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Abstract. We consider a class of two-dimensional non-commutative Cohen–Macaulay
rings to which a Brauer graph, that is, a finite graph endowed with a cyclic ordering of
edges at any vertex, can be associated in a natural way. Some orders Λ over a two-
dimensional regular local ring are of this type. They arise, e.g., as certain blocks of Hecke
algebras over the completion of Z[q, q−1] at (p, q−1) for some rational prime p. For such
orders Λ, a class of indecomposable maximal Cohen–Macaulay modules (see introduction)
has been determined by K. W. Roggenkamp. We prove that this list of indecomposables
of Λ is complete.

Introduction. For a rational prime p, and a finite Coxeter group G, let
HG denote the Hecke algebra of G over Z[q, q−1] (see [5, I, §11], [8], [9]), and
H := Z[q, q−1]m⊗HG be its completion at the maximal ideal m := (p, q− 1)
of Z[q, q−1]. Then modulo (q − 1), every block B of ZpG lifts to a block
B of H. In particular, if B is of cyclic defect with Brauer tree T , then B
is a tree order with respect to T over the two-dimensional ring Z[q, q−1]m
(cf. [17, Theorem 3.2]). A more general case, Brauer graph orders Λ over
a two-dimensional regular domain R, has been investigated in [16]. These
R-orders Λ can be described as follows. In case Λ is basic, there is an over-
order Γ = Γ1 × . . .× Γr of Λ with
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where Ωi are local Cohen–Macaulay orders, and Πi is an invertible ideal in
Ωi (cf. [19, §3]). Hence

Ji :=
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is an invertible ideal of Γi such that Γi/Ji = Ωi/Πi × . . . × Ωi/Πi. Now Λ
is determined by the inclusions J := J1 × . . . × Jr ⊆ Λ ⊆ Γ with Λ/J =
Λ1 × . . .× Λs, where each Λk is a diagonal in some Ωi/Πi ×Ωj/Πj (only if
Ωi/Πi

∼= Ωj/Πj) such that Γ/J has exactly 2s factors of the form Ωi/Πi.
The Brauer graph of Λ is obtained as follows. If Γi are interpreted as vertices,
and the (cyclically ordered) factors Ωi/Πi of each Γi/Ji as germs of edges
connected with Γi, then the edges are given by the diagonals Λk ⊆ Ωi/Πi×
Ωj/Πj .

Let K be the quotient field of R. In the case where Λ is of prime defect
type, i.e. when the Ωi/Πi are hereditary orders in a skew field, K. W. Rog-
genkamp [16] determined the indecomposable maximal Cohen–Macaulay
modules M over Λ which admit a Cohen–Macaulay filtration. This means
that there is a decomposition KΛ = A1 × . . .×An of the K-algebra KΛ =
K ⊗R Λ into blocks Ai such that the factor modules Mi/Mi−1 of the cor-
responding filtration 0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M of M with Mi :=
M∩(A1⊕. . .⊕Ai)M are Cohen–Macaulay modules. The question remained
open whether these indecomposables M exhaust the totality of indecompos-
able maximal Cohen–Macaulay modules over Λ.

In the present note, we prove this statement (see Theorem of §3). Notice
that Λ does not represent an isolated singularity in the sense of Auslander [1].
In fact, in the above notation, the ideal P ⊇ J of Λ with P/J = Λ1 ×
. . . × Λs−1 is prime, and the localization Λ(P∩R) is not hereditary. Hence
there is no Auslander–Reiten quiver of all indecomposable maximal Cohen–
Macaulay modules. Nevertheless, by a result of [3], it is possible to give a
partial Auslander–Reiten quiver (see §4), consisting of the indecomposable
maximal Cohen–Macaulay modules M with Mp projective or injective for
all prime ideals p of height one in R (cf. [18]).

Regarding Λ as a ring with Green walks (cf. [7]) as introduced in [19],
our approach is slightly more general. Instead of orders over a regular local
domain, we consider (non-commutative) Cohen–Macaulay rings in the sense
of [20]. In analogy with the commutative case (see, e.g., [23, IV.B]) we define
a two-dimensional Cohen–Macaulay ring as a left noetherian semilocal ring
Λ which has a pair {P,Q} of invertible ideals with P +Q ⊆ RadΛ cofinite
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in ΛΛ such that (P + Q)/P is invertible in Λ/P . Such a system {P,Q} is
called a Cohen–Macaulay system for Λ. The definition implies that {Q,P}
is then also a Cohen–Macaulay system, and PQ = QP . If in addition,
P + Q = RadΛ holds for some Cohen–Macaulay system {P,Q}, then Λ
is called regular . For example, hereditary orders over a complete discrete
valuation domain are regular in this sense.

In §2 we recall the definition of a ring Λ with Green walks [19]. As in the
case of Brauer graph orders, there is an over-ring Γ of Λ with an invertible
ideal J ⊆ Λ, and there is a combinatorial object H (see §2) associated with
Λ which generalizes the Brauer graph. In this article we assume H to be a
graph. Then Λ is called a Brauer graph ring if Λ and Γ are Cohen–Macaulay
rings. We say that Λ is of prime defect type (cf. [17] when Λ is an order) if
the invertible ideal J of Γ is part of a Cohen–Macaulay system {J,Q} with
J +Q = RadΓ . In particular, Γ is a regular ring in this case.

The reader is referred to [1], [5], [12], [15] for basic terminology and facts
concerning representation theory of orders over a regular ring, to [1], [3],
[4], [14] for basic facts on Auslander–Reiten quivers, and to [23], [25] for
the commutative theory of Cohen–Macaulay rings and modules. Rings are
always assumed to be associative with unit element. Modules are assumed to
be unitary left modules if not specified otherwise. The category ofR-modules
(resp. finitely generated R-modules) is denoted by R-Mod (resp. R-mod).

1. Cohen–Macaulay rings. First, we collect some results on non-
commutative Cohen–Macaulay rings [20], [21] which will be used in the
statement and proof of our main theorem in §3.

A (two-sided) ideal P of a ring R is said to be invertible if RPR belongs
to the Picard group Pic(R) of R (cf. [5, II, §55]), i.e. if RP is a progenerator
with EndR(P ) = Rop. The multiplicative semigroup of invertible ideals in R
will be denoted by R◦. Then we define the quotient ring (see [20])

R̃ := lim−→{P
−1 | P ∈ R◦}(1)

of R, where P−1 := HomR(P,R). Thus R is a subring of R̃, and for P ∈ R◦,

P · P−1 = P−1 · P = R.(2)

For an R-module M , we consider the subsemigroup R◦(M) of R◦ consisting
of the P ∈ R◦ such that Px 6= 0 for all non-zero elements x ∈M . These P
are therefore called M -invertible. For instance, if I ⊆ RadR is an ideal of
R, and P ∈ R◦, then the ideal P +I/I of R/I is invertible if and only if P is

R(R/I)-invertible and (R/I)R-invertible [20, Proposition 5, and Corollary 2
of Proposition 4]. If R is noetherian with respect to two-sided ideals, then
the second condition can be dropped [20, Corollary of Proposition 5]. We say
that an R-module M is a lattice if R◦(M) = R◦. Equivalently, this means
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that the natural homomorphism

M → R̃⊗RM(3)

(which maps x ∈M to 1⊗ x) is injective.
Recall that a commutative noetherian local ring R is said to be Cohen–

Macaulay (see, e.g., [23]) if there exists a sequence a1, . . . , an ∈ RadR such
that ai is a non-zerodivisor modulo Ra1 + . . .+Rai−1 for i ∈ {1, . . . , n}, and
R/(Ra1 + . . .+Ran) is of finite length. Similarly, we define a left noetherian
semilocal ring R to be a Cohen–Macaulay ring if there are invertible ideals
P1, . . . , Pn ⊆ RadR with P1+. . .+Pn cofinite in RR such that P1+. . .+Pi+1

is invertible modulo P1 + . . . + Pi, for i ∈ {1, . . . , n − 1}. We proved (l.c.)
that this definition is invariant under permutation of P1, . . . , Pn, and that
it implies PiPj = PjPi for all i, j. If in addition,

P1 + . . .+ Pn = RadR,(4)

then we speak of a regular ring R.
In what follows, we assume that R is a Cohen–Macaulay ring. For

M ∈ R-mod, a set P := {P1, . . . , Pn} of pairwise commuting invertible
ideals in R is called a defining system for M if I := P1 + . . .+Pn is a defin-
ing ideal , i.e. if I ⊆ RadR, and M/IM is length-finite. Then the length
function f(i) := l(M/IiM) is a rational polynomial for large i [20, Theo-
rem 1], and in case M 6= 0, the degree of f (which does not depend on I) is
called the dimension of M and is denoted by dimM . In particular, dimR :=
dim(RR). The defining system P forM is called a Cohen–Macaulay system if
P ⊆ R◦(M), and

Pi+1 ∈ R◦(M/(P1 + . . .+ Pi)M)(5)

holds for i ∈ {1, . . . , n − 1}. If such a P exists, then n = dimM , and
we call M a Cohen–Macaulay R-module. Here we are interested in maxi-
mal Cohen–Macaulay modules, i.e. Cohen–Macaulay modules M for which
the equality dimM = dimR holds, including the zero module M = 0. By
[20, Proposition 9 and Corollary 2] we get:

Proposition 1. Let R be a Cohen–Macaulay ring , and M an R-module.

(a) If M is a Cohen–Macaulay module, then dimN = dimM for every
non-zero submodule N of M .

(b) If M is a maximal Cohen–Macaulay module, then M is a lattice.
(c) If M is a lattice with dimM = 1, then M is a Cohen–Macaulay

module.

O u t l i n e o f p r o o f. (a) Let M be a Cohen–Macaulay module with
Cohen–Macaulay system {P1, . . . , Pn}. Suppose there is a non-zero submod-
ule N of M with dimN < n. A slight generalization of [10, Corollary 12]
implies (see [20, Proposition 6]) that P1 has the full Artin–Rees property
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(with respect to N), i.e. there exists an integer m > 0 with N ∩ Pm+i
1 M =

P i1(N ∩ Pm1 M) for all i ∈ N. We show first that N ′ := N ∩ Pm1 M is
zero. Otherwise N ′/Pm1 N

′ = N ′/(N ′ ∩ P 2m
1 M) ∼= (N ′ + P 2m

1 M)/P 2m
1 M ⊆

M/P 2m
1 M . Since P1 is M -invertible, it can be shown (see [20, Theorem 2])

that dimM = 1 + dimM/P1M and similarly, dimN ′ = 1 + dimN ′/Pm1 N
′.

Moreover, it is easy to see that dimM/P 2m
1 M = dimM/P1M . Hence

dimN ′/Pm1 N
′ < dimM/P 2m

1 M . In order to apply induction, we have to
show that {P2, . . . , Pn} is a Cohen–Macaulay system for M/P 2m

1 M . This
follows by a characterization of Cohen–Macaulay systems given in [20, The-
orem 3 and Corollary 2 of Proposition 7]. Therefore we have N ′/Pm1 N

′ = 0,
and thus Pm1 N ⊆ N ′ = 0 by Nakayama’s lemma. Hence N = 0, a contra-
diction which proves (a).

(b) Next let P ⊆ RadR be an invertible ideal of R. Using properties
of the Hilbert-Samuel polynomial for R, it can be shown [20, Theorem 2]
that dimR/P < dimR. For a maximal Cohen–Macaulay R-module M , this
implies dimM/PM ≤ R/P < dimR = dimM . In order to show that P is
M -invertible, we make use of a generalized Fitting lemma [20, Lemma 6]:
There exists an integer m > 0 with PmM ∩ [Pm]M = 0, where [Q]M :=
{x ∈ M | Qx = 0}. Hence dim[P ]M ≤ dim[Pm]M ≤ dimM/PmM <
dimM . By the above, we infer [P ]M = 0, i.e. P ∈ R◦(M). If P ∈ R◦ does
not satisfy P ⊆ RadR, it suffices to choose any invertible ideal Q ⊆ RadR.
Then QP ⊆ RadR is invertible, hence M -invertible, and thus P is also
M -invertible. This proves that M is a lattice.

(c) Conversely, let M be a one-dimensional lattice. Then dimR ≥ 1, and
there exists an invertible ideal P ⊆ RadR which is therefore M -invertible.
As above, this implies dimM/PM = dimM −1 = 0, i.e. M/PM is of finite
length. Hence M is a Cohen–Macaulay module.

We need the following two results proved in [20] and [21].

Proposition 2. If R is a regular ring with dim R ≤ 2, then M ∈
R-mod is a maximal Cohen–Macaulay module if and only if M is projective.

P r o o f. If M is projective, then it is a direct summand of a (finitely
generated) free R-module, hence a maximal Cohen–Macaulay module. Con-
versely, let M 6= 0 be a maximal Cohen–Macaulay module. In [20] we
proved that n := dimR ≤ 2 implies that every Cohen–Macaulay system
{P1, . . . , Pn} for R is also a Cohen–Macaulay system for M . Since R is
regular, we may assume P1 + . . . + Pn = RadR. Thus if n = 0, then R
is semisimple, whence M is projective. Now we proceed by induction. For
n > 0 it follows that M/P1M is a maximal Cohen–Macaulay module over
the regular ring R/P1. Therefore we may assume that M/P1M is projective
over R/P1. As P1 ⊆ RadR is invertible, a simple argument shows that M
is projective (see [21, Lemma 1.1]).
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Proposition 3. Let R be a Cohen–Macaulay ring and M a two-dimen-
sional Cohen–Macaulay module over R.

(a) Every defining system for M is a Cohen–Macaulay system.

(b) A submodule N of M is Cohen–Macaulay if and only if there is no
submodule N ′ between N and M such that the module N ′/N is of finite
length.

Outline of proof. (a) Let {P1, P2} be a defining system for M . Then
1 ≤ dimM/P1M ≤ 1 + dimM/(P1 + P2)M = 1 implies dimM/P1M = 1.
As in the proof of Proposition 1(b), we use the generalized Fitting lemma
[20, Lemma 6] to show that P1 is M -invertible. Moreover, the lemma yields
Pm2 (M/P1M) ∩ [Pm2 ](M/P1M) = 0 for some (large) integer m. Hence we
obtain an embedding of [Pm2 ](M/P1M) into M/(P1 + Pm2 )M which shows
that [Pm2 ](M/P1M) is of finite length l. We have to show that l = 0. To this
end, let {Q1, Q2} be any Cohen–Macaulay system for M . There is a sub-
module N of M with [Pm2 ](M/P1M) = N/P1M . Hence Qr1P

−1
1 N/Qr1M is

of length l, and we can choose r∈N such that Qr1P
−1
1 N⊆M . Furthermore,

there exists some s ∈ N with Qs2 · Qr1P−11 N ⊆ Qr1M . Hence Qs2Q
r
1P
−1
1 N ⊆

Qr1M ∩Qs2M = Qs2Q
r
1M since {Qr1, Qs2} is a Cohen–Macaulay system for M

(see [20, Corollary 2 of Proposition 7]. Thus we obtain P−11 N ⊆ M , i.e.
l = 0.

(b) Let N be a submodule of M . For N = 0 the assertion follows by
Proposition 1. Thus assume N 6= 0. Every Cohen–Macaulay system {P,Q}
for M is a defining system for N . Hence N is Cohen–Macaulay if and only if
PN ∩QN = PQN , i.e. N ′ := P−1N ∩Q−1N = N . By a similar argument
to the proof of (a), the statement follows since N ′/N is length-finite.

The following result is a two-dimensional version of [21, Proposition 1]:

Proposition 4. If dimR = 2, and M2 ↪→ M1 → M0 is an exact
sequence in R-mod with maximal Cohen–Macaulay modules M0,M1, then
M2 is a maximal Cohen–Macaulay module.

P r o o f. By Proposition 3, every Cohen–Macaulay system {P,Q} for

RR is a Cohen–Macaulay system for M0 and M1. If M is the image of
M1 → M0, then the short exact sequence M2 ↪→M1 �M yields a short
exact sequence PM2 ↪→ PM1 � PM , and thus an induced short exact
sequence M2/PM2 ↪→ M1/PM1 � M/PM . Now it follows immediately
that {P,Q} is a Cohen–Macaulay system for M2.

Suppose that R is commutative. Then an R-algebra Λ which is finitely
generated as an R-module is said to be an R-order if RΛ is a lattice. The
following result [20, Theorem 4] shows that the above concept of Cohen–
Macaulay module generalizes the classical notion (see, e.g., [23, IV.B]).
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Proposition 5. Let Λ be an order over a local Cohen–Macaulay domain
R. Then a Λ-module M is a Cohen–Macaulay module if and only if M is a
classical Cohen–Macaulay module over the commutative ring R.

2. Brauer graph rings. Recall from [19] the definition of a ring with
Green walks. For a module M over a semiperfect ring S, the proradical
ProM is defined to be the sum of the images of all homomorphisms E →
F → M with non-isomorphic indecomposable projective S-modules E
and F . Then ProS := Pro(SS) is an ideal of S, contained in RadS, with
ProM = (ProS)M for each M ∈ S-Mod. Moreover, S/ProS is a prod-
uct of matrix rings over local rings. If there exists an ideal P ∈ S◦ with⋂
P i = 0 and ProS ⊆ P ⊆ RadS, then S is called prohereditary (with

respect to P ). Note that the condition
⋂
P i = 0 is automatic whenever S

is left noetherian (since P has then the Artin–Rees property [11, 4.2]). A
semiperfect subring R of S is called a Bäckström ring (with respect to S
and P ) if ProR ⊆ P ⊆ R, and S/P is projective as a left R/P -module.
For example, if Λ is a Bäckström order over a complete discrete valuation
domain (see, e.g., [15]), then Λ has a unique hereditary over-order Γ with
J := RadΓ = RadΛ. Thus Λ is a Bäckström ring with respect to Γ and
J . A Bäckström ring R with respect to S and P is said to be a ring with
Green walks [19] if each indecomposable projective S/P -module remains in-
decomposable over R/P . Then the structure of R is essentially given by its
underlying cycle hypergraph HS

R (see [19, §4]) which yields the projective
resolution of R/P by walking around HS

R under Green’s celebrated rule [7].

For the present purpose, consider the case where HS
R is a graph (hence-

forth denoted by GR), i.e. when for each indecomposable projective R-
module E, the S-module SE decomposes into exactly two non-isomorphic
direct summands. If in this case, R and S are (left noetherian) Cohen–
Macaulay rings, then R will be called a Brauer graph ring (with respect to
S and P ). If in addition, S has a Cohen–Macaulay system {P1, . . . , Pn} with
P1 = P and P1 + . . . + Pn = RadS, then we say that R is of prime defect
type.

Note. All the above concepts are invariant under Morita equivalence. In
particular, if E is a progenerator for a Brauer graph ring R as above, then
R′ := (EndRE)op is a Brauer graph ring with respect to S′ := (EndRSE)op

and P ′ := HomR(E,PE), and the Brauer graphs GR and GR′ coincide. If
R is of prime defect type, the same is true for R′.

3. The main theorem. Before we state our main theorem which clas-
sifies the maximal Cohen–Macaulay modules over a two-dimensional Brauer
graph ring of prime defect type, let us prove a preliminary result.



246 W. RUMP

Lemma 1. Let R be a two-dimensional Brauer graph ring with respect
to S and P of prime defect type. Then RS is a maximal Cohen–Macaulay
module, dimS = 2, and every invertible ideal Q ∈ R◦ commutes with S.

P r o o f. Since S/P is finitely generated and projective over R/P , it fol-
lows that RS is finitely generated, and thus dimRS = 2. Then RadS =
(RadR)S implies dimS = 2.

Let E1 be an indecomposable projective S-module. Then there exists an
indecomposable projective R-module E with SE = E1 ⊕ E2, and E/PE is
diagonally embedded into E1/PE1⊕E2/PE2. Hence each R-submodule F of
E1 with PE1 ⊆ F is invariant under S. Furthermore, the natural projection
E � E2 yields an exact sequence PE1 ↪→ E � E2. Since E2

∼= P kE2 for
a suitable k ≥ 1, E2 can be embedded into E. Therefore, PE1 is a Cohen–
Macaulay module by Proposition 4. Since multiplication by P permutes
the indecomposable projective S-modules, we infer that RS is a Cohen–
Macaulay module. Hence QE1 is Cohen–Macaulay for each Q ∈ R◦, and
by Proposition 3 there is a maximal Cohen–Macaulay module F ∈ S-mod
with SQE1 ⊆ F ⊆ E1 and F/SQE1 length-finite. By Proposition 2, SF
is projective. Hence F/SQE1, and thus PF/PQE1 is length-finite as an
R-module. Since QE1 ∈ R-mod is Cohen–Macaulay, Proposition 3 yields
PF ⊆ QE1 ⊆ F . Therefore, the above shows that QE1 = SQE1. Moreover,
Proposition 3 implies QE1 = SQE1 = F . Hence QE1, and also Q−1E1

(=QkE1 for some k≥1) are projective S-modules. Consequently, SQ⊆QS
and SQ−1 ⊆ Q−1S, and thus SQ = QS.

In what follows, we assume thatR is a two-dimensional Brauer graph ring
with respect to S and P of prime defect type. We fix a Cohen–Macaulay
system {P,Q} for S with P + Q = RadS. Let E be an indecomposable
projective R-module, with non-trivial decomposition SE = E1 ⊕ E2, i.e. E
is an edge of GR, and the blocks of S containing E1 and E2, respectively, are
the nodes connected by E (see [19, §4]). For m ∈ Z we define the derived
series of E (cf. [16, §7]):

E(m) := E ∩ (QmE1 ⊕Q−mE2).(6)

By Lemma 1, E′ := E + (QmE1 ⊕ Q−mE2) is contained in a maximal
Cohen–Macaulay R-module. Hence by Proposition 4, the exact sequence
E(m) ↪→ E ⊕ (QmE1 ⊕ Q−mE2) → E′ implies that E(m) is a maximal
Cohen–Macaulay module. Moreover, the R-modules (6) are indecomposable
modulo P , hence indecomposable.

Lemma 2. Let Ω be a one-dimensional regular local ring , and V a finite
dimensional vector space over the skew field Ω̃. Moreover , let L1, L2 be
finitely generated Ω-submodules of V with Ω̃L1 = Ω̃L2 = V . Then V
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has a decomposition V = V1 ⊕ . . .⊕ Vn into one-dimensional subspaces with
Li = (Li ∩ V1) + . . .+ (Li ∩ Vn), i ∈ {1, 2}.

P r o o f. By assumption, J := RadΩ is invertible. Multiplying L2 by a
suitable power of J , we may assume L2 ⊆ L1 and L2 6⊆ JL1. Take projective
covers p1: P1 � L1/L2 + JL1 and p2: P2 � L2/L2 ∩ JL1. Since L1, L2 are
projective, p1 and p2 lift to embeddings Pi ↪→ Li. Hence, P1 + P2 + JL1 =
P1 + L2 + JL1 = L1 implies P1 + P2 = L1. Moreover, P1 ∩ P2 ⊆ P1 ∩
(L2 + JL1) = JP1. Hence P1 ∩ P2 ⊆ JL1 ∩ P2 = (L2 ∩ JL1) ∩ P2 = JP2,
and thus P1 ∩P2 ⊆ JP1 ∩JP2 = J(P1 ∩P2) since J is invertible. Therefore,
we obtain L1 = P1 ⊕ P2. Finally, (P1 ∩ L2) + (P2 ∩ L2) = (P1 ∩ L2) + P2 =
L2 ∩ (P1 + P2) = L2. The assertion now follows by induction.

Now we are ready to state our main result.

Theorem. Let R be a Brauer graph ring with respect to S ⊇ R and
P ⊆ R. Assume that R is of prime defect type. Then every indecomposable
maximal Cohen–Macaulay R-module is either an indecomposable projective
S-module, or of the form (6) with an indecomposable projective R-module E.

P r o o f. Without loss of generality, we may assume R to be basic. Then S
is also basic. Let {P1, P2} be a fixed Cohen–Macaulay system for R. For an
indecomposable maximal Cohen–Macaulay module RM , consider the largest
S-submodule N . By Proposition 3, RN is a Cohen–Macaulay module. In
fact, suppose there is an R-module N ′ between N and M such that N ′/N
is simple. Then (P1 + P2)SN

′ = S(P1 + P2)N
′ ⊆ N by Lemma 1, and thus

SN ′/N is of finite length. Hence SN ′⊆M , a contradiction. Therefore, RN is
a maximal Cohen–Macaulay module by Proposition 1, and Proposition 3
implies that {P1, P2} is a Cohen–Macaulay system for N .

By Lemma 1, {SP1, SP2} is a Cohen–Macaulay system for the S-module
N , whence SN is projective. Now S/P = S1 × . . .× S2r with local rings Si,
and R/P = R1×. . .×Rr with diagonals Ri ↪→ S2i−1×S2i. Hence P−1N/N =
N1 ⊕ . . . ⊕ N2r with Ni ∈ Si-mod, and M/N = M1 ⊕ . . . ⊕ Mr with
Ri-submodules Mi of N2i−1 ⊕N2i. Since P−1N is projective, these decom-
positions lift to P−1N = F1 ⊕ . . . ⊕ F2r with M = (M ∩ (F1 ⊕ F2)) ⊕ . . .
. . . ⊕ (M ∩ (F2r−1 ⊕ F2r)). Therefore, let us assume M ⊆ F1 ⊕ F2 with
PF1 ⊕ PF2 = N . Then PFi = M ∩ Fi, and SM = F ′1 ⊕ F ′2, where F ′i is
the projection of M into Fi. Let F ′′i ⊆ Fi be such that F ′′i /F

′
i is the largest

length-finite Si-submodule of Fi/F
′
i . Then Fi/F

′′
i is a lattice, hence projec-

tive by Proposition 1 and 2. Therefore, F ′′i /PFi is a direct summand of
Fi/PFi. Thus if M is not a projective S-module, the indecomposability of
M implies that Fi/F

′
i is length-finite.

Now R1 is a one-dimensional regular local ring, and the diagonal
R1 ↪→ S1 × S2 yields an identification R1 = S1 = S2. Moreover, the diago-
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nal M/N ↪→ F ′1/PF1 ⊕ F ′2/PF2 yields an isomorphism F ′1/PF1
∼→ F ′2/PF2

which extends to an isomorphism of vector spaces ω : R̃1 ⊗R1 F
′
1/PF1

∼→
R̃1⊗R1 F

′
2/PF2 over the skew field R̃1. Let us regard ω as an identification,

and define V := R̃1 ⊗R1 F
′
i/PFi. Then L := F ′i/PFi is a lattice in V , and

M/N can be viewed as the diagonal L ↪→ L ⊕ L ⊆ V ⊕ V . Moreover, the
Fi/PFi correspond to lattices Li in V , i ∈ {1, 2}. We claim that L1∩L2 = L.
In fact, there is an R-submodule M ′ of F1⊕F2 such that M ′/N corresponds
to the diagonal L′ ↪→ L′ ⊕ L′ ⊆ V ⊕ V with L′ := L1 ∩ L2. As M ′/M is
length-finite, Proposition 3 implies M ′ = M and thus L′ = L.

Now Lemma 2 yields a decomposition V = V1 ⊕ . . . ⊕ Vn into one-
dimensional subspaces which simultaneously decomposes L1 and L2. Equi-
valently, this yields a pair of decompositions Fi/PFi = Hi1⊕ . . .⊕Hin such
that M/N is decomposed under (H11 ⊕ H21) ⊕ . . . ⊕ (H1n ⊕ H2n). Hence
these decompositions lift to a decomposition F1⊕F2 = E1⊕ . . .⊕E2n with
M = (M ∩ (E1⊕E2))⊕ . . .⊕ (M ∩ (E2n−1⊕E2n)). Since M is indecompos-
able, we conclude n = 1. Then M/N ↪→ E1/PE1⊕E2/PE2, and the above
intersection condition (L1 ∩ L2 = L) implies that one of the projections
M/N→Ei/PEi is surjective. Consequently, M is of the desired form (6).

Remark. For a Brauer graph order of prime defect type over a two-
dimensional complete regular local ring, the indecomposables given in the
preceding theorem have been characterized by Roggenkamp [16] as indecom-
posable maximal Cohen–Macaulay modules which admit a Cohen–Macaulay
filtration (see introduction). The theorem therefore implies that this list of
indecomposables is complete.

4. A partial Auslander–Reiten quiver. Let R be a two-dimensional
commutative regular local ring, and Λ a Cohen–MacaulayR-order. By Prop-
osition 5 this means that Λ is an R-algebra which is finitely generated and
free as an R-module. Proposition 5 also implies that M ∈ R-mod is a
maximal Cohen–Macaulay module if and only if M is free over R. The
category of these modules M will be denoted by Λ-CM. In [22] we show
that Λ-CM is almost abelian, i.e. additive such that every morphism in
Λ-CM has a kernel and a cokernel, and cokernels (kernels) are stable under
pullback (pushout). A sequence

0→ N
u→M

v→ C → 0(7)

of modules in Λ-CM will be called exact if u = ker v and v = coku. Equiva-
lently, this says that u is a kernel of v in Λ-Mod, and v has a decomposition

v : M �M/Imu ↪→ (M/Imu)∗∗,

where ( )∗ := HomR(−, R). In particular, v need not be surjective. Ac-
cordingly, the concept of Auslander–Reiten sequence has to be extended to
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certain sequences (7) which are not exact in Λ-mod (cf. [13, 2.1]). Namely,
we define (7) to be an Auslander–Reiten sequence if it is a non-split exact
sequence with N and C indecomposable such that the usual factorization
property holds: every morphism E → C in Λ-CM which is not split epic
factors through v. By a standard argument (see [6]), the dual factorization
property follows: every morphism N → E in Λ-CM which is not split monic
factors through u. It is well known that up to isomorphism, an Auslander–
Reiten sequence (7) is determined by C (hence also by N).

We say that Λ-CM has almost split sequences if an Auslander–Reiten
sequence (7) exists for every indecomposable object C, and also for every
indecomposable object N in Λ-CM. (See Proposition 6 below. For dimR
6= 2 the projectives C and the modules N with N∗ ∈ Λop-mod projective
have to be excluded.) Let M = M1 ⊕ . . . ⊕Ms be a decomposition into
indecomposables in Λ-CM. For our present purpose it suffices to consider
the case where M1, . . . ,Ms are pairwise non-isomorphic. Then (7) can be
replaced by a diagram with (isomorphism classes of) indecomposables as
vertices:

N C

M1

Ms

·······
��

��1

PPPPq

PPPPq

��
��1

(8)

Thus if Λ-CM has Auslander–Reiten sequences, the totality of all di-
agrams (8) constitutes a graph AΛ with an automorphism τ : AΛ → AΛ
defined by τ(C) := N . The pair (AΛ, τ) is said to be the Auslander–Reiten
quiver of Λ.

Recall that Λ is said to be an isolated singularity [1] if Λp is regular for
each non-maximal prime ideal p of R. In other words: Λp is hereditary for p

of height one, and semisimple for p = 0. Auslander [1] has shown that Λ-CM
has Auslander–Reiten sequences if and only if Λ is an isolated singularity.
More generally, let PΛ denote the full subcategory of modules M in Λ-CM
such that Cp is a projective Λp-module for each non-maximal prime ideal
p of R, and IΛ := {N ∈ Λ-CM | N∗ ∈ PΛop}. The following proposition
generalizes the main result of [3].

Proposition 6. Let R be a two-dimensional commutative regular local
ring , and Λ a Cohen–Macaulay R-order. For an indecomposable C∈Λ-CM,
there exists an Auslander–Reiten sequence (7) if and only if C ∈ P. In this
case, N ∈ I.

P r o o f. By [3, Theorem 2.1], it remains to consider the case where C
is projective. The following argument, based on [2, Theorem 3.6], is due to
O. Iyama. Let R � I0 → I1 � I2 be an injective resolution of R-modules,
and S := C/RadC. Then the Ji := HomR(HomΛ(C,Λ), Ii) provide an in-
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jective resolution of N := HomΛ(C,Λ)∗. Hence Ext2Λ(S,N) is a cokernel of
HomΛ(S, J1) → HomΛ(S, J2). Now HomΛ(S, Ji) = HomR(HomΛ(C,Λ)
⊗Λ S, Ii) = HomR(HomΛ(C, S), Ii) = HomR(EndΛ(S), Ii). This implies
Ext2Λ(S,N) = Ext2R(EndΛ(S), R) 6= 0, which yields a non-split exact se-

quence N � M
c
� RadC of Λ-modules. Since c(M∗∗) ⊆ C, we get a

commutative diagram with exact rows:

N M RadC

N ′ M∗∗ C ′ ⊆ C

�o i //
oO

g PB
��

oO

��

// //
oO

��
�o i′ // // //

The square PB is a pullback, and N is R-free. Therefore, i′ induces an
embedding of N ′/N into the length-finite R-module M∗∗/M , whence g is an
isomorphism. As i is not split monic, the same is true for i′. Consequently,
C ′ = RadC, and thus M = M∗∗ ∈ Λ-CM. Therefore we obtain a non-split
exact sequence (7) in Λ-CM with N indecomposable. In order to prove
the factorization property, consider a morphism f : F → C in Λ-CM. The
pullback of (7) along f gives a short exact sequence N � E � F in Λ-mod.
Since N = HomΛ(C,Λ)∗, this sequence splits.

For each Auslander–Reiten sequence (7) in Λ-CM, the sequences

0→ Np
u→Mp

v→ Cp → 0(9)

are exact for all prime ideals p of height ≤ 1. Hence (9) splits for these p,
and the M1, . . . ,Ms in (8) belong to PΛ ∪ IΛ. Therefore, the diagrams (8)
make up a generalized Auslander–Reiten quiver with vertices in PΛ ∪ IΛ,
where τ is defined on PΛ, and τ−1 is defined on IΛ. Let us call this a partial
Auslander–Reiten quiver AΛ of Λ.

Now let Λ be a Brauer graph order with respect to Γ and J . Assume
that Λ is of prime defect type. Then PΛ = IΛ = (Λ-CM) r (Γ -CM), and
the partial Auslander–Reiten quiver has connected components of the form

E(−2) E(0) E(2)

E(−3) E(−1) E(1) E(3)

· · · · · ·
�
��

�
��

�
���

�	
�
�	

�
�	

@
@R

@
@R

@
@R@

@I
@
@I

@
@I(10)

with E indecomposable projective, and E(i) defined by (6). For each i ∈ Z,
there is an Auslander–Reiten sequence

0→ E(i) → E(i−1) ⊕ E(i+1) → E(i) → 0

which is exact in Λ-mod if and only if i 6= 0. Thus for each indecompos-
able projective Λ-module E, the derived series (6) constitutes a connected
component (10) of AΛ which has the structure of a double tube (see [14]).
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