(m)).

Now we set, for ε = ±1 and k ∈ Z,

Rk,ε = {(−̺(2k + p− q), ε̺) : ̺ > 0}.
We also put R0 = {(0, µ) : µ ∈ R}.
Theorem 3.7. σ(L, iT ) = R0 ∪

⋃
k∈Z, ε=±1 Rk,ε.

P r o o f. If (λ, µ) ∈ C2, λ 6= 0 and µ 6= mλ for all m ∈ n+2Z, then taking
account of (3.6), we can define bounded operators A,B : L2(Hn) → L2(Hn)
by

Af =
1

λm− µ
f, Bf =

−m

λm− µ
f for f ∈ Ker(L− imT ).

So, we have A(L−µI)+B(iT−λI)=I. Then σ(L, iT ) ⊂ R0∪
⋃

k∈Z,ε=±1Rk,ε.

Now we will see that every point (mλ0, λ0) with m ∈ n + 2Z and
λ0 6= 0 belongs to σ(L, iT ). We consider first the case λ0 > 0 and
k1(m) ≥ 0. Assume, by contradiction, that there exist bounded operators
A,B on L2(Hn) such that

(3.8) A(L−mλ0I) +B(iT − λ0I) = I.

Let ϕε be an approximation to the identity centered at λ0, i.e. ϕε(λ) =
ε−1ϕ(ε−1(λ−λ0)) with ϕ ∈ C∞(R), ϕ ≥ 0,

T
ϕ = 1, ϕ(0) > 0 and such that

supp(ϕ) ⊂ (−1, 1). We set

fε(z, t) =

∞\
−∞

ϕε(λ)Eλ(hα, hα)(z, t) dλ

where α = (k1(m), 0, . . . , 0), thus ‖α‖ = k1(m) and Eλ(hα, hα)(z, t) =

e−iλte−|λ||z|2/4L0
k1(m)(|λ||z1|2/2). In order to see that fε∈L2(Hn), we set

Fε(z, t) = ϕε(λ)e
−|λ||z|2/4L0

k1(m)(|λ||z1|2/2).

Then fε(z, t) = Fε(z, t̂ ), where Fε(z, t̂ ) denotes the Fourier transform with
respect to the second variable evaluated at t. The Plancherel theorem in
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R2n+1 ∼= Cn × R says that

‖fε‖L2(Hn) = ‖Fε(ξ̂, λ)‖L2(R2n+1,dξ dλ).

Now, taking into account that, for ε < 1
2λ

−1
0 , ϕε has a compact support

contained in (0,∞) and using the usual formulas for the euclidean Fourier
transform of the product of a polynomial by a Gaussian function, we find
that fε ∈ L2(Hn).

Moreover, by (2.1) and as (L − mλ0)fε = mgε and (iT − λ0I)fε = gε
with

(3.9) gε(z, t) =

∞\
−∞

(λ− λ0)ϕε(λ)Eλ(hα, hα)(z, t) dλ,

we obtain A(L−mλ0I)fε+B(iT −λ0I)fε = (mA+B)gε and so (3.8) gives
fε = (mA + B)gε. Since ϕε is an approximation to the identity, it follows
that limε→0 fε(z, t) = Eλ0

(hα, hα)(z, t) for each (z, t) ∈ Hn. Now, Fatou’s
Lemma gives

‖Eλ0
(hα, hα)‖L2(Hn) ≤ lim inf

ε→0
‖fε‖L2(Hn)(3.10)

≤ ‖mA+B‖Op lim inf
ε→0

‖gε‖L2(Hn).

In order to obtain a contradiction we note that gε(z, t) = Gε(z, t̂ ) with

(3.11) Gε(z, t) = (λ− λ0)ϕε(λ)e
−|λ||z|2/4L0

k1(m)(|λ||z1|2/2).
Also,

‖gε‖L2(Hn) = ‖Gε(ξ̂, λ)‖L2(R2n+1,dξ dλ).

Since limε→0 ‖(λ − λ0)ϕε(λ)‖L1(R,dλ) = 0, a computation shows that
limε→0 ‖gε‖L2(Hn) = 0. Taking account of (3.10) we obtain a contradiction,
since ‖Eλ0

(hα, hα)‖L2(Hn) = ∞. This ends the proof for the case λ0 > 0 and
k1(m) ≥ 0. The argument is the same for the other cases with λ0 6= 0. The
case λ0 = 0 follows by closure.

Finally we state

Theorem 3.12. Let A be a bounded operator on L2(Hn) that commutes

with ̺. Then there exists m : R× Z → C such that for f ∈ S(Hn),

Af(x, y, t) =
∑

k∈Z

∞\
−∞

m(λ, k)(f ∗ Sλ,k)(x, y, t)|λ|n dλ

with ‖A‖ = ‖m‖∞. Conversely , if m is a measurable and bounded function

on the joint spectrum σ(L, iT ), then the above integral operator extends to

a bounded operator on L2(Hn) that commutes with ̺.
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P r o o f. We consider, for f ∈ S(Hn), the integral decomposition given
by (2.3):

f(x, y, t) =
∑

k∈Z

∞\
−∞

f ∗ Sλ,k(x, y, t)|λ|n dλ.

By the Schwartz kernel theorem we know that Af = f ∗K for some K ∈
S′(Hn). Since A commutes with the action ̺, we see that K is an U(p, q)-
invariant distribution. Also, by the properties of the Fourier transform, we
have πλ(Af) = πλ(f)Kλ for a.e. λ, where each Kλ is a bounded operator on
L2(Rn) (see [S], p. 571). Moreover ess supλ ‖Kλ‖ < ∞. Since Kλ commutes
with the metaplectic representation ω restricted to SU(p, q) we deduce that
KλPk is a multiple mλ,kIk where Ik is the identity on Hk = Pk(L

2(Rn)).
Indeed, we recall that, for k ∈ Z, Hk is the closed subspace of L2(Rn)
spanned by {hα}‖α‖=k and that each (Hk, ω) is an irreducible SU(p, q)-
module (see [B-W], Ch. VIII). Also, since ess supλ ‖Kλ‖ < ∞, we have
m ∈ L∞(σ(L, iT )). Thus it is immediate to see that

∞\
−∞

tr(πλ(Af))πλ(x, y, t)|λ|n dλ < ∞

for f ∈ S(Hn) and (x, y, t) ∈ Hn. From this, the inversion formula says that,
for f ∈ S(Hn),

Af(x, y, t) =
∑

k∈Z

∞\
−∞

m(λ, k)(f ∗ Sλ,k)(x, y, t)|λ|n dλ

with supλ∈R−{0}, k∈Z
|m(λ, k)| < ∞. Conversely, if m is a measurable and

bounded function on the joint spectrum σ(L, iT ), each operator of this form
extends to a bounded operator on L2(Hn) that commutes with ̺.
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