SOME SPECTRAL RESULTS ON $L^{2}\left(H_{n}\right)$ RELATED TO
 THE ACTION OF $U(p, q)$

BY
T. G O D O Y and L. SAAL (CÓRDOBA)

Abstract

Let H_{n} be the $(2 n+1)$-dimensional Heisenberg group, let p, q be two non-negative integers satisfying $p+q=n$ and let G be the semidirect product of $U(p, q)$ and H_{n}. So $L^{2}\left(H_{n}\right)$ has a natural structure of G-module. We obtain a decomposition of $L^{2}\left(H_{n}\right)$ as a direct integral of irreducible representations of G. On the other hand, we give an explicit description of the joint spectrum $\sigma(L, i T)$ in $L^{2}\left(H_{n}\right)$ where

$$
L=\sum_{j=1}^{p}\left(X_{j}^{2}+Y_{j}^{2}\right)-\sum_{j=p+1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right),
$$

and where $\left\{X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}, T\right\}$ denotes the standard basis of the Lie algebra of H_{n}. Finally, we obtain a spectral characterization of the bounded operators on $L^{2}\left(H_{n}\right)$ that commute with the action of G.

1. Introduction. Let p, q a pair of non-negative integers such that $p+q=n$. Consider the Heisenberg group $H_{n}=\mathbb{C}^{n} \times \mathbb{R}$ with group law $(z, t)\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}-\frac{1}{2} \operatorname{Im} B\left(z, z^{\prime}\right)\right)$ where $B(z, w)=\sum_{j=1}^{p} z_{j} \bar{w}_{j}-$ $\sum_{j=p+1}^{n} z_{j} \bar{w}_{j}$. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we write $x=\left(x^{\prime}, x^{\prime \prime}\right)$ with $x^{\prime} \in \mathbb{R}^{p}, x^{\prime \prime} \in \mathbb{R}^{q}$. So, $\mathbb{R}^{2 n}$ can be identified with \mathbb{C}^{n} via the map

$$
\Psi\left(x^{\prime}, x^{\prime \prime}, y^{\prime}, y^{\prime \prime}\right)=\left(x^{\prime}+i y^{\prime}, x^{\prime \prime}-i y^{\prime \prime}\right), \quad x^{\prime}, y^{\prime} \in \mathbb{R}^{p}, x^{\prime \prime}, y^{\prime \prime} \in \mathbb{R}^{q}
$$

This map identifies the form $-\operatorname{Im} B(z, w)$ with the standard symplectic form on $\mathbb{R}^{2(p+q)}$. Moreover, $(x, y, t) \mapsto(\Psi(x, y), t)$ provides a global coordinate system on H_{n} and the vector fields
$X_{j}=-\frac{1}{2} y_{j} \frac{\partial}{\partial t}+\frac{\partial}{\partial x_{j}}, \quad Y_{j}=\frac{1}{2} x_{j} \frac{\partial}{\partial t}+\frac{\partial}{\partial y_{j}}, \quad j=1, \ldots, n, \quad$ and $\quad T=\frac{\partial}{\partial t}$
satisfy $\left[X_{j}, Y_{j}\right]=T,\left[X_{j}, T\right]=\left[Y_{j}, T\right]=0,1 \leq j \leq n$. Thus H_{n} can be viewed as the usual Heisenberg group $\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}$ via the isomorphism $(x, y, t) \mapsto(\Psi(x, y), t)$. From now on, we will use freely this identification.

2000 Mathematics Subject Classification: Primary 43A80.
Partially supported by CONICET, CONICOR, and SECYT-UNC.

We note that $U(p, q)$ acts by automorphisms on H_{n} via the action

$$
\begin{equation*}
g \cdot(z, t)=(g z, t), \quad g \in U(p, q), \quad(z, t) \in H_{n} \tag{1.1}
\end{equation*}
$$

Observe that the above group law is not the usual one, but it is adapted to the action of $U(p, q), q=n-p$.

In [St-2], R. Strichartz proposed to define harmonic analysis on H^{n} to be the joint spectral theory associated with the differential operators L_{0} and $i T$ where $L_{0}=\sum_{j=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)$. The relevance of the operators L_{0} and $i T$ is due to the fact that they are the generators of the algebra of the left invariant differential operators which are invariant under the natural action of $U(n)$ on H_{n}.

Let $L=\sum_{j=1}^{p}\left(X_{j}^{2}+Y_{j}^{2}\right)-\sum_{j=p+1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)$. Since L and $i T$ generate the algebra of left invariant and $U(p, q)$-invariant differential operators, it is a natural question to look for a spectral theory on $L^{2}\left(H_{n}\right)$ related to the operators L and $i T$. In [G-S] we prove that there exist tempered $U(p, q)$ invariant distributions $S_{\lambda, k}, \lambda \in \mathbb{R}-\{0\}, k \in \mathbb{Z}$, satisfying

$$
\begin{equation*}
L S_{\lambda, k}=-|\lambda|(2 k+p-q) S_{\lambda, k}, \quad i T S_{\lambda, k}=\lambda S_{\lambda, k} \tag{1.2}
\end{equation*}
$$

and such that for $f \in S\left(\mathbb{R}^{n}\right)$,

$$
f=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} f * S_{\lambda, k}|\lambda|^{n} d \lambda
$$

Moreover, the distributions $S_{\lambda, k}$ are explicitly computed and it is proved that the solution space in $S^{\prime}\left(H_{n}\right)^{U(p, q)}$ of the system (1.2) is one-dimensional (see also $[\mathrm{F}-2]$ and $[\mathrm{H}-\mathrm{T}]$).

On the other hand, let $G=U(p, q) \ltimes H_{n}$ be the semidirect product of $U(p, q)$ with H_{n} with group law $(g, z, t)\left(g^{\prime}, z^{\prime}, t^{\prime}\right)=\left(g g^{\prime},(z, t) \cdot\left(g z^{\prime}, t^{\prime}\right)\right)$ for $g, g^{\prime} \in U(p, q)$ and $(z, t),\left(z^{\prime}, t^{\prime}\right) \in H_{n}$. Then G acts on H_{n} by $(g, z, t)\left(z^{\prime}, t^{\prime}\right)=$ $(z, t)\left(g z^{\prime}, t^{\prime}\right)$. For $f: H_{n} \rightarrow C$ and $(g, z, t) \in G$, we set

$$
\begin{equation*}
\varrho(g, z, t) f\left(z^{\prime}, t^{\prime}\right)=f\left((g, z, t)^{-1}\left(z^{\prime}, t^{\prime}\right)\right) \tag{1.3}
\end{equation*}
$$

Thus ϱ defines a unitary representation of G on $L^{2}\left(H_{n}\right)$ that, restricted to $H_{n} \subset G$, agrees with the left regular representation of H_{n} on $L^{2}\left(H_{n}\right)$.

Our aim in this paper is to give an explicit description of the joint spectrum in $L^{2}\left(H_{n}\right)$ of L and $i T$ and to obtain the decomposition of $L^{2}\left(H_{n}\right)$ as a direct integral of irreducible representations of G. The last question was solved in [St-2], for $p=n, q=0$, using the weight theory for representations of compact Lie groups. In order to study the general case, we will follow a different approach, using the results in [G-S] instead of weights. Finally, we state a spectral characterization of the bounded operators on $L^{2}\left(H_{n}\right)$ that commute with the action ϱ.

Acknowledgments. It is a pleasure to express our thanks to Fulvio Ricci and Jorge Vargas for many useful conversations.
2. Preliminaries. Let us consider, for $\lambda \in \mathbb{R}-\{0\}$, the Schrödinger representation of $H_{n}=\mathbb{R}^{2 n} \times \mathbb{R}$ on $L^{2}\left(\mathbb{R}^{n}\right)$ defined by
$\pi_{\lambda}(x, y, t) u(\xi)=\exp \left[-i\left(\lambda t+\operatorname{sign}(\lambda) \sqrt{|\lambda|}\langle x, \xi\rangle+\frac{\lambda}{2}\langle x, y\rangle\right)\right] u(\xi+\sqrt{|\lambda|} y)$.
For $u, v \in L^{2}\left(\mathbb{R}^{n}\right)$, let $E_{\lambda}(u, v)$ be the matrix entry associated with π_{λ} corresponding to the vectors u, v given by $E_{\lambda}(u, v)(x, y, t)=\left\langle\pi_{\lambda}(x, y, t) u, v\right\rangle$.

Also, for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in(\mathbb{N} \cup\{0\})^{n}$, let h_{α} be the Hermite function defined by

$$
h_{\alpha}(\zeta)=\left(2^{|\alpha|} \alpha!\sqrt{\pi}\right)^{-n / 2} e^{-|\zeta|^{2} / 2} \prod_{j=1}^{n} H_{\alpha_{j}}\left(\zeta_{j}\right)
$$

with $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}, \alpha!=\alpha_{1}!\ldots \alpha_{n}!$ and where

$$
H_{k}(s)=(-1)^{k} e^{s^{2}} \frac{d^{k}}{d s^{k}}\left(e^{-s^{2}}\right)
$$

is the k th Hermite polynomial. For $(z, t) \in \mathbb{C}^{n} \times \mathbb{R}$ (see, for example, $[\mathrm{F}-1]$), we can write $E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)(z, t)$ in terms of Laguerre polynomials as

$$
E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)(z, t)=e^{-i \lambda t} e^{-|\lambda||z|^{2} / 4} \prod_{j=1}^{n} L_{\alpha_{j}}^{0}\left(\frac{1}{2}\left|\lambda \| z_{j}\right|^{2}\right) .
$$

We set $\|\alpha\|=\alpha_{1}+\ldots+\alpha_{p}-\left(\alpha_{p+1}+\ldots+\alpha_{n}\right)$. Thus $\left\{h_{\alpha}\right\}$ is an orthonormal basis of $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\begin{align*}
L E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right) & =-|\lambda|(2 \| \alpha| |+p-q) E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right), \tag{2.1}\\
i T E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right) & =\lambda E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right) .
\end{align*}
$$

We also set, for $f \in L^{1}\left(H_{n}\right)$,

$$
\pi_{\lambda}(f)=\int_{H_{n}} f(x, y, t) \pi_{\lambda}(x, y, t)^{-1} d x d y d t .
$$

Let $\mathbb{R}^{*}=\mathbb{R}-\{0\}$ and let us denote by $\operatorname{HS}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ the space of HilbertSchmidt operators on $L^{2}\left(\mathbb{R}^{n}\right)$. Let $\mathcal{L}^{2}\left(\mathbb{R}^{*}\right)$ be the Hilbert space of functions $\Phi: \mathbb{R}^{*} \rightarrow \operatorname{HS}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ such that $\lambda \mapsto\langle\Phi(\lambda) u, v\rangle$ is measurable for each $u, v \in$ $L^{2}\left(\mathbb{R}^{n}\right)$ and $\int_{-\infty}^{\infty}\|\Phi(\lambda)\|_{\mathrm{HS}}^{2}|\lambda|^{n} d \lambda=\|\Phi\|<\infty$. The Plancherel Theorem asserts (see e.g. $[\mathrm{T}]$) that the Fourier transform $f \mapsto(2 \pi)^{-(n+1) / 2} \pi_{\lambda}(f)$, initially defined, say, in $S\left(H_{n}\right)$, extends to an isometry from $L^{2}\left(H_{n}\right)$ onto $\mathcal{L}^{2}\left(\mathbb{R}^{*}\right)$. Moreover, for $f \in S\left(H_{n}\right)$ we have the inversion formula

$$
f(x, y, t)=\frac{1}{(2 \pi)^{n+1}} \int_{-\infty}^{\infty} \operatorname{tr}\left(\pi_{\lambda}(f) \pi_{\lambda}(x, y, t)\right)|\lambda|^{n} d \lambda .
$$

Since, in this case, $\sum_{\alpha} \int_{-\infty}^{\infty}\left|f * E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right) \| \lambda\right|^{n} d \lambda<\infty$, a computation shows that the inversion formula reads

$$
\begin{equation*}
f(x, y, t)=\frac{1}{(2 \pi)^{n+1}} \sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} \sum_{\|\alpha\|=k} f * E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)|\lambda|^{n} d \lambda \tag{2.2}
\end{equation*}
$$

For $k \in \mathbb{Z}, \lambda \in \mathbb{R}-\{0\}$ let $S_{\lambda, k}$ be defined by

$$
\left\langle S_{\lambda, k}, f\right\rangle=\frac{1}{(2 \pi)^{n+1}} \sum_{\|\alpha\|=k}\left\langle E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right), f\right\rangle, \quad f \in S\left(H_{n}\right)
$$

Then $S_{\lambda, k}$ is a well defined element in $S^{\prime}\left(H_{n}\right)$; moreover, $S_{\lambda, k}$ can be explicitly computed and it is the unique (up to a constant) tempered and $U(p, q)$-invariant solution of the system (1.2) (see e.g. [G-S]). Also, (2.2) gives the decomposition

$$
\begin{equation*}
f=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} f * S_{\lambda, k}|\lambda|^{n} d \lambda, \quad f \in S\left(H_{n}\right) \tag{2.3}
\end{equation*}
$$

We will also need to consider, for a fixed $\lambda \neq 0$, the quotient group $\bar{H}_{n}=$ H_{n} / N where $N=\{0\} \times(2 \pi / \lambda) \mathbb{Z}$. For $(x, y, t) \in H_{n}$, let $[x, y, t]$ be its projection on \bar{H}_{n}. Note that for $\mu=\lambda m, m \in \mathbb{Z}-\{0\}, \pi_{\mu}$ induces in a natural way a unitary representation $\bar{\pi}_{\mu}$ of \bar{H}_{n} with matrix entries $\bar{E}_{\mu}(u, v)$ given by $\bar{E}_{\mu}(u, v)([x, y, t])=E_{\mu}(u, v)(x, y, t)$.

Moreover, each irreducible unitary representation of \bar{H}_{n} is unitarily equivalent to one and only one of the following representations:
(1) the representations $\bar{\pi}_{\mu}$ corresponding to $\mu=\lambda m, m \in \mathbb{Z}$,
(2) the one-dimensional representations $\sigma_{a, b}(x, y, t)=e^{i(a x+b y)},(a, b) \in$ $\mathbb{R}^{n} \times \mathbb{R}^{n}$.

Now, the Plancherel inversion formula for \bar{H}_{n} says that, for $f \in S\left(\bar{H}_{n}\right)$,

$$
\begin{equation*}
(2 \pi)^{n+1} f(x, y, t)=\sum_{m \neq 0} \sum_{k \in \mathbb{Z}} \sum_{\|\alpha\|=k} f * \bar{E}_{\lambda m}\left(h_{\alpha}, h_{\alpha}\right)|m|^{n}+\widehat{\Phi}(-x,-y) \tag{2.4}
\end{equation*}
$$

with $\Phi(a, b)=\sigma_{a, b}(f)$. Moreover,

$$
(2 \pi)^{n+1}\|f\|_{L^{2}\left(\bar{H}_{n}\right)}^{2}=\sum_{m \in \mathbb{Z}-\{0\}}\left\|\pi_{\lambda m}(f)\right\|_{\mathrm{HS}}^{2}|m|^{n}+\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left|\sigma_{a, b}(f)\right|^{2} d a d b
$$

The proofs of these facts follow the same lines as those related to H_{n} (see e.g. $[\mathrm{T}]$).

For $k, m \in \mathbb{Z}$ and $f \in S\left(\bar{H}_{n}\right)$, we set

$$
\left\langle\bar{S}_{\lambda m, k}, f\right\rangle=\frac{1}{(2 \pi)^{n+1}} \sum_{\|\alpha\|=k}\left\langle\bar{E}_{\lambda m}\left(h_{\alpha}, h_{\alpha}\right), f\right\rangle
$$

Thus, as in [G-S], $\bar{S}_{\lambda m, k} \in S^{\prime}\left(\bar{H}_{n}\right)$.
3. Some spectral facts. Let \bar{H}_{n} be the reduced Heisenberg group, associated with a fixed λ, defined as above. Let $\bar{G}=U(p, q) \ltimes \bar{H}_{n}$ be the semidirect product of $U(p, q)$ and \bar{H}_{n}, so ϱ projects to a unitary representation $\bar{\varrho}$ of \bar{G} on $L^{2}\left(\bar{H}_{n}\right)$. Also, L and T can be viewed, in a natural way, as differential operators on \bar{H}_{n}.

Let $P_{k}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right), k \in \mathbb{Z}$, be the orthogonal projection onto the closed subspace of $L^{2}\left(\mathbb{R}^{n}\right)$ spanned by $\left\{h_{\alpha}\right\}_{\|\alpha\|=k}$. For each $k \in \mathbb{Z}$, the Plancherel theorem for \bar{H}_{n} implies that there exists a unique bounded operator $\wp_{k}: L^{2}\left(\bar{H}_{n}\right) \rightarrow L^{2}\left(\bar{H}_{n}\right)$ defined by the conditions $\bar{\pi}_{\lambda} \wp_{k}(f)=$ $P_{k} \bar{\pi}_{\lambda}(f), \bar{\pi}_{\lambda m} \wp_{k}(f)=0$ for $m \neq 1$, and $\sigma_{a, b \wp_{k}(f)}=0$ for all $a, b \in \mathbb{R}^{n}$. By the Plancherel theorem again it is immediately seen that $\wp_{k}^{2}=\wp_{k}, \wp_{k}^{*}=\wp_{k}$ and so \wp_{k} is an orthogonal projection. Moreover, for $f \in S\left(\bar{H}_{n}\right), w \in \bar{H}_{n}$, the inversion formula gives

$$
\wp_{k} f(w)=\operatorname{tr}\left(P_{k} \bar{\pi}_{\lambda}(f) \bar{\pi}_{\lambda}(w)\right)=\sum_{\|\alpha\|=k}\left(f * \bar{E}_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)\right)(w) .
$$

Thus

$$
\begin{equation*}
\wp_{k} f=f * \bar{S}_{\lambda, k} \tag{3.1}
\end{equation*}
$$

and so $f * \bar{S}_{\lambda, k} \in L^{2}\left(\bar{H}_{n}\right)$.
Since $L\left(f * \bar{E}_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)\right)=f * L \bar{E}_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)$ in $S^{\prime}\left(\bar{H}_{n}\right)$, and recalling (2.1), we see that $h \in \wp_{k}\left(S\left(\bar{H}_{n}\right)\right)$ implies $L h=-|\lambda|(2 k+p-q) h$ and $i T h=\lambda h$.

Also, if $f \in L^{2}\left(\bar{H}_{n}\right)$ and $k \neq k^{\prime}$, then $\pi_{\lambda m}\left(\wp_{k^{\prime}} \wp_{k} f\right)=0$ for $m \neq 1$ and $\pi_{\lambda}\left(\wp_{k^{\prime}} \wp_{k} f\right)=P_{k^{\prime}} P_{k} \pi_{\lambda} f=0$. Thus, by the Plancherel theorem, $\wp_{k^{\prime}} \wp_{k}=0$ for $k \neq k^{\prime}$.

Proposition 3.2. $\wp_{k}\left(L^{2}\left(\bar{H}_{n}\right)\right)$ is a $\bar{\varrho}$-irreducible module.
Proof. Since $\wp_{k} f=f * \bar{S}_{\lambda, k}$ for $f \in S\left(\bar{H}_{n}\right)$ and $\bar{S}_{\lambda, k}$ is $U(p, q)$-invariant, it follows that \wp_{k} is a $\bar{\varrho}$-morphism. Now, we proceed by contradiction. Assume that there exists a $\bar{\varrho}$-invariant, non-zero and closed subspace W of $\wp_{k}\left(L^{2}\left(\bar{H}_{n}\right)\right)$. Let $P: \wp_{k}\left(L^{2}\left(\bar{H}_{n}\right)\right) \rightarrow W$ be the orthogonal projection on W. Then P and $P_{\wp_{k}}$ are \bar{G}-morphisms. Moreover, $P_{\wp_{k}}: L^{2}\left(\bar{H}_{n}\right) \rightarrow L^{2}\left(\bar{H}_{n}\right)$ is a bounded operator that commutes with left translations, and hence there exists $\Phi \in S^{\prime}\left(\bar{H}_{n}\right)$ such that $P_{\wp_{k}} f=f * \Phi$ for $f \in S\left(\bar{H}_{n}\right)$. Since $P_{\wp_{k}}$ also commutes with the action of $U(p, q)$, we conclude that Φ is $U(p, q)$-invariant. Furthermore, $L \Phi=-|\lambda|(2 k+p-q) \Phi$ and $i T \Phi=\lambda \Phi$. Indeed, for $f \in S\left(\bar{H}_{n}\right)$,

$$
\begin{aligned}
\langle f, L \Phi\rangle & =(f * L \Phi)(0)=L(f * \Phi)(0) \\
& =-|\lambda|(2 k+p-q)(f * \Phi)(0)=-|\lambda|(2 k+p-q)\langle f, \Phi\rangle .
\end{aligned}
$$

The computation of $i T \Phi$ is analogous. Thus $\Phi=c \bar{S}_{\lambda, k}$ for some $c \in \mathbb{R}-\{0\}$, so $P \wp_{k}=\wp_{k}$ and then $\wp_{k}\left(L^{2}\left(\bar{H}_{n}\right)\right) \subset W$.

For $f \in S\left(\bar{H}_{n}\right)$, a computation gives

$$
f * \bar{E}_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)=\sum_{\beta}\left\langle f, \bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right)\right\rangle \bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right)
$$

and so

$$
\begin{equation*}
f * \bar{S}_{\lambda, k}=\sum_{\|\alpha\|=k} \sum_{\beta}\left\langle f, \bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right)\right\rangle \bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right) . \tag{3.3}
\end{equation*}
$$

In [St-1] it is proved that $\left\{\bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right)(\cdot, 0)\right\}_{\alpha, \beta}$ is an orthonormal set in $L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. So, for $\|\alpha\|=k$, we have $\bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right)=\bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right) * \bar{S}_{\lambda, k}$ and then, by (3.1), $\bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right) \in \wp_{k}\left(L^{2}\left(\bar{H}_{n}\right)\right)$. On the other hand, (3.1) also says that, for $f \in S\left(\bar{H}_{n}\right), \wp_{k}(f)$ belongs to the closed subspace spanned by $\left\{\bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right):\|\alpha\|=k, \beta\right.$ arbitrary $\}$. Thus $\left\{\bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right):\|\alpha\|=k\right.$, β arbitrary is an orthonormal basis of $\wp_{k}\left(L^{2}\left(\bar{H}_{n}\right)\right)$.

Following [St-2], we consider, for each $\lambda \in \mathbb{R}^{*}$, the Hilbert space H_{λ} of functions $f: H_{n} \rightarrow \mathbb{C}$ such that $f(x, y, t)=e^{-i \lambda t} F(x, y)$ with $F \in$ $L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ provided with the norm $\|f\|=\|f(\cdot, 0)\|_{L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)}$. Note that each $E_{\lambda}\left(h_{\alpha}, h_{\beta}\right) \in H_{\lambda}$. We set $H_{\lambda, k}=\overline{\left\langle\left\{E_{\lambda}\left(h_{\alpha}, h_{\beta}\right)\right\}:\|\alpha\|=k, \beta \text { arbitrary }\right\rangle}$, the closure taken in H_{λ}. Since

$$
\varrho(g, x, y, t) E_{\lambda}\left(h_{\alpha}, h_{\beta}\right)\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=\bar{\varrho}([g, x, y, t]) \bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right)\left(\left[x^{\prime}, y^{\prime}, t^{\prime}\right]\right)
$$

where $[g, x, y, t]$ denotes the projection of (g, x, y, t) on \bar{G}, and since

$$
E_{\lambda}\left(h_{\alpha}, h_{\beta}\right)(x, y, t)=\bar{E}_{\lambda}\left(h_{\alpha}, h_{\beta}\right)([x, y, t])
$$

we see that $\left(H_{\lambda, k}, \varrho\right)$ is a unitary representation of G.
For $f \in S\left(H_{n}\right)$, since $\sum_{\|\alpha\|=k} \sum_{\beta}\left|\left\langle f, E_{\lambda}\left(h_{\alpha}, h_{\beta}\right)\right\rangle\right|^{2}=\left\|P_{k} \pi_{\lambda}(f)\right\|^{2}$, the Plancherel identity says that

$$
\begin{equation*}
(2 \pi)^{n+1}\|f\|_{L^{2}\left(H_{n}\right)}^{2}=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty}\left\|f * S_{\lambda, k}\right\|_{H_{\lambda, k}}^{2}|\lambda|^{n} d \lambda \tag{3.4}
\end{equation*}
$$

Moreover, the following analogue of (3.3) holds:

$$
f * S_{\lambda, k}=\sum_{\|\alpha\|=k} \sum_{\beta}\left\langle f, E_{\lambda}\left(h_{\alpha}, h_{\beta}\right)\right\rangle E_{\lambda}\left(h_{\alpha}, h_{\beta}\right)
$$

thus $f * S_{\lambda, k} \in H_{\lambda, k}$ for a.e. $\lambda \in \mathbb{R}^{*}$.
Let $\Phi: \mathbb{R}^{*} \times \mathbb{Z} \rightarrow \bigcup_{(\lambda, k) \in \mathbb{R}^{*} \times \mathbb{Z}} H_{\lambda, k}$ be such that $\Phi(\lambda, k) \in H_{\lambda, k}$ for a.e. $\lambda \in \mathbb{R}$. So

$$
\Phi(\lambda, k)=\sum_{\|\alpha\|=k} \sum_{\beta} c_{\lambda}(\alpha, \beta) E_{\lambda}\left(h_{\alpha}, h_{\beta}\right)
$$

with $\sum_{\|\alpha\|=k} \sum_{\beta}\left|c_{\lambda}(\alpha, \beta)\right|^{2}<\infty$ for a.e. $\lambda \in \mathbb{R}$. We say that Φ is measurable if for every α, β the map $\lambda \mapsto c_{\lambda}(\alpha, \beta)$ is a measurable function. Let us
consider the direct integral of Hilbert spaces

$$
\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} H_{\lambda, k}|\lambda|^{n} d \lambda
$$

i.e., the space of measurable functions Φ as above satisfying

$$
\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty}\|\Phi(\lambda, k)\|_{H_{\lambda, k}}^{2}|\lambda|^{n} d \lambda<\infty
$$

We have
Theorem 3.5. Each $H_{\lambda, k}$ is an irreducible G-module, $H_{\lambda, k} \nexists H_{\lambda^{\prime}, k^{\prime}}$ if $(\lambda, k) \neq\left(\lambda^{\prime}, k^{\prime}\right)$ and $\left(L^{2}\left(H_{n}\right), \varrho\right)$ is the direct integral of irreducible representations

$$
L^{2}\left(H_{n}\right)=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} H_{\lambda, k}|\lambda|^{n} d \lambda
$$

Proof. Note that if $f \in H_{\lambda}$ then f is constant on each $\operatorname{coset}[x, y, t] \in$ \bar{H}_{n} and so we can define $\bar{f}: \bar{H}_{n} \rightarrow \mathbb{C}$ by $\bar{f}([x, y, t])=f(x, y, t)$. We consider the map $K_{\lambda, k}: H_{\lambda, k} \rightarrow \wp_{k}\left(L^{2}\left(\bar{H}_{n}\right)\right)$ given by $K_{\lambda, k} f(x, y, t)=$ $\bar{f}([x, y, t])$. Then $K_{\lambda, k} \varrho(\theta)=\bar{\varrho}([\theta]) K_{\lambda, k}, \theta \in G$. Since $K_{\lambda, k}$ is a bijection and $\wp_{k}\left(L^{2}\left(\bar{H}_{n}\right)\right)$ is \bar{G}-irreducible, we see that $H_{\lambda, k}$ is irreducible. Furthermore, $\left(H_{\lambda, k},\left.\varrho\right|_{H_{n}}\right)$ is a primary H_{n}-module. Indeed, for fixed α, the map $h_{\beta} \mapsto$ $E_{\lambda}\left(h_{\alpha}, h_{\beta}\right)$ extends to an injective H_{n}-morphism between $\left(\pi_{\lambda}, L^{2}\left(\mathbb{R}^{n}\right)\right)$ and $\left(\left.\varrho\right|_{H_{n}}, H_{\lambda, k}\right)$. So, for $\lambda \neq \lambda^{\prime}$ and $k, k^{\prime} \in \mathbb{Z}, H_{\lambda, k} \not \neq H_{\lambda^{\prime}, k^{\prime}}$ as G-modules. In order to see that $H_{\lambda, k} \not \not H_{\lambda, k^{\prime}}$ for $k \neq k^{\prime}$, suppose that $U: H_{\lambda, k} \rightarrow H_{\lambda, k^{\prime}}$ is a (bounded) G-isomorphism. Then $K_{\lambda, k^{\prime}} U K_{\lambda, k}^{-1} \wp_{k}: L^{2}\left(\bar{H}_{n}\right) \rightarrow \wp_{k^{\prime}}\left(L^{2}\left(\bar{H}_{n}\right)\right)$ is a bounded operator on $L^{2}\left(\bar{H}_{n}\right)$ and a \bar{G}-morphism. We argue as in the proof of Proposition 3.2 to conclude that $K_{\lambda, k^{\prime}} U K_{\lambda, k}^{-1} \wp_{k}=c \wp_{k^{\prime}}$ for some constant c. Since $\wp_{k} \wp_{k^{\prime}}=0$ we obtain $U=0$.

Finally, we note that by (3.4), the mapping $U: f \mapsto f * S_{\lambda, k}$ initally defined on $S\left(H_{n}\right)$ extends, up to a constant, to an isometry from $L^{2}\left(H_{n}\right)$ into the direct integral $\mathcal{H}=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} H_{\lambda, k}|\lambda|^{n} d \lambda$. On the other hand, for $\Phi \in \mathcal{H}$ we can write $\Phi(\lambda, k)=\sum_{\|\alpha\|=k, \beta} c_{\lambda}(\alpha, \beta) E_{\lambda}\left(h_{\alpha}, h_{\beta}\right)$ with $\sum_{\|\alpha\|=k, \beta}\left|c_{\lambda}(\alpha, \beta)\right|^{2}<\infty$ for a.e. $\lambda \in \mathbb{R}$. Let $V(\Phi) \in L^{2}\left(H_{n}\right)$ be defined by $\left\langle\pi_{\lambda}(V(\Phi)) h_{\alpha}, h_{\beta}\right\rangle=c_{\lambda}(\alpha, \beta)$. Thus V is, up to a constant, an isometry from \mathcal{H} into $L^{2}\left(H_{n}\right)$ and $V U=I$. Since $\varrho(g)(U(f)(\lambda, k))=(U(\varrho(g)(f)))(\lambda, k)$, the theorem follows.

Our next step is to describe the joint spectrum of L and $i T$ in $L^{2}\left(\mathbb{R}^{n}\right)$. This joint spectrum $\sigma(L, i T)$ is defined as the complement of the pairs $(\mu, \lambda) \in \mathbb{C}^{2}$ for which there exist bounded operators A, B on $L^{2}\left(H_{n}\right)$ such that $A(L-\mu I)+B(i T-\lambda I)=I$.

We recall the orthogonal decomposition

$$
\begin{equation*}
L^{2}\left(H_{n}\right)=\bigoplus_{m \in n+2 \mathbb{Z}}\left(\operatorname{Ker}(L-\operatorname{im} T) \cap L^{2}\left(H_{n}\right)\right) \tag{3.6}
\end{equation*}
$$

the kernels taken in the distribution sense. Moreover, if for $m \in n+2 \mathbb{Z}$, we set $k_{1}(m)=(-m+q-p) / 2$ and $k_{2}(m)=(m+q-p) / 2$, then (see [G-S]) there exist orthogonal projections $P_{k_{1}(m)}, P_{k_{2}(m)}: L^{2}\left(H_{n}\right) \rightarrow L^{2}\left(H_{n}\right)$ given, for $f \in S\left(H_{n}\right)$, by $P_{k_{1}(m)} f=\int_{0}^{\infty} f * S_{\lambda, k_{1}(m)}|\lambda|^{n} d \lambda$ and $P_{k_{2}(m)} f=$ $\int_{-\infty}^{0} f * S_{\lambda, k_{2}(m)}|\lambda|^{n} d \lambda$ with $R\left(P_{k_{1}(m)}\right) \perp R\left(P_{k_{2}(m)}\right)$ and satisfying

$$
\operatorname{Ker}(L-\operatorname{im} T)=R\left(P_{k_{1}(m)}\right) \oplus R\left(P_{k_{2}(m)}\right)
$$

Now we set, for $\varepsilon= \pm 1$ and $k \in \mathbb{Z}$,

$$
R_{k, \varepsilon}=\{(-\varrho(2 k+p-q), \varepsilon \varrho): \varrho>0\}
$$

We also put $\mathbb{R}_{0}=\{(0, \mu): \mu \in \mathbb{R}\}$.
Theorem 3.7. $\sigma(L, i T)=\mathbb{R}_{0} \cup \bigcup_{k \in \mathbb{Z}, \varepsilon= \pm 1} R_{k, \varepsilon}$.
Proof. If $(\lambda, \mu) \in \mathbb{C}^{2}, \lambda \neq 0$ and $\mu \neq m \lambda$ for all $m \in n+2 \mathbb{Z}$, then taking account of (3.6), we can define bounded operators $A, B: L^{2}\left(H_{n}\right) \rightarrow L^{2}\left(H_{n}\right)$ by

$$
A f=\frac{1}{\lambda m-\mu} f, \quad B f=\frac{-m}{\lambda m-\mu} f \quad \text { for } f \in \operatorname{Ker}(L-\operatorname{im} T)
$$

So, we have $A(L-\mu I)+B(i T-\lambda I)=I$. Then $\sigma(L, i T) \subset \mathbb{R}_{0} \cup \bigcup_{k \in \mathbb{Z}, \varepsilon= \pm 1} R_{k, \varepsilon}$.
Now we will see that every point $\left(m \lambda_{0}, \lambda_{0}\right)$ with $m \in n+2 \mathbb{Z}$ and $\lambda_{0} \neq 0$ belongs to $\sigma(L, i T)$. We consider first the case $\lambda_{0}>0$ and $k_{1}(m) \geq 0$. Assume, by contradiction, that there exist bounded operators A, B on $L^{2}\left(H_{n}\right)$ such that

$$
\begin{equation*}
A\left(L-m \lambda_{0} I\right)+B\left(i T-\lambda_{0} I\right)=I \tag{3.8}
\end{equation*}
$$

Let φ_{ε} be an approximation to the identity centered at λ_{0}, i.e. $\varphi_{\varepsilon}(\lambda)=$ $\varepsilon^{-1} \varphi\left(\varepsilon^{-1}\left(\lambda-\lambda_{0}\right)\right)$ with $\varphi \in C^{\infty}(\mathbb{R}), \varphi \geq 0, \int \varphi=1, \varphi(0)>0$ and such that $\operatorname{supp}(\varphi) \subset(-1,1)$. We set

$$
f_{\varepsilon}(z, t)=\int_{-\infty}^{\infty} \varphi_{\varepsilon}(\lambda) E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)(z, t) d \lambda
$$

where $\alpha=\left(k_{1}(m), 0, \ldots, 0\right)$, thus $\|\alpha\|=k_{1}(m)$ and $E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)(z, t)=$ $e^{-i \lambda t} e^{-|\lambda||z|^{2} / 4} L_{k_{1}(m)}^{0}\left(|\lambda|\left|z_{1}\right|^{2} / 2\right)$. In order to see that $f_{\varepsilon} \in L^{2}\left(H_{n}\right)$, we set

$$
F_{\varepsilon}(z, t)=\varphi_{\varepsilon}(\lambda) e^{-|\lambda||z|^{2} / 4} L_{k_{1}(m)}^{0}\left(\left|\lambda \| z_{1}\right|^{2} / 2\right)
$$

Then $f_{\varepsilon}(z, t)=F_{\varepsilon}(z, \widehat{t})$, where $F_{\varepsilon}(z, \widehat{t})$ denotes the Fourier transform with respect to the second variable evaluated at t. The Plancherel theorem in
$\mathbb{R}^{2 n+1} \cong \mathbb{C}^{n} \times \mathbb{R}$ says that

$$
\left\|f_{\varepsilon}\right\|_{L^{2}\left(H_{n}\right)}=\left\|F_{\varepsilon}(\widehat{\xi}, \lambda)\right\|_{L^{2}\left(\mathbb{R}^{2 n+1}, d \xi d \lambda\right)}
$$

Now, taking into account that, for $\varepsilon<\frac{1}{2} \lambda_{0}^{-1}, \varphi_{\varepsilon}$ has a compact support contained in $(0, \infty)$ and using the usual formulas for the euclidean Fourier transform of the product of a polynomial by a Gaussian function, we find that $f_{\varepsilon} \in L^{2}\left(H_{n}\right)$.

Moreover, by (2.1) and as $\left(L-m \lambda_{0}\right) f_{\varepsilon}=m g_{\varepsilon}$ and $\left(i T-\lambda_{0} I\right) f_{\varepsilon}=g_{\varepsilon}$ with

$$
\begin{equation*}
g_{\varepsilon}(z, t)=\int_{-\infty}^{\infty}\left(\lambda-\lambda_{0}\right) \varphi_{\varepsilon}(\lambda) E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)(z, t) d \lambda \tag{3.9}
\end{equation*}
$$

we obtain $A\left(L-m \lambda_{0} I\right) f_{\varepsilon}+B\left(i T-\lambda_{0} I\right) f_{\varepsilon}=(m A+B) g_{\varepsilon}$ and so (3.8) gives $f_{\varepsilon}=(m A+B) g_{\varepsilon}$. Since φ_{ε} is an approximation to the identity, it follows that $\lim _{\varepsilon \rightarrow 0} f_{\varepsilon}(z, t)=E_{\lambda_{0}}\left(h_{\alpha}, h_{\alpha}\right)(z, t)$ for each $(z, t) \in H_{n}$. Now, Fatou's Lemma gives

$$
\begin{align*}
\left\|E_{\lambda_{0}}\left(h_{\alpha}, h_{\alpha}\right)\right\|_{L^{2}\left(H_{n}\right)} & \leq \liminf _{\varepsilon \in 0}\left\|f_{\varepsilon}\right\|_{L^{2}\left(H_{n}\right)} \tag{3.10}\\
& \leq\|m A+B\|_{\mathrm{op}} \liminf _{\varepsilon \rightarrow 0}\left\|g_{\varepsilon}\right\|_{L^{2}\left(H_{n}\right)} .
\end{align*}
$$

In order to obtain a contradiction we note that $g_{\varepsilon}(z, t)=G_{\varepsilon}(z, \widehat{t})$ with

$$
\begin{equation*}
G_{\varepsilon}(z, t)=\left(\lambda-\lambda_{0}\right) \varphi_{\varepsilon}(\lambda) e^{-|\lambda||z|^{2} / 4} L_{k_{1}(m)}^{0}\left(|\lambda|\left|z_{1}\right|^{2} / 2\right) \tag{3.11}
\end{equation*}
$$

Also,

$$
\left\|g_{\varepsilon}\right\|_{L^{2}\left(H_{n}\right)}=\left\|G_{\varepsilon}(\widehat{\xi}, \lambda)\right\|_{L^{2}\left(\mathbb{R}^{2 n+1}, d \xi d \lambda\right)}
$$

Since $\lim _{\varepsilon \rightarrow 0}\left\|\left(\lambda-\lambda_{0}\right) \varphi_{\varepsilon}(\lambda)\right\|_{L^{1}(\mathbb{R}, d \lambda)}=0$, a computation shows that $\lim _{\varepsilon \rightarrow 0}\left\|g_{\varepsilon}\right\|_{L^{2}\left(H_{n}\right)}=0$. Taking account of (3.10) we obtain a contradiction, since $\left\|E_{\lambda_{0}}\left(h_{\alpha}, h_{\alpha}\right)\right\|_{L^{2}\left(H_{n}\right)}=\infty$. This ends the proof for the case $\lambda_{0}>0$ and $k_{1}(m) \geq 0$. The argument is the same for the other cases with $\lambda_{0} \neq 0$. The case $\lambda_{0}=0$ follows by closure.

Finally we state
Theorem 3.12. Let A be a bounded operator on $L^{2}\left(H_{n}\right)$ that commutes with ϱ. Then there exists $m: \mathbb{R} \times \mathbb{Z} \rightarrow \mathbb{C}$ such that for $f \in S\left(H_{n}\right)$,

$$
A f(x, y, t)=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} m(\lambda, k)\left(f * S_{\lambda, k}\right)(x, y, t)|\lambda|^{n} d \lambda
$$

with $\|A\|=\|m\|_{\infty}$. Conversely, if m is a measurable and bounded function on the joint spectrum $\sigma(L, i T)$, then the above integral operator extends to a bounded operator on $L^{2}\left(H_{n}\right)$ that commutes with ϱ.

Proof. We consider, for $f \in S\left(H_{n}\right)$, the integral decomposition given by (2.3):

$$
f(x, y, t)=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} f * S_{\lambda, k}(x, y, t)|\lambda|^{n} d \lambda
$$

By the Schwartz kernel theorem we know that $A f=f * K$ for some $K \in$ $S^{\prime}\left(H_{n}\right)$. Since A commutes with the action ϱ, we see that K is an $U(p, q)$ invariant distribution. Also, by the properties of the Fourier transform, we have $\pi_{\lambda}(A f)=\pi_{\lambda}(f) K_{\lambda}$ for a.e. λ, where each K_{λ} is a bounded operator on $L^{2}\left(\mathbb{R}^{n}\right)$ (see [S], p. 571). Moreover ess sup ${ }_{\lambda}\left\|K_{\lambda}\right\|<\infty$. Since K_{λ} commutes with the metaplectic representation ω restricted to $S U(p, q)$ we deduce that $K_{\lambda} P_{k}$ is a multiple $m_{\lambda, k} I_{k}$ where I_{k} is the identity on $\mathcal{H}_{k}=P_{k}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$. Indeed, we recall that, for $k \in \mathbb{Z}, \mathcal{H}_{k}$ is the closed subspace of $L^{2}\left(\mathbb{R}^{n}\right)$ spanned by $\left\{h_{\alpha}\right\}_{\|\alpha\|=k}$ and that each $\left(\mathcal{H}_{k}, \omega\right)$ is an irreducible $S U(p, q)$ module (see $[\mathrm{B}-\mathrm{W}]$, Ch. VIII). Also, since ess $\sup _{\lambda}\left\|K_{\lambda}\right\|<\infty$, we have $m \in L^{\infty}(\sigma(L, i T))$. Thus it is immediate to see that

$$
\int_{-\infty}^{\infty} \operatorname{tr}\left(\pi_{\lambda}(A f)\right) \pi_{\lambda}(x, y, t)|\lambda|^{n} d \lambda<\infty
$$

for $f \in S\left(H_{n}\right)$ and $(x, y, t) \in H_{n}$. From this, the inversion formula says that, for $f \in S\left(H_{n}\right)$,

$$
A f(x, y, t)=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} m(\lambda, k)\left(f * S_{\lambda, k}\right)(x, y, t)|\lambda|^{n} d \lambda
$$

with $\sup _{\lambda \in \mathbb{R}-\{0\}, k \in \mathbb{Z}}|m(\lambda, k)|<\infty$. Conversely, if m is a measurable and bounded function on the joint spectrum $\sigma(L, i T)$, each operator of this form extends to a bounded operator on $L^{2}\left(H_{n}\right)$ that commutes with ϱ.

REFERENCES

[B-W] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Ann. of Math. Stud. 94, Princeton Univ. Press, 1980.
[F-1] G. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, 1989.
[F-2] -, Hermite distributions associated to the group $O(p, q)$, Proc. Amer. Math. Soc. 126 (1998), 1751-1763.
[G-S] T. Godoy and L. Saal, L^{2} spectral theory on the Heisenberg group associated to the action of $U(p, q)$, Pacific J. Math. 193 (2000), 327-353.
[H-T] R. Howe and E. Tan, Non-Abelian Harmonic Analysis, Springer, 1992.
[S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
[St-1] R. Strichartz, Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal. 87 (1989), 51-149.
[St-2] -, L^{p} harmonic analysis and Radon transforms on the Heisenberg group, ibid. 96 (1991), 350-406.
[T] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, 1998.

Facultad de Matemática, Astronomía y Física
Universidad Nacional de Córdoba
Ciudad Universitaria, 5000 Córdoba, Argentina
E-mail: godoy@famaf.unc.edu.ar

