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SOME EXAMPLES OF TRUE Fσδ SETS

BY

MAREK B A L C E R Z A K ( LÓDŹ) AND

UDAYAN B. D A R J I (LOUISVILLE, KY)

Abstract. Let K(X) be the hyperspace of a compact metric space endowed with the
Hausdorff metric. We give a general theorem showing that certain subsets of K(X) are
true Fσδ sets.

Let (X, d) be a perfect compact metric space and for x ∈ X and ε > 0
let B(x, ε) denote the ball in X centered at x with radius ε. By X = K(X)
we denote the set of all nonempty closed subsets of X endowed with the
Hausdorff metric

δ(K,L) = max{max
x∈K

d(x, L),max
x∈L

d(x,K)}

or equivalently with the Vietoris topology that is generated by the sets of
the form

{K ∈ X : K ⊆ U} and {K ∈ X : K ∩ U 6= ∅}.
where U is open in X. By A we denote the closure of A ⊆ X. A set is called
true Gδ (respectively, true Fσ) if it is Gδ (respectively, Fσ) and is not Fσ
(respectively, Gδ). True Fσδ sets and true Gδσ sets are defined analogously.
Several examples of true Fσδ sets in Polish spaces are given in [5, 23A–E].
In this paper we describe a class of new examples of true Fσδ sets in the
hyperspace X . Note that some results on true Gδσ subsets of the hyperspace
were obtained in [8].

Let I ⊆ X be such that

1. I is hereditary, i.e. if A ∈ I, B ⊆ A and B ∈ X , then B ∈ I,
2. if F ⊆ X is finite then F ∈ I,
3. if F ∈ I then F is nowhere dense in X, and
4. I is a Gδ subset of X .
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We observe that such an I is necessarily a true Gδ subset of X as I and
X \ I are dense in X . We define

M = {K ∈ X : (∀U ⊆ X,U open)(K ∩ U = ∅ or K ∩ U 6∈ I)}.

A member ofM will be called an I-perfect set. This notion appeared in
[7]. Natural examples of families I with Properties 1–4 can be produced from
the respective subfamilies of P(X), the power set of X. For instance, if N is
the σ-ideal of Lebesgue null sets in X = [0, 1] then I = N ∩X is good. Note
that, if J ⊆ P(X) is a σ-ideal with suitable properties then for I = J ∩X ,
I-perfect sets coincide with perfect sets in the so-called *topology generated
by J . (See [2] and [3].) In the measure case, the notion of an I-perfect set
is well known and considerably exploited in various contexts. For instance,
it was used in [4] in the classification of Lebesgue null sets and called a
self-supporting set. A recent application in real function theory is contained
in [1]. In the category case, an I-perfect set simply means a closed set whose
nonempty intersection with an open set has a nonempty interior. We show
the following result:

Theorem 1. Let X, X and M be as stated. Then, M is a true Fσδ
subset of X .

As applications, we obtain the following corollaries. A nonempty inter-
section of a closed set K ⊆ X with an open set in X will be called a portion
of K.

Corollary 1. Let n ≥ 1 be an integer and X = [0, 1]n. Let M consist
of all K ∈ X such that every portion of K has positive n-dimensional
Lebesgue measure. Then M is a true Fσδ set.

P r o o f. Apply Theorem 1 to the σ-ideal I of compact sets with n-
dimensional Lebesgue measure zero. It is well known that I is a Gδ subset
of K([0, 1]n) (for example see [5, 23.9]).

Corollary 2. Let n ≥ 1 be an integer and X = [0, 1]n. Let

M = {K ∈ X : every portion of K has positive Hausdorff dimension}.

Then M is a true Fσδ set.

P r o o f. All we need to observe is that

I = {M ∈ X : the Hausdorff dimension of M is zero}

is a Gδ set. (The other requirements on I hold trivially.) Indeed, fix 0 <
s ≤ n and let Hs be the Hausdorff s-measure defined on X . As Hs is upper
semicontinuous (see [5, 30.15]), we see that (Hs)−1({0}) is a Gδ subset
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of X . As

I =

∞⋂
j=1

(Hn/j)−1({0}),

we see that I is a Gδ subset of X .

Corollary 3. Let X be a perfect compact metric space. Let

M = {K ∈ X : every portion of K is nonmeager}.

Then M is a true Fσδ set.

P r o o f. Again we apply Theorem 1 to the σ-ideal I of compact meager
subsets of X. See [5, 23.9] for the fact that I is a Gδ subset of X .

Let us make two remarks. First, in our applications each I satisfies the
additional property of being a σ-ideal of compact sets. Indeed, a rather
useful theorem of Kechris, Louveau and Woodin [6] states that a coanalytic
σ-ideal of compact sets is either a true coanalytic set or a Gδ set. The second
remark is that our set M, the collection of I-perfect sets, is Π0

3 complete.
(See [5, 22.10, 24.20].)

Proof of Theorem 1. For each positive integer n, we let Bn be a finite
minimal collection of open balls with radius 1/n which covers X. Observe
that

⋃∞
n=1 Bn forms a topological base of X. We first prove a simple lemma.

Lemma 1. For each positive integer n, let Mn = {K ∈ X : (∀U ∈ Bn)
(K∩U = ∅ or K∩U 6∈ I)}. Then eachMn is an Fσ set andM =

⋂∞
n=1Mn.

P r o o f. ThatM =
⋂∞
n=1Mn follows simply because

⋃∞
n=1 Bn is a topo-

logical base of X and I is hereditary. To show thatMn is an Fσ set we will
prove that for each open set U in X, HU = {K ∈ X : K ∩ U = ∅ or K ∩ U
6∈ I} is an Fσ set. First, the set {K ∈ X : K ∩ U = ∅} is closed. The set

{K ∈ X : K ∩ U 6∈ I} = {K ∈ X : (∃F ∈ X )(F 6∈ I and F ⊆ K ∩ U)}

is Fσ since it is the projection onto the first coordinate of the σ-compact set
formed by the intersection of the closed set {(K,F ) ∈ X 2 : F ⊆ K} and the
Fσ set {(K,F ) ∈ X 2 : F ⊆ U and F 6∈ I}.

We prove Theorem 1 by contradiction. Assume thatM =
⋃∞
i=1 Gi where

Gi are Gδ sets. We will construct a sequence of closed sets Pi such that
Pi∩Gi = ∅ and

⋂∞
i=1 Pi contains an element ofM, yielding a contradiction.

We construct Pk by induction.

Let k = 1. Observe that M1 and X \M1 are dense in X . Indeed, let
H∈X and ε > 0. Let F ⊆ H be a finite set such that δ(H,F ) < ε/2. Let K
be the closed set formed by putting closed balls of radius ε/4 around each
point of F . Then δ(H,F ) < ε, F 6∈ M1 and δ(H,K) < ε, K ∈M1.
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As M1 is Fσ and M1 and X \M1 are dense in X we see that G1 is not
dense in X . If it were, we would have two disjont Gδ sets, G1 and X \M1,
both dense in X . This would contradict the fact that X is a Polish space.
Hence G1 is not dense in X . Using this fact, let F = {x1, x2, . . . , xt1 , p} be a
finite set and ε ∈ (0, 1) be such that the ball in X centered at F with radius
ε misses G1. Now, let γ1 ∈ (0, ε) be such that no two points of F are within
4γ1 of each other. Let

P1 =
{
K ∈ X :

t1⋃
i=1

B(xi, γ1) ∪ {p} ⊆ K ⊆
t1⋃
i=1

B(xi, γ1) ∪B(p, γ1)
}
.

Then P1 is a closed set which misses G1.

Now suppose we are at stage k, Pk is a closed subset of X which misses
G1,G2, . . . ,Gk and there is a sequence of points x1, x2, . . . , xtk , p in X and a
sequence of positive numbers r1, r2, . . . , rtk and a real number γk ∈ (0, 1/k)
such that

• Pk = {K ∈ X :
⋃tk
i=1B(xi, ri)∪ {p} ⊆ K ⊆

⋃tk
i=1B(xi, ri)∪B(p, γk)},

• B(x1, r1), B(x2, r2), . . . , B(xtk , rtk), B(p, γk) are pairwise disjoint.

Let us construct Pk+1 now. Let n be sufficiently large so that if U ∈ Bn,
then U intersects at most one of the sets

B(x1, r1), B(x2, r2), . . . , B(xtk , rtk), B(p, γk).

We can show in a fashion similar to the case k = 1 that Mn ∩ Pk and
Pk \ Mn are dense in Pk. As Mn ∩ Pk is a dense Fσ subset of Pk, and
Pk \ Mn is dense in Pk as well, we see that Gk+1 ∩ Pk ⊆ Mn ∩ Pk is

not dense in Pk. Notice that sets of the form
⋃tk
i=1B(xi, ri) ∪ F , where

F ⊂ B(p, γk) is finite with p ∈ F , constitute a dense subfamily of Pk.
Thus we can choose a finite set F ⊆ B(p, γk) containing p, and a number
ε ∈ (0, 1/(k + 1)) such that {K ∈ Pk : δ(K,

⋃tk
i=1B(xi, ri) ∪ F ) < ε}

misses Gk+1. Now let γk+1 ∈ (0, ε) be such that no two points of F are
within 4γk+1 of each other and B(x, γk+1) ⊆ B(p, γk) for x ∈ F . Now
list points of F \ {p} as xtk+1, xtk+2, . . . , xtk+1

and let rtk+1 = rtk+2 =

. . . = rtk+1
= γk+1. Let Pk+1 = {K ∈ X :

⋃tk+1

i=1 B(xi, ri) ∪ {p} ⊆ K ⊆⋃tk
i=1B(xi, ri) ∪ B(p, γk+1)}. Then Pk+1 ⊆ Pk and Pk+1 misses Gk+1. We

also see that Pk+1, x1, x2, . . . , xtk+1
, p, r1, r2, . . . , rtk+1

and γk+1 satisfy the
required induction hypothesis.

Now let us observe that our sequence {xj} converges to p and
⋂∞
i=1 Pi

is simply the set consisting of K =
⋃∞
i=1B(xi, ri) ∪ {p}. Clearly, K ∈ M,

however, K 6∈
⋃∞
i=1 Gi, contradicting M being Gδσ.
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