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PERTURBATION OF ANALYTIC OPERATORS AND

TEMPORAL REGULARITY OF DISCRETE HEAT KERNELS
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Abstract. In analogy to the analyticity condition ‖AetA‖ ≤ Ct−1, t > 0, for a
continuous time semigroup (etA)t≥0, a bounded operator T is called analytic if the dis-

crete time semigroup (Tn)n∈N0 satisfies ‖(T − I)T
n‖ ≤ Cn−1, n ∈ N. We generalize

O. Nevanlinna’s characterization of powerbounded and analytic operators T to the fol-
lowing perturbation result: if S is a perturbation of T such that ‖R(λ0, T )−R(λ0, S)‖ is

small enough for some λ0 ∈ ̺(T )∩ ̺(S), then the type ω of the semigroup (e
t(S−I)) also

controls the analyticity of S in the sense that ‖(S − I)Sn‖ ≤ C(ω + n−1)eωn, n ∈ N.

As an application we generalize and give a simple proof of a result by M. Christ on
the temporal regularity of random walks T on graphs of polynomial volume growth. On
arbitrary spaces Ω of at most exponential volume growth we obtain this regularity for any
powerbounded and analytic operator T on L2(Ω) with a heat kernel satisfying Gaussian
upper bounds.

1. Introduction and main results. Let X be a Banach space and
L(X) the space of all bounded linear operators on X. Following [C-SC], an
operator T ∈ L(X) is called analytic if there exists a constant C > 0 such
that

‖(T − I)Tn‖ ≤ Cn−1 for all n ∈ N.

This notion is a discrete time analogue of the property ‖AetA‖≤Ct−1, t > 0,
which characterizes the analyticity of a bounded semigroup (etA)t≥0. The
following characterization of analytic operators is due to O. Nevanlinna [N1,
Thm. 4.5.4], [N2, Thm. 2.1].

Theorem. Let T ∈ L(X). Then the following are equivalent :

(a) T is powerbounded and analytic.

(b) (et(T−I)) is a bounded analytic semigroup and σ(T ) ⊂ D ∪ {1}.

(c) ‖(λ− 1)R(λ, T )‖ ≤ C for all |λ| > 1.

Here D ⊂ C is the unit disk, σ(T ) is the spectrum of T and, for λ in
the resolvent set ̺(T ), we denote by R(λ, T ) := (λ − T )−1 the resolvent
operator.
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In particular, if T is powerbounded and analytic then (et(T−I)) is an
analytic semigroup of type 0. If S ∈ L(X) is a perturbation of T such that
‖R(λ0, T ) − R(λ0, S)‖ is small enough for some λ0 ∈ ̺(T ) ∩ ̺(S) then the
type ω of the analytic semigroup (et(S−I)) also controls the analyticity of S.

More precisely, in the first part of this paper we will prove the following
perturbation theorem for analytic operators.

Theorem 1.1. Let T ∈ L(X) be powerbounded and analytic. Fix λ0 ∈
̺(T ) and C, δ > 0. Then there exist ω0, d,D > 0 such that for all S ∈ L(X)
with ‖S‖ ≤ C and all ω ∈ [0, ω0] the two conditions

(1) ‖λR(λ, S − I − ω)‖ ≤ C for all λ ∈ Σδ,

(2) λ0 ∈ ̺(S) and ‖R(λ0, T )−R(λ0, S)‖ ≤ d

imply ‖Sn‖ ≤ Deωn and ‖(S − I)Sn‖ ≤ D(ω + n−1)eωn for all n ∈ N0.

Here and in what follows Σδ denotes the open sector {z : |arg(z)| <
δ + π/2} and for bounds of the type “for all n ∈ N0” involving negative
powers n−α we use the convention 0−α := 1.

In the second part of the paper this perturbation result is applied to
the problem of temporal regularity of discrete heat kernels which is the
following.

Let (Ω,µ, d) be a σ-finite measure space equipped with a metric d and
set Lp := Lp(Ω,µ). Let T ∈ L(L2) be a powerbounded and analytic opera-
tor whose powers Tn have integral kernels pn(x, y) satisfying the Gaussian
bounds

(3) |pn(x, y)| ≤ C0 n
−N/m exp

(
−b0

d(x, y)m/(m−1)

n1/(m−1)

)
for all n ∈ N

and some N, b0 > 0,m > 1. For m = 2, such estimates are quite common
[H-SC]; for m 6= 2, they appear on the so-called graphical Sierpiński gaskets
and related graphs with fractal structure [J], [BB].

The question arises under which conditions one can guarantee the fol-
lowing natural bound for the discrete time derivatives Dpn := pn+1 − pn:

(4) |Dkpn(x, y)| ≤ Ckn
−N/m−k exp

(
−bk

d(x, y)m/(m−1)

n1/(m−1)

)
for all n ∈ N.

Let T̺ ∈ L(L2), ̺ ∈ R, denote the Davies perturbations of T (see Defini-
tion 3.1). Since Dkpn is the kernel of the operator (T − I)kTn, by Davies’
perturbation method the estimate (4) is equivalent (see Lemma 3.2) to the
ultracontractive estimates

(Uk) ‖(T̺−I)
kTn̺ ‖1,∞ ≤ Ck n

−N/m−k exp(ωk|̺|
mn) for all n ∈ N, ̺ ∈ R.
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Recall that our hypothesis (3) can be checked [H-SC] by establishing

(Ũ0) ‖Tn̺ ‖1,2, ‖T
n
̺ ‖2,∞ ≤ C ′

0n
−N/2m exp(ω′

0|̺|
mn) for all n ∈ N, ̺ ∈ R.

Hence the aim is to deduce (Uk) from (Ũ0). This will be achieved by shifting
the derivation from the ‖·‖2,∞-norm and the ‖·‖1,2-norm to the ‖·‖2,2-norm.
More precisely, if we can verify the analyticity property

(Ak) ‖(T̺ − I)kTn̺ ‖2,2 ≤ C ′′
kn

−k exp(ω′
k|̺|

mn) for all n ∈ N0, ̺ ∈ R

then (Uk) follows easily from (Ũ0), (Ak) and factorizations of the type

‖(T̺ − I)kT 3n
̺ ‖1,∞ ≤ ‖Tn̺ ‖1,2 ‖T

n
̺ (I − T )k‖2,2 ‖T

n
̺ ‖2,∞.

Intermediate steps in the proof of (Ũ0) are often [H-SC] the verification of
growth estimates for the semigroups (Tn̺ )n∈N0

and (et(T̺−I))t≥0 in the form
of (A0) and of

(5) ‖λR(λ, T̺ − I − ω′
0|̺|

m)‖2,2 ≤ C ′′
0 for all λ ∈ Σδ, |̺| ≤ 1.

Then we obtain (Ak) as a direct consequence of the following corollary to
Theorem 1.1, whose conditions (c) and (d) correspond to (A0) and (5).

Corollary 1.2. Let X be a Banach space and (S̺)̺∈R a family of

operators in L(X). Suppose there are constants C,ω,m, δ > 0 satisfying the

following conditions:

(a) T := S0 is powerbounded and analytic.

(b) There exist ̺0 > 0 and λ0 ∈ C such that λ0 6∈ σ(S̺) for all |̺| ≤ ̺0
and

‖R(λ0, T )−R(λ0, S̺)‖ → 0 as ̺→ 0.

(c) ‖Sn̺ ‖ ≤ Ceω|̺|
mn for all n ∈ N0, ̺ ∈ R.

(d) ‖λR(λ, S̺ − I − ω|̺|m)‖ ≤ C for all λ ∈ Σδ, |̺| ≤ 1.

Then, for all k ∈ N, there exist ωk, Ck > 0 such that

‖(S̺ − I)kSn̺ ‖ ≤ Ckn
−keωk|̺|

mn for all n ∈ N0, ̺ ∈ R.

The constants ωk, Ck depend on the (S̺)̺ 6=0 only by the rate of convergence

in (b).

Corollary 1.2 will be applied to S̺ := T̺, the Davies perturbations of T .
In this case, the resolvent convergence in (b) will be verified by means of the
Gaussian kernel bounds (3). This requires the volume growth condition (6)
on (Ω,µ, d) in the following result, which will be proved by the reasoning as
just described.

Proposition 1.3. Let (Ω,µ, d) be a metric measure space of at most

exponential volume growth:

(6) ∃C, c > 0 ∀r ≥ 0, x ∈ Ω : |B(x, r)| ≤ Cecr.
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Let T ∈ L(L2) be a powerbounded and analytic operator whose Davies

perturbations (T̺)̺∈R satisfy (Ũ0), (A0) and (5) for some constants

C ′
0, C

′′
0 , ω

′
0, N > 0 and m > 1. Furthermore, let T have an integral ker-

nel p ∈ L∞(Ω2) such that

(7) ∃C, b > 0 : |p(x, y)| ≤ Ce−bd(x,y)
m/(m−1)

.

Then the Tn have integral kernels pn such that for all k ∈ N0 there exist

constants Ck, bk > 0 with

|Dkpn(x, y)| ≤ Ckn
−N/m−k exp

(
−bk

d(x, y)m/(m−1)

n1/(m−1)

)
for all n ∈ N.

Here |B(x, r)| denotes the volume of the closed ball B(x, r) with centre x
and radius r. An application of Theorem 1.3 for m = 2 yields the following
result on Markov chains.

Theorem 1.4. Let (Ω,µ, d) be a metric measure space of at most ex-

ponential volume growth as in (6). Let N ∈ R+ and T ∈ L(L2) be the

integral operator corresponding to a symmetric Markov kernel p ∈ L∞(Ω2)
satisfying

∃r0 > 0 ∀x ∈ Ω : supp(p(x, ·)) ⊂ B(x, r0),(8)

sup
x,y

|pn(x, y)| ≤ Cn−N/2 for all n ∈ N,(9)

−1 6∈ σ(T )(10)

where the pn are the kernels of the Tn. Then for all k ∈ N0 we have

|Dkpn(x, y)| ≤ Ck n
−N/2−k exp

(
−bk

d(x, y)2

n

)
for all n ∈ N.

The estimate for k = 0 was shown by W. Hebisch and L. Saloff-Coste
in [H-SC,Thm. 2.1] without restrictions on (Ω,µ, d) and σ(T ). And indeed,

intermediate steps in their proof are the verification of (Ũ0), (A0) and (a
slight weakening of) (5); see Lemmas 2.2, 2.3, 2.4 in [H-SC]. In fact, the argu-
ments given there show (5) so that, in particular, the semigroup (et(T−I)) is
bounded analytic. Hence, by Nevanlinna’s theorem cited above and our ad-
ditional assumption −1 6∈ σ(T ), the selfadjoint operator T is powerbounded
and analytic so that Proposition 1.3 easily implies Theorem 1.4 (see §4 be-
low). We remark that if condition (9) is replaced by

|pn(x, y)| ≤ C0f(n) exp

(
−b0

d(x, y)2

n

)

for all n ∈ N and some decreasing sequence (f(n))n∈N0
, then the proof of
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Theorem 1.4 leads to the adapted conclusion

|Dkpn(x, y)| ≤ Ckf(⌊(n+ 1)/3⌋)n−k exp

(
−bk

d(x, y)2

n

)
for all n ∈ N.

Theorem 1.4 was shown by M. Christ in [C] by a quite difficult proof for
the special case when Ω is a connected graph equipped with the counting
measure µ and its natural metric d. Moreover, in [C] the following additional
assumptions are made:

• Ω is of polynomial volume dimension N , i.e.

∃C > 0 ∀r ≥ 1, x ∈ Ω : C−1rN ≤ |B(x, r)| ≤ CrN ,

• ∃ε > 0 ∀x, y ∈ Ω, d(x, y) = 1 ⇒ p(x, y) ≥ ε.

Note that every graph is at most of exponential volume growth provided
that each node has a uniformly bounded number of neighbours.

2. Proof of Theorem 1.1 and Corollary 1.2. In Theorem 1.1 we
consider perturbations S ∈ L(X) of a powerbounded and analytic operator
T ∈ L(X) satisfying λ0 ∈ ̺(S) for some fixed λ0 ∈ ̺(T ). For such pertur-
bations S of T the characteristic resolvent estimate ‖R(µ, T )‖ ≤ C|µ− 1|−1

for all |µ| > 1 remains valid at least for all |µ| > 1 outside a circle around
the singularity µ = 1 of a radius proportional to ‖R(λ0, T )−R(λ0, S)‖.

This is shown in the following lemma, whose proof is based on the con-
tinuity of the inversion map on {U ∈ L(X) : U invertible}.

Lemma 2.1. Let T ∈ L(X) satisfy ‖R(µ, T )‖ ≤ C|µ−1|−1 for all |µ| > 1.
Let λ0 ∈ ̺(T ) and µ0 > 0. Then there exist d1,D1 > 0 such that for all

operators S ∈ L(X) and for all µ0 ≥ |µ| > 1 we have

‖R(λ0, T )−R(λ0, S)‖ ≤ d1|µ− 1| ⇒ ‖R(µ, S)‖ ≤ D1|µ − 1|−1.

P r o o f. Obviously, it suffices to find d1,D1 > 0 such that

‖R(λ0, T )−R(λ0, S)‖ ≤ d1|µ− 1| ⇒ ‖R(µ, T )−R(µ, S)‖ ≤ D1|µ− 1|−1

for all S and µ as required. Recall that, for an invertible operator U ∈ L(X),
any V ∈ L(X) with ‖U − V ‖ < ‖U−1‖−1 is invertible and

‖U−1 − V −1‖ ≤
‖U−1‖ ‖U − V ‖

‖U−1‖−1 − ‖U − V ‖
.

If ‖R(λ0, T ) − R(λ0, S)‖ is small enough we can apply this to U :=
(λ0 − µ)−1 − R(λ0, T ) and V := (λ0 − µ)−1 − R(λ0, S) for |µ|> 1. Indeed,
since

‖U−1‖ = |λ0 − µ| ‖I + (λ0 − µ)R(µ, T )‖ ≤ |λ0 − µ|C1|µ− 1|−1

we obtain µ ∈ ̺(S) and
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‖R(µ, T )−R(µ, S)‖ |λ0 − µ|

= ‖U−1R(λ0, T )− V −1R(λ0, S)‖

≤ ‖U−1‖ ‖R(λ0, T )−R(λ0, S)‖+ ‖U−1 − V −1‖ ‖R(λ0, S)‖

≤ ‖U−1‖ ‖U − V ‖

(
1 +

‖R(λ0, S)‖

‖U−1‖−1 − ‖U − V ‖

)

≤ |λ0 − µ|C2 |µ− 1|−1 ‖U − V ‖

c3|µ − 1| − ‖U − V ‖

≤ |λ0 − µ|C2 |µ− 1|−1

provided ‖U − V ‖ = ‖R(λ0, T )−R(λ0, S)‖ ≤ c3|µ− 1|/2.

Proof of Theorem 1.1. This proof is motivated by the proof of the impli-
cation (c)⇒(a) in Nevanlinna’s theorem cited in the Introduction as given
in [N1, p. 102]. By hypothesis, T is powerbounded and analytic, hence due
to [N2, Thm. 2.1] we can assume

‖(µ − 1)R(µ, T )‖ ≤ C for all |µ| > 1.

Therefore, by Lemma 2.1, there exist d1,D1 > 0 satisfying for all S ∈ L(X)
and for all 2C ≥ |µ| > 1 the condition

(11) ‖R(λ0, T )−R(λ0, S)‖ ≤ d1|µ− 1| ⇒ ‖(µ − 1)R(µ, S)‖ ≤ D1.

One checks that for sufficiently small t0, c0 > 0 (depending only on δ) the
map

[0, t0] → R+, t 7→ |1 + r + te i(δ+π/2)| |1− c0t|
−1,

is decreasing for all r ∈ [0, 1]. Hence we have

(12) |1 + r + tei(δ+π/2)| ≤ (1 + r)(1− c0t) for all t ∈ [0, t0], r ∈ [0, 1].

Now we set d := d1t0/4. Then, for all S ∈ L(X) satisfying ‖S‖ ≤ C and
(2), we deduce from (11) that ̺(S) ⊃ {µ : |µ| > 1, |µ− 1| ≥ t0/4} and

∀2 ≥ |µ| > 1, |µ− 1| ≥ t0/4 : ‖(µ − 1)R(µ, S)‖ ≤ D1.

Hence we find r < 1, D̃1 > 0 independent of the operator S with

∀2 ≥ |µ| ≥ r, |µ− 1| ≥ t0/2 : ‖(µ − 1)R(µ, S)‖ ≤ D̃1.

By choosing a greater r < 1 or a smaller δ > 0 if necessary, we derive for
M := {µ : |µ| = r, |µ − 1| ≥ t0/2} that

t∞,0 := t0/2 ⇒ 1 + t∞,0e
i(δ+π/2) ∈ M.

Hence there exist ω0, n0 > 0 such that for all n ≥ n0, ω ∈ [0, ω0] we have

∃tn,ω ∈ [0, t0] : 1 + ω + n−1 + tn,ωe
i(δ+π/2) ∈ M.
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For all such n and ω we construct a closed path Γn,ω as follows:

Γn,ω = Γn,ω,1 ∪ Γn,ω,2 ∪ Γn,ω,3,

Γn,ω,1 := 1 + ω + n−1 + [0, tn,ω]e
i(δ+π/2),

Γn,ω,2 ⊂ M,

Γn,ω,3 := 1 + ω + n−1 + [0, tn,ω]e
−i(δ+π/2).

For all S ∈ L(X) satisfying ‖S‖ ≤ C, (1) and (2), Γn,ω is a path in ̺(S)
around σ(S) so that

(e−ωS)n(S − I) = (2πi)−1
\

Γn,ω

(e−ωλ)n(λ− 1)R(λ, S) dλ.

It remains to estimate the integrals over the Γn,ω,j , j = 1, 2, 3. Since Γn,ω,1 ⊂
1 + ω +Σδ the hypothesis (1) and (12) yield

∥∥∥
\

Γn,ω,1

(e−ω λ)n(λ− 1)R(λ, S) dλ
∥∥∥

≤ Ce−ωn
\

Γn,ω,1

|λ|n|λ− 1| |λ− 1− ω|−1 |dλ|

≤ C

t0\
0

(1 + n−1)n (1− c0t)
n |ω + n−1 + tei(δ+π/2)|

|n−1 + tei(δ+π/2)|
dt

≤ Ce(1− sin δ)−1/2(ωn+ 1)

t0\
0

(1− c0t)
n dt

≤ C ′(ω + n−1).

For the integral over Γn,ω,2 we have even exponential decay in n:
∥∥∥
\

Γn,ω,2

(e−ωλ)n(λ− 1)R(λ, S) dλ
∥∥∥ ≤

\
M

rnD̃1 |dλ| ≤ 2πD̃1r
n.

Since the integral over Γn,ω,3 is symmetric to Γn,ω,1 we have shown

‖(e−ωS)n(S − I)‖ ≤ C1(ω + n−1) for all n ∈ N≥n0
.

Hence the second assertion of Theorem 1.1 follows and it remains to show
the powerboundedness of e−ωS. Since

(e−ωS)n = (2πi)−1
\

Γn,ω

(e−ωλ)nR(λ, S) dλ

we can proceed as above. Indeed, using (1) again we get
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∥∥∥
\

Γn,ω,1

(e−ωλ)nR(λ, S) dλ
∥∥∥ ≤ C

t0\
0

(1 + n−1)n(1− c0t)
n

|n−1 + tei(δ+π/2)|
dt

≤ Ce

∞\
0

e−c0tn

|n−1 + tei(δ+π/2)|
dt

= Ce

∞\
0

e−c0τ

|1 + τei(δ+π/2)|
dτ <∞.

For the integral over Γn,ω,2 we obtain the bound
∥∥∥
\

Γn,ω,2

(e−ωλ)nR(λ, S) dλ
∥∥∥ ≤

\
M

D̃1|λ− 1|−1 |dλ| ≤ D̃1(2/t0)2π.

By symmetry of Γn,ω,1 and Γn,ω,3 we have established

‖(e−ωS)n‖ ≤ C2 for all n ∈ N≥n0
.

Remark 2.2. Let T, λ0, C, δ and ω0, d be as in Theorem 1.1. Then for all
k ∈ N0 there exists Dk > 0 such that for all S ∈ L(X) with ‖S‖ ≤ C and
all ω ∈ [0, ω0] the two conditions (1) and (2) together imply

‖(S − I)kSn‖ ≤ Dk(ω + n−1)keωn for all n ∈ N.

Proof of Corollary 1.2. Let k ∈ N≥2. It suffices to consider the case where
ω|̺|m is small since whenever ω|̺|m ≥ ε we have, by hypothesis (c),

‖(S̺ − I)kSn̺ ‖ ≤ C1+k2ke2kω|̺|
m n ≤ Ck,εn

−ke3kω|̺|
mn for all n ∈ N.

But for ω|̺|m small we obtain from Remark 2.2, applied to S := S̺,

‖(S̺ − I)kSn̺ ‖ ≤ Dk(ω|̺|
m + n−1)keω|̺|

mn ≤ Dkn
−ke(k+1)ω|̺|mn.

3. Proof of Proposition 1.3. Let (Ω,µ, d) be a σ-finite measure space
equipped with a metric d and define Lp := Lp(Ω,µ). Fix some A ⊂
{ψ ∈ L∞ : ψ R-valued} such that

d(x, y) = sup
ψ∈A

|ψ(x)− ψ(y)| for all x, y ∈ Ω.

For instance, one may choose A := {d(x0, ·) ∧ n : x0 ∈ Ω, n ∈ N}.

Definition 3.1. For any operator T ∈ L(L2) we define its Davies per-

turbations (T̺)̺∈R by

T̺ := e̺ψTe−̺ψ for ̺ ∈ R, ψ ∈ A.

Here we deliberately omit the dependence of T̺ on ψ so that the phrase
“for all ̺ ∈ R” has always to be read as “for all ̺ ∈ R and all ψ ∈ A”.

The following lemma is well known as “Davies’ perturbation method”.
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Lemma 3.2. Let K ∈ L(L2) have an integral kernel k ∈ L∞(Ω2). Let

C,ω > 0, m > 1 and b := ω−1/(m−1)(m−1)m−m/(m−1). Then the following

are equivalent :

(a) |k(x, y)| ≤ C e−b d(x,y)
m/(m−1)

a.e.

(b) ‖K̺‖1,∞ ≤ Ceω|̺|
m

for all ̺ ∈ R.

P r o o f. Observe that e̺ψKe−̺ψ has kernel k(x, y)e̺(ψ(x)−ψ(y)) . Hence
if (b) holds then we have

|k(x, y)| ≤ Ceω|̺|
m

e−̺(ψ(x)−ψ(y))

so that, for fixed x and y, approximating d(x, y) by suitable ψ ∈ A and
choosing ̺ :=sgn(ψ(x) − ψ(y))(d(x, y)/(ωm))1/(m−1) shows

|k(x, y)| ≤ Ce−bd(x,y)
m/(m−1)

.

For the converse we assume (a) and obtain

‖e̺ψKe−̺ψ‖1,∞ = sup
x,y

|k(x, y)|e̺(ψ(x)−ψ(y))

≤ C sup
x,y

e−bd(x,y)
m/(m−1)

e|̺|d(x,y)

≤ C sup
r≥0

e−br
m/(m−1)+|̺|r = Ceω|̺|

m

.

Proof of Proposition 1.3. Recall that, in addition to the assumptions of
this section, our space (Ω,µ, d) is now of at most exponential volume growth:

∃C, c > 0 ∀r ≥ 0, x ∈ Ω : |B(x, r)| ≤ Cecr.

In order to obtain (the desired estimates for) integral kernels of the opera-
tors Tn(I − T )k, by Lemma 3.2 we have to estimate the [(T − I)kTn]̺ =
(T̺ − I)kTn̺ in the ‖ · ‖1,∞-norm. More precisely, we have to show for all
k ∈ N0 that

(Uk) ‖(T̺ − I)kTn̺ ‖1,∞ ≤ Ckn
−N/m−keωk|̺|

mn for all n ∈ N, ̺ ∈ R

where the relation between ωk and bk is bk = ω
−1/(m−1)
k (m−1)m−m/(m−1).

By using factorizations of the type

‖(T̺ − I)kTn̺ ‖1,∞ ≤ ‖T ⌈n/3⌉
̺ ‖1,2 ‖(T̺ − I)kT ⌊n/3⌋

̺ ‖2,2 ‖T
⌊(n+1)/3⌋
̺ ‖2,∞

for n ≥ 2 and the hypothesis (7) for n = 1 the estimate (Uk) is evident by

the hypothesis (Ũ0) once we establish the analyticity property

(Ak) ‖(T̺ − I)kTn̺ ‖2,2 ≤ C ′′
kn

−k exp(ω′
k|̺|

mn) for all n ∈ N0, ̺ ∈ R.

Since by assumption we have (A0) and (5), i.e.

‖λR(λ, T̺ − I − ω′
0|̺|

m)‖2,2 ≤ C ′′
0 for all λ ∈ Σδ, |̺| ≤ 1,
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the property (Ak) follows directly from Corollary 1.2 if we can show

(13) ‖R(λ0, T )−R(λ0, T̺)‖2,2 → 0 as ̺→ 0

for some λ0. Now, if λ0 ≥ 1 is large enough then

‖R(λ0, T )−R(λ0, T̺)‖2,2 ≤

∞∑

n=1

λ−n−1
0 ‖Tn − Tn̺ ‖2,2 for all |̺| ≤ 1.

By using (A0) we have, for some constants C, c > 0 and all M ∈ N, |̺| ≤ 1,
∞∑

n=M

λ−n−1
0 ‖Tn − Tn̺ ‖2,2 ≤

∞∑

n=M

λ−n−1
0 C ′′

0 (1 + eω
′

0|̺|
mn) ≤ Ce−cM .

Since (Ũ0) and (A0) are supposed to hold we have already seen that (U0)
holds, i.e. the Tn have integral kernels pn such that

|pn(x, y)| ≤ C0n
−N/m exp

(
−b0

d(x, y)m/(m−1)

n 1/(m−1)

)
for all n ∈ N.

Since Tn̺ has kernel pn(x, y)e
̺(ψ(x)−ψ(y)) we can estimate as follows by ap-

plying Schur’s Lemma in the first step:

M∑

n=1

‖Tn − Tn̺ ‖2,2

≤
M∑

n=1

sup
x∈Ω

\
Ω

(|pn(x, y)| ∨ |pn(y, x)|)(e
|̺|d(x,y) − 1) dy

≤ C0

M∑

n=1

sup
x∈Ω

∞∑

k=1

|B(x, k)| exp

(
−b0

(k − 1)m/(m−1)

M1/(m−1)

)
(e|̺|k − 1)

≤ C0CM

∞∑

k=1

ec k exp

(
−b0

(k − 1)m/(m−1)

M1/(m−1)

)
(e|̺|k − 1)

→ 0 as ̺→ 0, by monotone convergence.

By letting M → ∞ the convergence in (13) follows.

Remark 3.3. If, in the situation of Proposition 1.3, the hypothesis (Ũ0)
is replaced by

(Û0) ‖Tn̺ ‖1,2, ‖T
n
̺ ‖2,∞ ≤ C ′

0

√
f(n) exp(ω′

0|̺|
mn) for all n ∈ N, ̺ ∈ R

for some decreasing sequence (f(n))n∈N0
then the above proof shows

|Dkpn(x, y)| ≤ Ckf(⌊(n + 1)/3⌋)n−k exp

(
−bk

d(x, y)m/(m−1)

n1/(m−1)

)

for all n ∈ N.
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4. Proof of Theorem 1.4. Let (Ω,µ, d) be again a σ-finite measure
space equipped with a metric d and let T ∈ L(L2) be the integral operator
corresponding to a symmetric Markov kernel p ∈ L∞(Ω2). Furthermore, let
(T̺)̺∈R be the Davies perturbations of T defined with respect to

A := {d(x0, ·) ∧ n : x0 ∈ Ω, n ∈ N}.

The following lemma is a slight modification of [H-SC, Lemma 2.3] with
essentially the same proof. We give it for the sake of completeness.

Lemma 4.1. If the symmetric Markov kernel p ∈ L∞(Ω2) satisfies the

support-condition in Theorem 1.4, i.e.

(14) ∃r0 > 0 ∀x ∈ Ω : supp(p(x, ·)) ⊂ B(x, r0),

then, for all δ ∈ [0, π/2), there exists ω > 0 such that

Re eiϕ〈(T̺ − I)g, g 〉 ≤ ω̺2‖g‖22 for all g ∈ L2(Ω), |̺| ≤ 1, |ϕ| ≤ δ.

P r o o f. We can adopt the arguments of the proof of [H-SC, Lemma 2.3]
although in [H-SC] the Davies perturbations are defined with respect to

Ã = {d(x0, ·) : x0 ∈ Ω}. First we note that

(15) |e̺ψ(x) − e̺ψ(y)| ≤ r0|̺|(e
̺ψ(x) + e ̺ψ(y)), x ∈ Ω, y ∈ B(x, r0),

for all ̺ ∈ R and ψ ∈ A. Defining f := e−̺ψg we have

4〈(I − T̺)g, g〉

= 4〈(I − T )f, e2̺ψf〉

= 2
\
(f(x)− f(y))(e2̺ψ(x)f(x)− e2̺ψ(y)f(y)) k(x, y) dx dy

=
\
|f(x)− f(y)|2(e 2̺ψ(x) + e2̺ψ(y))k(x, y) dx dy

+
\
(f(x)− f(y))(f(x) + f(y))(e2̺ψ(x) − e2̺ψ(y))k(x, y) dx dy

= E1 +E2.

The first term E1 is nonnegative. Using the Cauchy–Schwarz inequality, (14)
and (15), we can estimate the second term E2 by

|E2|
2 ≤
\
|f(x)− f(y)|2(e̺ψ(x) + e̺ψ(y))2k(x, y) dx dy

×
\
|f(x) + f(y)|2|e̺ψ(x) − e̺ψ(y)|2k(x, y) dx dy

≤ 8r20E1̺
2
\
(|f(x)|2 + |f(y)|2)(e2̺ψ(x) + e2̺ψ(y))k(x, y) dx dy

≤ CE1̺
2‖e̺ψf‖22 (|̺| ≤ 1)

≤ (cos(δ)E1 + 4ω̺2‖g‖22)
2
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for suitable C,ω > 0 independent of |̺| ≤ 1, ψ ∈ A and g ∈ L2(Ω). This
shows

Re eiϕ〈(I − T̺)g, g〉 ≥ cos(ϕ)E1/4− |E2/4| ≥ −ω̺2‖g‖22.

Proof of Theorem 1.4. Fix some δ ∈ (0, π/2), choose ω > 0 as in
Lemma 4.1 and set ω′′

0 := cos(δ)−1ω. Employing Lemma 4.1 for functions

g ∈ L2(Ω) of the type g = ete
iϕ(T̺−I−ω

′′

0 ̺
2)f shows

d

dt
‖ete

iϕ(T̺−I−ω
′′

0 ̺
2)f‖22 ≤ 0 for all f ∈ L2(Ω), |̺| ≤ 1, |ϕ| ≤ δ, t ≥ 0.

Hence ‖ez(T̺−I−ω
′′

0 ̺
2)‖2,2 ≤ 1 for all |arg(z)| ≤ δ, which implies

‖λR(λ, T̺ − I − ω′′
0̺

2)‖2,2 ≤ C for all λ ∈ Σδ, |̺| ≤ 1

by well known semigroup theory [P]. Now arguing as in the proof of [H-SC,
Lemma 2.4] and of [H-SC, Lemma 2.2] yields the following two estimates:

‖Tn̺ ‖2,2 ≤ Ceω
′

0̺
2n, ‖Tn̺ ‖1,2, ‖T

n
̺ ‖2,∞ ≤ Cn−N/4eω

′

0̺
2n

for all n ∈ N, ̺ ∈ R and some ω′
0 > 0. In particular, T is powerbounded so

that its selfadjointness implies σ(T ) ⊂ [−1, 1]. Our additional assumption
−1 6∈ σ(T ) thus ensures

σ(T ) ⊂ (−1, 1].

By Nevanlinna’s Theorem [N1, Thm. 4.5.4] the operator T is analytic and
Theorem 1.4 follows from Proposition 1.3.
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piński graph, Stochastic Process. Appl. 61 (1996), 45–69.

[N1] O. Nevanl inna, Convergence of Iterations for Linear Equations, Birkhäuser,
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