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VOLUME MEAN VALUES OF SUBTEMPERATURES

BY

NEIL A. WAT SON (CHRISTCHURCH)

Abstract. Several authors have found the characteristic mean value formula for tem-
peratures over heat spheres. Those who derived a corresponding formula over heat balls
have all chosen different mean values. In this paper we discuss an infinity of possible means
over heat balls, and show that, in the wider context of subtemperatures, some are more
desirable than others.

It is extremely well known that, if h is a harmonic function on a neigh-
bourhood of a closed ball in R

n, then the value of h at the centre of the
ball is equal to both the average of h over the boundary of the ball and the
average of h over the ball itself. Conversely, any continuous function on an
open set which has either averaging property for every closed ball inside the
set is harmonic. Averages over balls or their boundaries are also used to
define subharmonic functions [3]. In that broader context they are very well
behaved. If r is the radius, then either mean value is finite, an increasing
function of r, a convex function of r2−n or log(1/r) according to the value
of n (cf. [6]), and there is constant κ such that the surface mean at radius
κr is less than or equal to the volume mean at radius r (cf. [1]), which is
less than or equal to the surface mean at radius r.

The corresponding situation for temperatures (solutions of the heat equa-
tion) and subtemperatures (the corresponding analogues of subharmonic
functions) is much less well known and is not standardized. Several authors
(Pini [5], Fulks [2], Smyrnélis [7], Kuptsov [4]) have shown how temperatures
can be characterized in terms of weighted mean values over “heat spheres”,
which are smooth convex surfaces of the form

{(x0, t0)}∪

{

(y, s) : ‖x0− y‖ =

(

2n(t0− s) log
c

t0 − s

)1/2

, t0− c ≤ s < t0

}

in R
n+1 = R

n ×R, where (x0, t0) and c > 0 are given. By analogy with the
harmonic case, (x0, t0) is called the “centre” and c the “radius” of the heat
sphere. These authors all obtained the same formula, but not in the same
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form. Mean values over “heat balls”, which are the domains

Ω(x0, t0; c) =

{

(y, s) : ‖x0 − y‖ <

(

2n(t0 − s) log
c

t0 − s

)1/2}

enclosed by heat spheres, have also been considered in several papers (Pini
[5], Smyrnélis [7], Watson [8], Kuptsov [4], Watson [10]). However, all but the
last two used different mean values. In this paper we study an uncountable
family of possible volume means, and show that some are more desirable
than others in the wider context of subtemperatures, because they have
direct analogues of all the above-mentioned properties of the mean values
of subharmonic functions over balls.

We need to establish more notation. For x ∈ R
n and t > 0, we put

Q(x, t) = ‖x‖2(4‖x‖2t2 + (‖x‖2 − 2nt)2)−1/2;

we also put Q(0, 0) = 1. The restriction to the heat sphere ∂Ω(x0, t0; c) of
the function (x, t) 7→ Q(x0 − x, t0 − t) is continuous, and is positive except
for a zero at (0, c). If τ(c) = (4πc)−n/2 and σ denotes surface area, we put

M(c) = M(u;x0, t0; c) = τ(c)
\

∂Ω(x0,t0;c)

Q(x0 − x, t0 − t)u(x, t) dσ

for any function u on ∂Ω(c) such that the integral exists. This is the surface
mean that characterizes temperatures, in that a continuous function u on
an open set E is a temperature if and only if u(x0, t0) = M(u;x0, t0; c)
whenever Ω(x0, t0; c) ⊆ E.

Integrating this surface mean to obtain a volume mean, we have un-
countably many possibilities to choose from. Perhaps the most natural ones
take the form

(1) Vβ(c) = Vβ(u;x0, t0; c) = βc−β
c\
0

rβ−1M(u;x0, t0; r) dr,

with β > 0 . In this notation, Pini (1954, case n = 1) chose V1(c
2), Smyrnélis

(1969) chose Vn(n+1)/2(c
2/n/4π), Watson (1973) chose Vn/2(c), and Kuptsov

(1981) chose V(n/2)+1(c
2) . Subsequently Watson (1990), while attempting

to prove that volume means of subtemperatures can be as well behaved as
those of subharmonic functions over balls, switched to V(n/2)+1(c) because
Vn/2(c) “is not the easiest to handle”. We prove below that Vn/2 does not
have all the desired properties.

We can express the means Vβ in rectangular coordinates using the func-
tion J , defined for all x ∈ R

n and t > 0 by

J(x, t) = 2nt exp

(

−
‖x‖2

2nt

)

(4‖x‖2t2 + (‖x‖2 − 2nt)2)−1/2.
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By [8, Lemma 3],
c\
0

( \
∂Ω(r)

f(y, s)J(x0 − y, t0 − s) dσ
)

dr =
\\

Ω(c)

f(y, s) dy ds,

so that if α = β2−n−1n−1π−n/2 then

Vβ(c) = αc−β
\\

Ω(c)

‖x0 − y‖2

(t0 − s)(n+4−2β)/2

× exp

(

(2β − n)‖x0 − y‖2

4n(t0 − s)

)

u(y, s) dy ds.

Thus the choice β = n/2 gives the simplest kernel in rectangular coordi-
nates, while the choice β = (n/2) + 1 gives the kernel with the parabolic
homogeneity associated with the heat equation, and makes c−β inversely
proportional to the volume of Ω(c).

Subtemperatures were defined in terms of the means M in [8]. We give
an equivalent formulation. If u is upper semicontinuous on an open set E,
never takes the value ∞, is finite on a dense subset of E, and satisfies

u(x0, t0) ≤ M(u;x0, t0; c)

whenever Ω(x0, t0; c) ⊆ E, then u is a subtemperature. It was proved in [8]
that M can be replaced by Vn/2 . In fact, any Vβ could be used.

In [11, p. 54], Watson proved that, whenever u is a subtemperature on
a neighbourhood of (x0, t0), we have

rn/2M(u;x0, t0; r) → 0 as r → 0.

Therefore Vβ(c) is always finite if β > n/2 . We show that Vβ(c) may be
infinite if 0 < β ≤ n/2 . Since M is an increasing function (see [8]), it
follows from (1) that Vβ(u;x0, t0; c) is either finite for all c, or is −∞ for
all c.

Example. Given (x0, t0), put d = e−e, and let µ be the measure con-
centrated on {x0} × [t0 − d, t0] with density

f(s) =
1

s log(1/s)(log log(1/s))2
,

where s = t0 − t. Then

µ(Ω(r)) =

r\
0

f(s) ds =
1

log log(1/r)

whenever 0 < r ≤ d. In particular, µ(Rn+1) = 1, so that the potential

u(x, t) = −
\\

Rn+1

τ(t− s) exp

(

−
‖x− y‖2

4(t− s)

)

dµ(y, s)
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is a subtemperature on R
n+1, by [9, Theorem 16]. It therefore follows from

[11, Theorem 1] that

M(r) = M(d) +

d\
r

τ ′(s)µ(Ω(s)) ds

whenever 0 < r ≤ d. Writing λn = n22−n−2π−n/2, we have τ ′(s) =
−2n−1λns

−(n/2)−1 and hence

Vn/2(c) = M(d)− λnc
−n/2

c\
0

r(n/2)−1
(

d\
r

s−(n/2)−1µ(Ω(s)) ds
)

dr

whenever 0 < c ≤ d. By [10, Theorem 2], M(d) is finite. (In fact, using
[10, Example] and Tonelli’s theorem, we can show that M(d) = τ(d).) We
therefore need only prove that the iterated integral is infinite. Its value is at
least

c\
0

r(n/2)−1
(

c\
r

s−(n/2)−1µ(Ω(s)) ds
)

dr

=

c\
0

s−(n/2)−1µ(Ω(s))
(

s\
0

r(n/2)−1dr
)

ds

=
2

n

c\
0

1

log log(1/s)
·
ds

s
=

2

n

∞\
log log (1/c)

s−1es ds = ∞.

Hence Vn/2(c) = −∞ for all c > 0 . It follows from (1) that Vβ(c) = −∞ for
any β < n/2.

General behaviour of the means Vβ. The good behaviour of V(n/2)+1

was established in [10], and the methods used there can also be applied to Vβ

for β > (n/2)+1, but not for β < (n/2)+1. However, if n/2 < β < (n/2)+1,
then Vβ still has all the desirable properties of V(n/2)+1 . Furthermore, given
any β > 0 and any point (x0, t0) such that Vβ(u;x0, t0; c) is finite for all c,
we can show that Vβ is still an increasing function of c and a convex function
of τ(c).

Theorem. Let β > 0, let u be a subtemperature on an open superset of

Ω(x0, t0; d), and suppose that Vβ(u;x0, t0; c) is finite. Then

(i) Vβ is increasing on ]0, d],

(ii) there is a convex function ψβ such that Vβ(c) = ψβ(τ(c)) whenever

0 < c ≤ d, and

(iii) Vβ(c) ≤ M(c).
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Furthermore, if β > n/2 and κβ = ((2β − n)/2β)2/n, then

(2) M(κβc) ≤ Vβ(c)

for all c ∈ ]0, d], and no larger constant has the same property.

P r o o f. (i) If 0 < b < c ≤ d, then

Vβ(c)− Vβ(b) = βc−β
c\
0

rβ−1(M(r)−M(br/c)) dr ≥ 0

becauseM is real-valued ([10, Theorem 2]) and increasing ([8, Theorem 12]).

(ii) Note that, if a, b, c, r are positive, then

τ(b)− τ(a) =

(

r

c

)n/2(

τ

(

br

c

)

− τ

(

ar

c

))

.

Therefore, if 0 < a < b < c ≤ d, then

Vβ(c)− Vβ(b)

τ(c)− τ(b)
−

Vβ(b)− Vβ(a)

τ(b)− τ(a)

= βc−β
c\
0

(

M(r)−M(br/c)

τ(c)− τ(b)
−

M(br/c) −M(ar/c)

τ(b)− τ(a)

)

rβ−1 dr

= βc(n/2)−β
c\
0

(

M(r)−M(br/c)

τ(r)− τ(br/c)
−

M(br/c)−M(ar/c)

τ(br/c)− τ(ar/c)

)

rβ−(n/2)−1 dr

≤ 0

because M is a convex function of τ , by [10, Theorem 2].

(iii) Since M is increasing, this result follows from (1).

To prove (2), we use the convexity property ofM and Jensen’s inequality,
as in the proof of [10, Theorem 3(iii)]. Thus, if M = ψ ◦ τ then

Vβ(c) = βc−β
c\
0

rβ−1ψ(τ(r)) dr

≥ ψ
(

βc−β
c\
0

rβ−1τ(r) dr
)

= ψ(τ(κβc)) = M(κβc).

To prove that κβ is the largest such constant, choose a point (x1, t1) such
that t1 < t0, and take

u(x, t) =

{

τ(t− t1) exp(−‖x− x1‖
2/(4(t − t1))) if t > t1,

0 if t ≤ t1.

Then −u is a subtemperature on R
n+1. Choose c0 such that u(x0, t0) =
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τ(c0) . By the example in [10],

M(u;x0, t0; r) = min{u(x0, t0), τ(r)} =

{

u(x0, t0) if 0 < r < c0,
τ(r) if r > c0.

Therefore, whenever c > c0/κβ ,

Vβ(c) = βc−β
(

c0\
0

+

c\
c0

)

rβ−1M(r) dr

= u(x0, t0)(c0/c)
β + τ(κβ)c

−β(cβ−(n/2) − c
β−(n/2)
0 )

= (u(x0, t0)− τ(κβc0))(c0/c)
β + τ(κβc)

= (u(x0, t0)− τ(κβc0))(c0/c)
β +M(κβc).

Since β > n/2, it follows that Vβ(c) ∼ M(κβc) as c→ ∞, which proves the
assertion.
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