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TAME TRIANGULAR MATRIX ALGEBRAS

BY

ZBIGNIEW LESZCZY Ń SK I AND ANDRZEJ SKOWROŃSK I (TORUŃ)

Abstract. We describe all finite-dimensional algebras A over an algebraically closed
field for which the algebra T2(A) of 2 × 2 upper triangular matrices over A is of tame
representation type. Moreover, the algebras A for which T2(A) is of polynomial growth
(respectively, domestic, of finite representation type) are also characterized.

Introduction.The class of finite-dimensional algebras (associative, with
an identity) over an algebraically closed field K may be divided into two dis-
joint classes [19] (see also [13]). One class consists of tame algebras for which
the indecomposable modules occur, in each dimension, in a finite number of
discrete and a finite number of one-parameter families. The second class is
formed by the wild algebras whose representation theory is as complicated
as the study of finite-dimensional vector spaces together with two noncom-
muting endomorphisms, for which the classification is a well known difficult
problem. Hence we can realistically hope to describe modules only over tame
algebras.

For a finite-dimensional algebra A over an algebraically closed field K
we denote by T2(A) =

(
A A

0 A

)
the algebra of 2× 2 upper triangular matrices

over A. It is well known that the category modT2(A) of finite-dimensional
(over K) modules over T2(A) is equivalent to the category whose objects
are A-homomorphisms f : X → Y between finite-dimensional A-modules
X and Y , and morphisms are pairs of homomorphisms making the obvious
squares commutative. We are concerned with the problem of deciding when
T2(A) is tame. Certain classes of tame triangular matrix algebras T2(A)
have been investigated in [3], [10], [11], [23], [28], [29], [31], [33], [40], [41].
In particular, it has been proved in [41] that if T2(A) is tame then A is of
finite representation type and admits a simply connected Galois covering,
and consequently, T2(A) also admits a simply connected Galois covering.
Moreover, it follows from [3] that, for A of finite representation type, the
tameness of T2(A) is equivalent to the tameness of the Auslander algebra
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A(A) of A (see [4]), that is, the algebra of the form EndA(M1 ⊕ . . . ⊕Mn)
for a fixed set M1, . . . ,Mn of representatives of isoclasses of indecomposable
A-modules. We also mention that the representation theory of triangular
matrix algebras is related to the representation theory of tensor products of
algebras (see [30]).

The main aim of this paper is to give a complete description of all finite-
dimensional algebras A over an algebraically closed field for which the alge-
bra T2(A) is tame. Moreover, criteria for the tameness ofT2(A) in terms of its
simply connected Galois covering are also established. As a consequence we
also obtain complete characterizations of triangular matrix algebras T2(A)
which are of polynomial growth (respectively, domestic, of finite representa-
tion type). Therefore our main results solve completely the representation
type problem of algebras T2(A), raised almost 30 years ago in [10], [11].
Some results presented in this paper have been announced in [32].

The paper is organized as follows. In Section 1 we present our main
results and recall the related background. In Sections 2–5 we define some
families of simply connected algebras A for which the triangular matrix
algebras T2(A) are respectively wild, of nonpolynomial growth, nondomestic,
of infinite representation type, playing a crucial role in the proofs of our
main results. In Section 6 we introduce a family of algebras A of finite
representation type and show that their triangular matrix algebras T2(A) are
tame. In Section 7 we show that all simply connected algebras A with tame
weakly sincere algebras T2(A) are factor algebras of algebras introduced in
Section 6. The final Section 8 is devoted to the proofs of our main results.

For basic background from the representation theory of algebras we re-
fer to [4], [20], and [38]. Moreover, we refer to [9], [15], [17], [21], [47] for
basic results on Galois covering techniques in the representation theory of
algebras, and to [37], [38] and [39] for the vector space category methods.

1. The main results and related background. Throughout the pa-
per K will denote a fixed algebraically closed field. By an algebra is meant
an associative finite-dimensional K-algebra with identity, which we shall as-
sume (without loss of generality) to be basic and connected. For such an
algebra A, there exists an isomorphism A ∼= KQ/I, where KQ is the path
algebra of the Gabriel quiver Q = QA of A and I is an admissible ideal of
KQ, generated by a (finite) system of forms

∑
1≤j≤t λjαmj ,j . . . α1,j (called

K-linear relations), where λ1, . . . , λt are elements of K and αmj ,j, . . . , α1,j ,
1 ≤ j ≤ t, are paths of length ≥ 2 in Q with a common source and common
end. Denote by Q0 the set of vertices of Q, by Q1 the set of arrows of Q,
and by s, e : Q1 → Q0 the maps which assign to each arrow α ∈ Q1 its
source s(α) and its end e(α). The category modA of all finite-dimensional
(over K) left A-modules is equivalent to the category repK(Q, I) of all finite-
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dimensional K-linear representations V = (Vi, ϕα)i∈Q0, α∈Q1 of Q, where Vi,
i ∈ Q0, are finite-dimensional K-vector spaces and ϕα : Vs(α) → Ve(α), α ∈
Q1, are K-linear maps satisfying the equalities

∑
1≤j≤t λjϕαmj,j

. . . ϕα1,j =

0 for all K-linear relations
∑
1≤j≤t λjϕαmj,j

. . . ϕα1,j ∈ I (see [20, Sec-

tion 4]). We shall identify modA with repK(Q, I) and call finite-dimensional
left A-modules briefly A-modules.

Let A = KQ/I be an algebra. Following [41] (see also [30]) the triangular
matrix algebra T2(A) has the presentation T2(A) = KQ(2)/I(2), where the

set Q
(2)
0 of vertices of Q(2) consists of x and x∗ for x ∈ Q0, the set Q

(2)
1

of arrows of Q(2) consists of α, α∗ for α ∈ Q1, and additional arrows γx :
x∗ → x for x ∈ Q0, and the ideal I(2) of KQ(2) is generated by the K-linear
relations ̺ =

∑
λjαmj ,j . . . α1,j and ̺∗ =

∑
λjα

∗
mj ,j

. . . α∗1,j for all K-linear

relations ̺ =
∑

λjαmj ,j . . . α1,j generating the ideal I, and the differences
γe(α)α

∗ − αγs(α) for all α ∈ Q1.

An algebra A = KQ/I may be equivalently considered as a K-category
whose objects are the vertices of Q, and the set of morphisms A(x, y) from
x to y is the quotient of the K-space KQ(x, y), formed by the K-linear
combinations of paths inQ from x to y, by the subspace I(x, y) = KQ(x, y)∩
I. An algebra A with QA having no oriented cycle is called triangular . A full
subcategory C of A is said to be convex if any path in QA with source and
target in QC lies entirely in QC . Finally, a triangular algebra (respectively,
triangular locally bounded category [9]) is called simply connected [1] if, for
any presentation A ∼= KA/I of A as a bound quiver algebra (respectively,
bound quiver category), the fundamental group π1(Q, I) of (Q, I) is trivial.

Let A be an algebra and K[x] the polynomial algebra in one variable.
Recall that following Drozd [19] an algebra A is called of tame representation

type (briefly, tame) if, for any dimension d, there exist a finite number of
A-K[x]-bimodules Mi, 1 ≤ i ≤ nd, which are finitely generated and free as
right K[x]-modules, and all but finitely many isoclasses of indecomposable
A-modules of dimension d are of the form Mi ⊗K[x] K[x]/(x − λ) for some
λ ∈ K and some i. Let µA(d) be the least number of A-K[x]-bimodules
satisfying the above condition for d. Then A is said to be of polynomial

growth [42] (respectively, domestic [37], [43], [14]) if there is a positive integer
m such that µA(d) ≤ dm (respectively, µA(d) ≤ m) for all d ≥ 1. Finally,
A is said to be of finite representation type if there are only finitely many
isoclasses of indecomposable A-modules. From the validity of the second
Brauer–Trall conjecture (see [5]) we know that A is of finite representation
type if and only if µA(d) = 0 for all d ≥ 1. We also refer to [14] and [16] for
equivalent definitions of tameness.

Let A = KQ/I be a triangular algebra. The Tits quadratic form qA of
A is the integral quadratic form on the Grothendieck group K0(A) = ZQ0
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of A, defined for x = (xi)i∈Q0 ∈ K0(A) as follows:

qA(x) =
∑

i∈Q0

x2i −
∑

α∈Q1

xs(α)xe(α) +
∑

i,j∈Q0

rijxixj

where rij is the cardinality of R ∩ I(i, j) for a minimal (finite) set R ⊂⋃
i,j∈Q0

I(i, j) of K-linear relations generating the ideal I (see [6]). It is well

known (see [36]) that if A is tame then qA is weakly nonnegative, that is,
qA(x) ≥ 0 for any x in K0(A) with nonnegative coordinates.

Consider the Euclidean graphs

Ãm :

• · · · •
� �
• •
� �
• · · · •

(m+ 1 vertices, m ≥ 1)

D̃n :

• •
� �
• • · · · • •

� �
• •

(n+ 1 vertices, n ≥ 4)

Ẽ6 :

•

•

• • • • •

Ẽ7 :

•

• • • • • • •

Ẽ8 :

•

• • • • • • • •

and the extended Euclidean graphs

˜̃Am :

• · · · •
� �
• • •
� �
• · · · •

(m+ 2 vertices, m ≥ 1)

T5 :

• •
� �
• •

� �
• •

˜̃Dn :

• •
� �
• • · · · • •

� �
• • •

(n + 2 vertices, n ≥ 4)
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˜̃E6 :

•

•

• • • • • •

˜̃E7 :

•

• • • • • • • •

˜̃E8 :

•

• • • • • • • • •

Let H = K∆ be the path algebra of a quiver ∆ (without oriented
cycles) whose underlying graph ∆ is one of the above Euclidean or ex-
tended Euclidean graphs, and T be a preprojective tilting H-module, that
is, Ext1H(T, T ) = 0 and T is a direct sum of |∆0| pairwise nonisomorphic
H-modules lying in different TrD-orbits of indecomposable projective H-
modules. Then C = EndH(T ) is said to be a concealed algebra of type ∆.
It is known that gl.dimC ≤ 2, the opposite algebra Cop of C is also a con-
cealed algebra of type ∆, and C has the same representation type as H. In
particular (see [25], [35]), the Tits form qC of C is weakly nonnegative if and
only if C is of Euclidean type. Moreover, concealed algebras of Euclidean
type (respectively, extended Euclidean type) are of infinite representation
type (respectively, wild).

The concealed algebras of type∆ = D̃n, Ẽ6, Ẽ7, Ẽ8 (respectively, ∆ = T5,
˜̃Dn, ˜̃E6, ˜̃E7, ˜̃E8) are (strongly) simply connected and have been classified
completely in [7], [22] (respectively, [27], [48], [49]). Moreover, every con-

cealed algebra of type Ãm is the path algebra of a quiver of type Ãm (see
[22]). Finally, it has been noted in [48] that every concealed algebra of type
˜̃Am is either the path algebra of a quiver of type ˜̃Am or isomorphic to the
bound quiver algebra given by a quiver of the form

• • · · · •
αւ տβ �
•- - - - - • •

γ
տ ւσ �
• • · · · •

(m+ 2 vertices, m ≥ 1)

and the ideal generated by αβ−γσ, where • • means • −→ • or • ←− •.
Following Ringel [38], by a tubular algebra we mean a tubular extension

of a concealed algebra of Euclidean type (tame concealed algebra) of tubular
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type (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6). It is known that if A is a tubular
algebra then:

(1) A is nondomestic of polynomial growth,
(2) gl.dimA = 2,
(3) A is simply connected,
(4) the opposite algebra Aop is also tubular

(see [38, (5.2)] and [43, (3.6)]).
In the representation theory of tame simply connected algebras an im-

portant role is played by polynomial growth critical algebras introduced and
investigated by R. Nörenberg and A. Skowroński in [34]. Recall that by a
polynomial growth critical algebra (briefly pg-critical algebra) is meant an
algebra satisfying the following conditions:

(i) A is one of the matrix algebras

B[X] =

[
B X
0 K

]
, B[Y, t] =




B 0 0 0 . . . 0 Y
K 0 K . . . K K

K K . . . K K
. . .

...
...

K K
0 K




where B is a representation-infinite tilted algebra of Euclidean type D̃n,
n ≥ 4, with a complete slice in the preinjective component of its Auslander–
Reiten quiver, X (respectively, Y ) is an indecomposable regular B-module
of regular length 2 (respectively, regular length 1) lying in a tube with n−2
rays, and t+ 1 (t ≥ 2) is the number of isoclasses of simple B[Y, t]-modules
which are not B-modules.

(ii) Every proper convex subcategory of A is of polynomial growth.

The pg-critical algebras have been classified by quivers and relations
in [34]. There are 31 frames of such algebras. In particular, if A is a pg-
critical algebra then:

(1) A is tame minimal of nonpolynomial growth,
(2) gl.dimA = 2,
(3) A is simply connected,
(4) the opposite algebra Aop is also pg-critical.

Assume A = KQ/I is an algebra such that the triangular matrix al-
gebra T2(A) is tame. Then, by [41], A is of finite representation type and

standard [9]. In particular, A admits a Galois covering F : Ã→ Ã/G = A,

where Ã = KQ̃/Ĩ is a simply connected locally bounded K-category and
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G is the fundamental group π1(Q, I), which is moreover a finitely gener-

ated free group. Clearly, Ã = A if A is simply connected. Since A is stan-
dard, applying [12] we may assume that I is generated by paths αm . . . α1
(zero-relations) and differences βr . . . β1 − γs . . . γ1 of paths with a common
source and common end (commutativity relations). Therefore, in our con-
siderations we may restrict to the algebras A of finite representation type
having such a nice bound quiver presentation. Then in the bound quiver
presentation T2(A) = KQ(2)/I(2) of T2(A) described before, the ideal I(2)

is also generated by paths and differences of paths. Moreover, the funda-
mental groups π1(Q

(2), I(2)) and π1(Q, I) are isomorphic, and the Galois

covering F : Ã → Ã/G = A with G = π1(Q, I) induces a Galois cover-

ing F (2) : T̃2(A) → T̃2(A)/G = T2(A), where T̃2(A) = T2(Ã) = KQ̃(2)/Ĩ(2)

is simply connected. Finally, we note that nonstandard algebras of finite
representation type can only occur in characteristic 2 (see [5]).

Below we shall present the families (W), (NPG), (ND), (IT) of standard
algebras Λ of finite representation type and show later that the correspond-
ing triangular matrix algebras T2(Λ) are wild, not of polynomial growth,
nondomestic, of infinite representation type, respectively.

Our main results are the following five theorems.

Theorem 1. Let A be a standard algebra of finite representation type.

The following conditions are equivalent :

(i) T2(A) is tame.

(ii) The Tits form qB of any finite convex subcategory B of T2(Ã) is

weakly nonnegative.

(iii) T2(Ã) does not contain a finite convex subcategory which is concealed

of type ˜̃Am, m ≥ 1, T5,
˜̃Dn, n ≥ 4, ˜̃E6, ˜̃E7 or ˜̃E8.

(iv) Ã does not contain a finite convex subcategory Λ such that one of

the algebras from the family (W) is a factor algebra of Λ or Λop.

Theorem 2. Let A be a standard algebra of finite representation type.

The following conditions are equivalent :

(i) T2(A) is of polynomial growth.

(ii) T2(Ã) does not contain a finite convex subcategory which is pg-

critical or concealed of type ˜̃Am, m ≥ 1, T5,
˜̃Dn, n ≥ 4, ˜̃E6, ˜̃E7 or ˜̃E8.

(iii) Ã does not contain a finite convex subcategory Λ such that one of the

algebras from the families (W) and (NPG) is a factor algebra of Λ or Λop.

Theorem 3. Let A be a standard algebra of finite representation type.

The following conditions are equivalent :

(i) T2(A) is domestic.
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(ii) T2(Ã) does not contain a finite convex subcategory which is tubular ,

pg-critical or concealed of type ˜̃Am, m ≥ 1, T5,
˜̃Dn, n ≥ 4, ˜̃E6, ˜̃E7 or ˜̃E8.

(iii) Ã does not contain a finite convex subcategory Λ such that one of the

algebras from the families (W) and (ND) is a factor algebra of Λ or Λop.

Theorem 4. Let A be a standard algebra of finite representation type.

The following conditions are equivalent :

(i) T2(A) is of finite representation type.

(ii) T2(Ã) does not contain a finite convex subcategory which is concealed

of type Ãm, m ≥ 1, D̃n, n ≥ 4, Ẽ6, Ẽ7 or Ẽ8.

(iii) Ã does not contain a finite convex subcategory Λ such that one of

the algebras from the family (IT) is a factor algebra of Λ or Λop.

In the course of our proofs we also establish the following fact.

Theorem 5. Let A be an algebra such that T2(A) is of polynomial

growth. Then the push-down functor

F
(2)
λ : modT2(Ã)→ modT2(A),

associated with the Galois covering F (2) : T2(Ã)→ T2(A), is a Galois cover-

ing of module categories (in the sense of [9]). In particular , the Auslander–

Reiten quiver ΓT2(A) of T2(A) is the orbit quiver Γ
T2(Ã)

/G of the Auslander–

Reiten quiver Γ
T2(Ã)

with respect to the action of the fundamental group

G = Π1(Q, I) = π1(Q
(2), I(2)).

In a forthcoming paper we shall prove that for an algebra A, the algebra
T2(A) is of polynomial growth (respectively, domestic) if and only if the
infinite radical rad∞(modT2(A)) of modT2(A) is locally nilpotent (respec-
tively, nilpotent). We refer to [26], [45] and [46] for basic definitions and
results in this direction.

As we have already pointed out, if A is an algebra of finite representa-
tion type, then the algebra T2(A) has the same representation type as the
Auslander algebra A(A) of A (by a discussion in [3]). Therefore, the above
theorems also give complete characterizations of the Auslander algebras of
tame representation type, polynomial growth, domestic, of finite representa-
tion type, respectively (see [32]). We mention that the Auslander algebras
of finite representation type have already been characterized (in different
terms) by Igusa–Platzeck–Todorov–Zacharia [24].

In the present paper we shall use the following notation. For a bound
quiver (Q, I):

(i) an unoriented edge • • means •−→• or •←−•.
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(ii)

•
α2−→· · · −→•

α1ր ցαr+1
• . . . . . . . . . . . . . . . . . . . . . •
β1ց րβs+1
•−→
β2
· · · −→•

r, s ≥ 1

means that αr+1 . . . α1−βs+1 . . . β1 ∈ I but αr+1 . . . α1 6∈ I, βs+1 . . . β1 6∈ I.

(iii)

•
α1−→ •

α2−→ •— · · · → •
αn−→•.. . . . . . . . . . . . . . . . . . . . . . . . .
.. n ≥ 2

means that αn . . . α1 ∈ I but αn . . . α2 6∈ I, αn−1 . . . α1 6∈ I.

2. Wild triangular algebras. Consider the following family (W) of
bound quiver algebras KQ/I given by the bound quivers (Q, I):

(1)

a1 ar
• −→ · · · −→•
ր ց
• . . . . . . . . . . . . . . . . . . . . . •
ց ր
• −→ · · · −→•
b1 bs

r, s ≥ 1, r + s ≥ 3

(2)
•−→• •x
..
..
.x

•−→•
(3)
•−→•−→•←−•x
..
..
.x

..
..
.y

..
..
.

•−→• •

(4)

•−→•x
..
..
.xց

•−→• •.. . . . . . . . .
.

(5)
•−→•x
..
..
.x

•−→•−→•.. . . . . . . . .
.

(6)
•−→•x
..
..
.x

•−→• •
(7)
•−→•−→•←−•←−•x
..
..
.x

..
..
. .. . . . . . . . .

.

•−→•

(8)

•∣∣
• • •∣∣

•

(9)

•y.....•−→•−→•.. . . . . . . . .
.x

..
..
.

•

(10)

•x
•−→•←−•.....

y
..
..
.

•

(11)

•

..
..
.x

•−→•−→• •.. . . . . . . . .
.x

..
..
.

•

..........
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(12)

• • •
ց
............. ր
•−→•
ր.........

.... ց
• •

(13)
• • • •∣∣

•

(14)
.. . .

. . . . . ..•←−•←−•−→•y
•

(15)
.. .
. . . . . . ..•−→•−→•−→• •y.....•−→•

(16)
.. . .

. . . . . ..•−→•−→•−→•y.....
y

• •
(17)

.. . .
. . . . . ..•−→•−→•−→•−→•y ∣∣

• •

(18)
.. .
. . . . . . ..•−→•−→•−→•−→•y x

..
..
.

• •
(19)

.. . .
. . . . . ..•−→•−→•−→•←−•←−•y .. . . . . . . . .

.

•

(20)
.. .
. . . . . . ..•−→•−→•−→•←−• •y

•
(21)

.. .
. . . . . . ..•−→•−→•−→•−→•←−•y

•

(22)
.. . .

. . . . . ..•−→•−→•−→•−→•−→• •y
•

(23)
.. .
. . . . . . . . . . . . ..•−→•−→•−→•∣∣
•

(24)
•−→• • • •.....

y
•

(25)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•−→•.....

y .....

y
• •

(26)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•−→•.....

y.....•−→•
(27)

•

..
..
.x

•−→•−→• •.....
y.....•−→•

(28)

•

..
..
.x.....•−→•−→•←−•.....

y.....•−→• •

(29)
.. . .

. . . . . ..•−→•−→•←−•←−•.....
y .....

x
• •

(30)
•−→•−→•←−•.....

y.....
y
..
..
.

• • •
(31)

.. . .
. . . . . ..•−→•−→•←−•←−• •.....

y
•

(32)
• •−→• • •.....

y
•

(33)
• •←−•−→• •.....

y
•

(34)
.. .
. . . . . . ..•←−•←−•−→• •y

..
..
. .....

y
• •

(35)
.. .
. . . . . . ..• •←−•←−•−→• •.....

y
•
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(36)
•←−•−→•−→• •.....

y
•

(37)
.. . .

. . . . . ..•−→•−→•−→•−→•−→•∣∣
•

(38)
.. .
. . . . . . ..• •−→•−→•←−•∣∣
•

(39)
.. .
. . . . . . . . . . . . ..•−→•−→•−→•.............

y
•

(40)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•.....
y
• •

(41)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•.....
y x

..
..
.

• •

(42)
.. . .

. . . . . . . . . . . ..•−→•−→•−→• •.....
y
•

(43)
.. . .

. . . . . . . . . . . ..• •−→•−→•−→•.....
y
•

(44)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•←−•.....
y
•

(45)
.. . .

. . . . . . . . . . . ..•←−•−→•−→•−→•.....
y
• •

(46)
.. . .

. . . . . . . . . . . ..• •−→•−→•−→•.....
y
•←−•

(47)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•−→•−→•.....
y
•−→•

(48)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•−→•.....

y
•−→• •

(49)
.. . .

. . . . . .. .. . .
. . . . . . . . . . . ..•←−•←−•−→•−→•−→•.....

y
•

(50)
.. . .

. . . . . . . . . . . ..•←−•−→•−→•−→•−→•.....

y
•

(51)
.. . .

. . . . . . . . . . . ..• •−→•−→•−→•−→•.....

y
•

(52)

•

.....
......

..x
.. .
. . . . . . ..•−→•−→•−→•←−•←−•.. . . . . . . . .

.
(53)

.. . .
. . . . . ..•−→•−→•←−•.....
y
• •

(54)
.. . .

. . . . . ..•−→•−→•−→•−→•.....
y
•−→•

(55)
.. . .

. . . . . ..•−→•−→•←−• •.....
y
•

(56)

•
.. . .

. . . . . .. ..
..
.y

•−→•−→•←−•←−•.....
y .. . . . . . . . .

.

•

(57)
.. .
. . . . . . ..•−→•−→•←−•←−•−→•.....

y .. . . . . . . . .
.

•

(58)
.. .
. . . . . . ..•−→•−→•←−•←−•←−• •.....

y .. . . . . . . . .
.

•
(59)

.. .
. . . . . . ..•←−•−→•−→•←−•.....

y
•
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(60)
.. . .

. . . . . ..•−→•−→•−→•←−•←−•.....
y .. . . . . . . . .

.

•
(61)

.. . .
. . . . . ..• •−→•−→•−→•←−•.....
y
•

(62)
.. . .

. . . . . ..•−→•−→•−→•−→•←−•.....

y
•

(63)
.. . .

. . . . . ..• •←−•−→•−→•−→•.....

y
•

(64)
.. .
. . . . . . ..• •←−•←−•−→•−→•−→•.. . . . . . . . .

. .....

y
•

(65)
.. .
. . . . . . .. .. .

. . . . . . ..•←−•←−•−→•−→•−→•−→•.....

y
•

(66)
.. . .

. . . . . ..•−→•←−•−→•−→•−→•−→•.....
y
•

(67)
.. . .

. . . . . ..•←−•−→•−→•−→•−→•−→•.....
y
•

(68)
.. .
. . . . . . ..•−→•−→•−→•−→•−→•−→•.....

y
•

(69)
.. .
. . . . . . ..•←−•←−•←−•−→•−→•.. . . . . . . . . . . . . . .

. .....

y
•

(70)
.. . .

. . . . . ..•←−•−→•−→•−→•−→•.....
y
•

(71)
.. . .

. . . . . .. .. . .
. . . . . ..• •←−•←−•−→•−→•y

..
..
. .....

y
• •

(72)
.. .
. . . . . . ..• • •←−•−→•−→•.....

y
•

(73) • • • • • •

(74) .. .
. . . . . . . . . . . . . . . . . ..•−→•−→•−→•−→• • (75) .. .

. . . . . . . . . . . . ..•←−•−→•−→•−→• •

(76) .. . .
. . . . . . . . . . . ..• •←−•−→•−→•−→• (77) .. . .

. . . . . . . . . . . ..•−→•−→•−→•−→•−→• •

(78) .. . .
. . . . . . . . . . . .. .. . .

. . . . . ..•−→•−→•−→•←−•←−• • (79) .. .
. . . . . . ..•−→•−→•←−•←−• •

(80) .. . .
. . . . . ..•−→•−→•←−•−→•←−• (81) .. . .

. . . . . ..• •−→•−→•←−•−→•−→•

We shall denote by (Wn) the nth quiver from the above family (W).

Proposition 1. Let A be a simply connected algebra of finite represen-

tation type. Assume that A admits a factor algebra B such that B or Bop

is the bound quiver algebra of one of the bound quivers (W1)–(W81). Then

T2(A) contains a convex subcategory which is concealed of type ˜̃Am, m ≥ 1,

T5,
˜̃Dn, n ≥ 4, ˜̃E6, ˜̃E7 or ˜̃E8.
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P r o o f. This is a direct but tedious checking. We shall illustrate it by a
few examples.

Let A = B = KQ/I where (Q, I) is of type (W1), say with r ≥ 2,
s ≥ 1. Then invoking the bound quiver presentation T2(A) = KQ(2)/I(2)

of T2(A) described in Section 1, we easily observe that T2(A) has a convex
subcategory given by the bound quiver

ր
•
ց

•−−→•−−→• · · · •−−→•y
.....

y
•−→ • •y
•−−→•−−→• · · · •−−→•

ց
•
ր

of a concealed algebra of type ˜̃Ar+s+3.
Let A = B be the path algebra of a quiver Q of type D̃4. Then obvi-

ously T2(A) contains a convex subcategory which is the path algebra of the
corresponding tree of type T5.

Let A = B = KQ/I where (Q, I) is of the form (W81). Then T2(A)
contains a convex subcategory given by the bound quiver

•−−→•←−−•−−→•−−→•y
y
.....

y
•−−→•−−→• •−−→•

which is a concealed algebra type ˜̃E8 (see for example [48]).

Assume now that A admits a proper factor algebra B given by the bound
quiver (W3). We may assume QA = QB . Since A is simply connected and of
finite representation type we conclude that A is given by one of the bound
quivers

•−→•−→•←−•x...
..
x

y...
..

•−→• •
or

•−→•−→•←−•x...
..
x...

..
y

•−→• •

Hence, A contains a convex bound subquiver of one of the forms

•−→•−→•x...
..
x

•−→•
or

•−→•−→•←−•x
•

of type (W2) or (W13), respectively. Therefore, T2(A) contains a convex
subcategory given by one of the bound quivers
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��� ��� � � � �� � � ���or
and so a concealed algebra of type ˜̃A5 or ˜̃E6, respectively.

Finally, assume that A admits a proper factor algebra B given by the
bound quiver (W81) and again that QA = QB . Then A is the path algebra
of one of the quivers

•−→•−→•−→•←−•−→•−→• or •←−•−→•−→•←−•−→•−→•

of type (W73), and then A contains a convex subcategory given by the
convex subquiver

•−→ • −→ •←− • −→ • −→•

Then T2(A) contains a convex subcategory given by the bound quiver

•−→•−→•←−•−→•−→•y
.....

y
y
.....

y
•−→• •−→•

which is a concealed algebra of type ˜̃D8.

3. Nonpolynomial growth triangular matrix algebras. Consider
the family (NPG) of bound quiver algebras KQ/I given by the bound quiv-
ers (Q, I) of the form

| | | | | |
G0 a1 G1 a2 . . . an−1 Gn−1 an Gn

| | | | | |
n ≥ 1

and satisfying the following conditions:

(α) for i = 0 and i = n, Gi or G
op
i is one of the quivers

• •←− • −→ • −→ a • • ←− • −→ a

•
ց
•−→ a
ր
•

•
ց

a
ր
•

with a = a1 and a = an, respectively,
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(β) if n ≥ 2, then for 1 ≤ i ≤ n− 1, Gi or G
op
i is one of the quivers

ai←− •←− • −→ •−→ ai+1 ai←− • • −→ ai+1 ai←− • −→ ai+1

(γ) for 1 ≤ i ≤ n, the vertex ai is a source (respectively, target) of Gi−1
if and only if ai is a target (respectively, source) of Gi,

(δ) the composition of any two arrows in Q having ai, 1 ≤ i ≤ n, as a
common vertex belongs to I,

(σ) either at least one of G0, G
op
0 , Gn, G

op
n has one of the forms

• • ←− • −→ • −→ a

•
ց
•−→ a
ր
•

or n ≥ 2 and, for some 1 ≤ i ≤ n− 1, Gi or G
op
i has one of the forms

ai←− •←− • −→ • −→ ai+1 ai←− • • −→ ai+1

Proposition 2. Let A be a simply connected algebra of finite represen-

tation type satisfying the following conditions:

(i) A admits a factor algebra B such that B or Bop is the bound quiver

algebra of one of the bound quivers from the family (NPG).

(ii) A has no factor algebra given by one of the bound quivers from the

family (W).

Then T2(A) contains a convex pg-critical subcategory. In particular ,
T2(A) is not of polynomial growth.

P r o o f. This follows by direct analysis of all possible shapes of bound
quiver algebras from the family (NPG) and inspection of the list of all pg-
critical algebras given in [34, Theorem 3.2]. We illustrate it by one of the
typical cases. Let n = 3 and A be the bound quiver algebra from the list
(NPG) given by the quivers

G0:

•
ց
•−→ a1
ր
•

G1: a1−→ • −→ •←− •←− a2

G2: a2←− •−→ • a3 G3: a3−→ •←− •←−•
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Then A is given by

•
ց .. .

. . . . . . .. .. .
. . . . . . .. .. .

. . . . . . ..
•−→•−→•−→•←−•←−•←−•−→•−→•←−•←−•
ր
•

and T2(A) contains a convex subcategory given by the bound quiver

•
ց
ր
•

•−→•←−•←−•←−• •−→•←−•←−•y
y...

..
y

y
y...

..
y

•−→• •←−•←−•−→• •←−•.. . . . . . . . .
.

which is pg-critical (see the frame (3) in [34, Theorem 3.2]).

4. Nondomestic triangular matrix algebras. Consider the family
(ND) of bound quiver algebras KQ/I given by the following quivers:

(1)

• . . . . . . . . •
ցրց
• . . . . . . . . •
րցր
• . . . . . . . . •

(2)

•
րց

•←−•−→• . . . . . . . . •.............ցր
•

(3)
•∣∣

• • •
(4)

•−→•−→•−→•−→•.....

y
•

(5)
•−→•−→• •.....

y.....
y

• •
(6)

.. .
. . . . . . . . . . . . . . . . . ..•−→•−→•−→•−→•.....

y
•−→•

(7)
.. .
. . . . . . . . . . . . ..•−→•−→•−→•−→•.....

y
•

(8)
.. .
. . . . . . . . . . . . .... .

. . . . . . . . . . . . ..•←−•−→•−→•−→•−→•.....

y
•

(9)
.. .
. . . . . . . . . . . . .... .

. . . . . . . . . . . . ..•−→•−→•−→•−→•−→•−→•.....

y
•

(10) • • • • • but different from •−→•−→•−→•−→•

(11) .. . .
. . . . . . . . . . . . . . . . ..•−→•−→•−→•−→•−→•.. . . . . . . . . . . . . . . . . . . .

.
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(12) Q is of the form

| | | | | |
G0 a1 G1 a2 . . . an−1 Gn−1 an Gn

| | | | | |
n ≥ 1

and the following conditions are satisfied:

(α) for i = 0 and i = n, Gi or G
op
i is one of the quivers

• • ←− • −→ a

•
ց

a
ր
•

with a = a1 and a = an, respectively,

(β) if n ≥ 2, then for 1 ≤ i ≤ n− 1, Gi or G
op
i is one of the quivers

ai←− • • −→ ai+1 ai←− • −→ ai+1

(γ) for 1 ≤ i ≤ n, the vertex ai is a source (respectively, target) of Gi−1
if and only if ai is a target (respectively, source) of Gi,

(σ) the composition of any two arrows in Q having ai, 1 ≤ i ≤ n, as a
common vertex belongs to I.

Note that bound quiver algebras of type (12) are special cases of algebras
from the list (NPG).

Proposition 3. Let A be a simply connected algebra of finite represen-

tation type satisfying the following conditions:

(i) A admits a factor algebra B such that B or Bop is the bound quiver

algebra of one of the bound quivers (1)–(12) in (ND).

(ii) A has no factor algebra given by one of the bound quivers from the

families (W) and (NPG).

Then T2(A) contains a convex tubular subcategory. In particular , T2(A)
is nondomestic.

P r o o f. We shall prove the claim in two typical cases.

Let A be of type (1). Then T2(A) contains a convex subcategory B given
by the bound quiver
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��� ��� ����
Then B is a tubular extension of tubular type (2, 4, 4) of the path algebra
of the Euclidean quiver

��� ��� �
of type Ã6, and hence is a tubular algebra.

Let A be of type (9). Then T2(A) contains a convex subcategory D given
by the bound quiver

.............

.. .
. . . . . . . . . . . . ..•−→•−→•−→•y

.....

y
•−→•−→•−→•−→•

ց
•

Then D is the one-point extension of the path algebra H of the Euclidean
quiver

•−→•−→•y
•−→•−→•−→•−→•

ց
•

of type ˜̃E8 by a simple regular module lying in the stable tube of rank 5 of
the Auslander–Reiten quiver of A, and consequently D is a tubular algebra
of tubular type (2, 3, 6).

5. Triangular matrix algebras of infinite representation type.

Consider the family (IT) of bound quiver algebras KQ/I given by the fol-
lowing bound quivers (Q, I):
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(1)

a1 ar
• −→ · · · −→•
ր ց
• . . . . . . . . . . . . . . . . . . . . . •
ց ր
• −→ · · · −→•
b1 bs

r, s ≥ 1

(2)

•y.....•−→•−→•.....

.. . . . . . . . .
.y

•

..........

(3)
•∣∣

• • •

(4)
• •−→• •.....

y
• •

(5)
•−→• • •.....

y
•

(6)
.. . .

. . . . . ..•←−•←−•−→• •.....

y
•

(7)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•.....

y
•

(8)
.. .
. . . . . . ..•−→•−→•←−•←−• •.....

y .. . . . . . . . .
.

•
(9)

.. .
. . . . . . ..• •−→•−→•←−•.....

y
•

(10)
.. . .

. . . . . ..•←−•←−•−→•−→•−→•.. . . . . . . . .
. .....

y
•

(11)
.. . .

. . . . . ..•←−•−→•−→•−→•−→•.....
y
•

(12) .. .
. . . . . . . . . . . . . . . . . ..•−→•−→•−→•−→• (13) .. .

. . . . . . .. .. .
. . . . . . . . . . . . ..•←−•←−•−→•−→•−→•

(14) • •−→•−→•−→• •.. . . . . . . . . . . . . . .
. (15) • • • • •

(16) Q is of the form

| | | | | |
G0 a1 G1 a2 . . . an−1 Gn−1 an Gn

| | | | | |
n ≥ 1

and the following conditions are satisfied:

(α) for i = 0 and i = n, Gi or G
op
i is one of the the quivers

• • −→ •←−a

•
տ

a
ւ
•

with a = a1 and a = an, respectively,
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(β) if n ≥ 2, then for 1 ≤ i ≤ n− 1, Gi or G
op
i has the form

ai←− •−→ ai+1

(γ) for 1 ≤ i ≤ n, the vertex ai is a source (respectively, target) of Gi−1
if and only if ai is a target (respectively, source) of Gi,

(σ) the composition of any two arrows in Q having ai, 1 ≤ i ≤ n, as a
common vertex belongs to I.

Proposition 4. Let A be a simply connected algebra of finite represen-

tation type satisfying the following conditions:

(i) A admits a factor algebra B such that B or Bop is the bound quiver

algebra of one of the bound quivers from the family (IT).
(ii) A has no factor algebra given by one of the bound quivers from the

families (W), (NPG) or (ND).

Then T2(A) contains a convex subcategory which is concealed of type

Ãm, m ≥ 1, D̃n, n ≥ 4, Ẽ6, Ẽ7 or Ẽ8. In particular , T2(A) is of infinite

representation type.

P r o o f. We shall prove the claim in three typical cases.
Assume A is of type (1) with r = 2, s = 3. Then T2(A) contains a convex

subcategory which is the path algebra of the quiver

�
�� ��� � �

of Euclidean type Ã6.
Let A be of type (12). Then T2(A) contains a convex subcategory given

by the bound quiver

•−→•−→•−→•y
.....

y
.....

y
•−→•−→•−→•

which is concealed of type Ẽ7 (see [7], [22]).
Finally, let A be of type (16) with n = 4 and G0, G1, G2, G3, G4 as

follows:

G0:

•
տ

a1
ւ
•

G1: a1←− • −→ a2 G2: a2−→ •←−a3
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G3: a2←− •−→ • a3 G4: a3−→•←−•←−•

Then A is given by the quiver

•
տ
.............
•←−•−→•−→•←−•←−•−→•−→•←−•←−•

ւ........
..... .. . . . . . . . .

. .. . . . . . . . .
. .. . . . . . . . .

.

•

and T2(A) contains a convex subcategory of the form

•
տ
ւ
•
• •−→•←−• •−→•←−•←−•y

y
y

y
y...

..
y

•←−•−→• •←−•−→• •←−•

which is concealed of type D̃17.

6. Tame triangular matrix algebras. Consider the family (T) of
bound quiver algebras KQ/I given by the following quivers:

(1)

• . . . . . . . . •
րցրց
• . . . . . . . . • . . . . . . . . •
ցրցր
• . . . . . . . . •

(2)

•
րց

•−→•−→•−→• . . . . . . . . •−→•−→•−→•.............ցր.........
....

•

(3)

•
րց

•−→•−→•−→• . . . . . . . . •−→•←−•.............ցր.........
....

•

(4)

•
րց

•←−•−→• . . . . . . . . •−→•←−•.............ցր.........
....

•

(5)

•

րց
.................• . . . . . . . . •−→•−→•−→•−→•

ցր.........
....

•

(6)

•

րց
.................• . . . . . . . . •−→•−→•←−•

ցր.........
....

•

(7)
•−→•←−•x

•
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(8)
•−→•−→•←−•←−•.. . . . . . . . .

.y.. . . . . . . . ..
•

(9)
.. . .

. . . . . ..•−→•−→•−→•←−•y
•

(10)
.. .
. . . . . . ..•−→•−→•−→•−→•−→•y

•
(11)

.. . .
. . . . . . . . . . . . . . . . ..•−→•−→•−→•−→•x
..
..
. .....

y
•−→• •−→•

(12)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•x
..
..
......

y
•←−• •←−•

(13)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•x
..
..
......

y
•−→•−→• •−→•−→•

(14)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•x
..
..
......
y

•−→•−→• •←−•
(15)

.. . .
. . . . . . . . . . . ..•−→•−→•−→•−→•x
..
..
......
y

•−→• •

(16)
.. . .

. . . . . . . . . . . ..•−→•−→•−→•

..
..
......
y.....

y
•←−• •

(17)
.. . .

. . . . . . . . . . . .... . .
. . . . . . . . . . . ..•←−•−→•−→•−→•−→•.....
y
•

(18)
.. . .

. . . . . . . . . . . .... . .
. . . . . . . . . . . ..•−→•−→•−→•−→•−→•−→•.....
y
•

(19)
•−→•−→•←−•←−•.....

y
..
..
.

•

(20)
.. . .

. . . . . .. .. . .
. . . . . ..•−→•−→•←−•←−•←−•.....

y
•

(21)
.. . .

. . . . . ..•−→•−→•−→•←−•.....
y
•

(22)
.. . .

. . . . . ..•−→•−→•−→•←−•.....

y
•

(23)
.. . .

. . . . . .. .. . .
. . . . . ..•←−•←−•−→•−→•−→•.....

y
•

(24)
.. .
. . . . . . ..•←−•−→•−→•−→•−→•.....

y
•

(25)
.. .
. . . . . . ..•−→•−→•−→•−→•−→•.....

y
•

(26)
.. .
. . . . . . ..•−→•−→•−→•−→•−→•−→•.....

y
•

(27) .. . .
. . . . . . . . . . . . . . . . .... . .

. . . . . . . . . . . . . . . . ..•−→•−→•−→•−→•−→•−→•.. . . . . . . . . . . . . . . . . . . .
.

(28) .. .
. . . . . . . . . . . . ..• •−→•−→•−→•−→•−→•−→• •.. . . . . . . . . . . . . . .

.

(29) .. . .
. . . . . . . . . . . .. .. . .

. . . . . ..• •−→•−→•−→•−→•−→•←−•←−•.. . . . . . . . . . . . . . .
.

(30) .. . .
. . . . . .. .. . .

. . . . . . . . . . . .. .. . .
. . . . . ..•←−•←−•−→•−→•−→•−→•←−•←−•.. . . . . . . . . . . . . . .

.
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(31) .. . .
. . . . . ..•−→•−→•←−•−→•−→• (32) •−→•←−•←−•−→•

(33) •−→•←−•−→•←−• (34)
•−→•−→•−→•−→•x

..
..
. .....

y
• •

(35)
•−→•−→• •x

..
..
......
y

• •−→•
(36)

•−→•−→•−→•x
..
..
......
y

•−→• •−→•

(37)
•−→•−→•−→•←−•.....

y
•

(38)
•←−•←−•−→• •.. . . . . . . . .

. .....
y
•

(39)
.. .
. . . . . . . . . . . . ..•−→•−→•−→•−→•.....

y
•

(40)
•−→•−→•−→•.....

y.....
y

• •

(41)
•−→•−→•←−•←−•.....

y.....
y.. . . . . . . . ..

• •
(42)

•−→•−→• •

..
..
......

y.....
•←−•−→•

(43) Let A, B and C be the following families of bound quivers:

A : ai←− •←− • −→ • −→ ai+1 ai←− • • −→ ai+1
ai←− • −→ ai+1

B :
ai−→•←− ai+1... ւ ց

...
• •

ai−→•←− ai+1.....

y
•

ai−→•←−•←− ai+1.....

y
•

ai−→•←− ai+1.....

y
•−→•−→•

ai−→•←−ai+1.....

y
•−→•−→•.. . . . . . . . .

.

ai−→•−→•←− ai+1.....
y
•

ai−→•−→•←− ai+1.....

y
•−→•

ai−→•−→•←− ai+1.....

y
•←−•←−•.. . . . . . . . .

.

C : • • • −→ •−→ ai • • • −→ ai

•
ց
•−→ a1
ր
•

•
րց
• . . . . . . . . ai
ցր
•
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Then (Q, I) is a bound quiver of the form

| | | | | |
G0 a1 G1 a2 . . . an−1 Gn−1 an Gn

| | | | | |
n ≥ 1

satisfying the following conditions:

(α) for i = 0 and i = n, Gi or Gopi is one of the bound quivers from
A ∪ C,

(β) if n ≥ 2 then, for 1 ≤ i ≤ n−1, Gi or G
op
i is one of the bound quivers

from A ∪ B,

(γ) for 1 ≤ i ≤ n the vertex ai is a source (respectively, target) of Gi−1
if and only if ai is a target (respectively, source) of Gi,

(δ) the composition of any two arrows in Q having ai, 1 ≤ i ≤ n, as a
common vertex belongs to I.

(44) (Q, I) is a bound quiver of the form

| | | | | |
a0 G0 a1 G1 a2 . . . an−1 Gn−1 an
| | | | | |

with n ≥ 1, an = a0, and satisfying the following conditions:

(α) for each 0 ≤ i ≤ n − 1, Gi or Gopi is one of the bound quivers from
A ∪ B,

(β) for 1 ≤ i ≤ n, the vertex ai is a source (respectively, target) of Gi−1
if and only if ai is a target (respectively, source) of Gi (where Gn = G0),

(γ) the composition of any two arrows in Q having ai, 1 ≤ i ≤ n, as a
common vertex belongs to I.

We note that (Q, I) contains exactly one (nonoriented) cycle.

We shall write (Tn) for the nth quiver from the above family (T).

Proposition 5. Let A be a bound quiver algebra from the family (T1)–
(T43). Then T2(A) is of polynomial growth, provided A is not of type (T43)
having a factor algebra from the family (NPG). Moreover , T2(A) is domestic

(respectively , of finite type) if and only if A has no factor algebra Λ such

that Λ or Λop is from the family (ND) (respectively , (IT)).

P r o o f. Observe that T2(A) is simply connected, and in fact both T2(A)
and T2(A)

op satisfy the separation property (see [44], [46]). Moreover, T2(A)
is strongly simply connected if and only if A does not contain a convex
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subcategory given by a commutative square

•
րց
• . . . . . . . . •
ցր
•

or equivalently, A is the bound quiver algebra of a bound tree. In partic-
ular, it is the case for all algebras of types (T7)–(T42). Clearly, if T2(A)
is of polynomial growth then A has no factor algebra Λ from the family
(NPG), because otherwise T2(Λ) is a factor algebra of T2(A), which contra-
dicts Proposition 2. Hence the necessity part follows. Consequently, a direct
checking shows that T2(A) contains a convex pg-critical subcategory if and
only if A is of type (T43) and admits a factor algebra Λ with Λ or Λop

from the family (NPG). Further, it is easy to check that T2(A) does not

contain a convex subcategory which is concealed of one of the types ˜̃Am,
T5,

˜̃Dn, ˜̃E6, ˜̃E7 or ˜̃E8. Applying now [46, Theorem 4.1] (and its proof) we
conclude that T2(A) is a polynomial growth simply connected algebra (even
a multicoil algebra with directed component quiver) provided A is not of
type (T43) having a factor algebra Λ with Λ or Λop from the family (NPG).
Finally, we easily check that A has no factor algebra Λ with Λ or Λop from
the family (ND) (respectively, (IT)) if and only if T2(A) does not contain a

convex subcategory B which is tubular (respectively, concealed of type Ãm,
D̃n, Ẽ6, Ẽ7 or Ẽ8), or equivalently T2(A) is domestic (by [46, Corollary 4.3]
and its proof) (respectively, T2(A) is of finite representation type, by [8]).
This finishes the proof.

Our next aim is to prove that, for any algebra A of type (T43) or (T44),
the algebra T2(A) is tame. We need a reduction lemma and the following
concept.

For a bound quiver algebra A = KQ/I, we say that an object x of A
(vertex x of Q) is a node of A provided βα ∈ I for any two arrows α, β ∈ Q
with s(β) = x and e(α) = x.

Consider the following two families of bound quiver algebras:

(i) B :
| |

R a S
| |

where S or Sop is the bound quiver algebra of a bound quiver from the
family A ∪ C in (T43), with a = ai or a = ai+1, a is a source (respectively,
target) of S if and only if a is a target (respectively, source) of R, and a is
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a node of B, and

(ii) C :
| | | |

R1 b S c R2
| | | |

where possibly R1 = R2, S or Sop is the bound quiver algebra of a bound
quiver from the family A ∪ B in (T43), with b = ai and c = ai+1, b and
c are sources (respectively, targets) of S if and only if b and c are targets
(respectively, sources) in R1 and R2, and b and c are nodes of C.

Let ∆ be the quiver x ← • ← • ← • → • → • → y of type A7 and
Λ = K∆. We now define new families of algebras using B, C, Λ, Λop as
follows. For B, the algebra B′ is obtained from B by replacing S by Λ with
x = a if a is a source of S, or by replacing S by Λop with x = a if a is
a target of S, and again with a being a node of B′. Similarly, for C, the
algebra C ′ is obtained from C by replacing S by Λ with x = b and y = c if
a is a source of S, or by replacing S by Λop with x = b and y = c if a is a
target S, and again with b and c being nodes of C ′. Then T2(B

′) contains
a convex subcategory B′′ of the form

(iii) T2(R)

a∗←−• •−→•y ..
..
.y

y
.....

y
a←−•←−•←−•−→•−→•←−•

if a is a target of S, or of the form

(iv) T2(R)

a∗−→•−→•−→•←−•←−•←−•y
.....

y
y ..

..
.y

a−→• •←−•

if a is a source of S. Similarly, T2(C
′) contains a convex subcategory C ′′ of

the form

(v) T2(R1)

b∗←−• •−→c∗y ..
..
.y

y
.....

y
b←−•←−•←−•−→•−→•−→c

T2(R2)

if b and c are targets of S, or of the form

(vi) T2(R1)

b∗−→•−→•−→•←−•←−•←−c∗y
y

y
y

b −→• •←−c

T2(R2)

if b and c are sources of S.
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In the above notation we have the following

Lemma 1. Assume B′′ (respectively , C ′′) is tame. Then T2(B) (respec-
tively , T2(C)) is tame.

P r o o f. This is done by case-by-case consideration of all possible shapes
of the algebra S. We shall illustrate the procedure in two typical cases.

Consider the algebra B with S given by the bound quiver

1

ւտ
a . . . . . . . . 3

տւ
2

from the family C. Then T2(B) is of the form

�

1�
12�
2

a�
a

3�
3T2(R)

Observe that T2(B) can be obtained from the algebra D of the form

T2(R)

a∗ 1yւտ
a . . . . . . . . 3

տւ
2

by iterated one-point extensions creating the vertices 1∗, 2∗, 3∗. Consider
first the one-point extension D[X] with extension vertex 1∗, where X is the
unique indecomposable D-module of dimension vector
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dimX =
0 1
1

0 1 0
0

(having 0 at all the vertices of T2(R) except a and a∗). Then the Auslander–
Reiten quiver of D has a full translation subquiver of the form

dimX =
0 1
1

0 1 0
0

0 0
0

0 0 0
1

0 0
1

0 0 1
0

ց ր ց ր ց
0 1
1

0 1 0
1
→
0 1
1

0 1 1
1
→
0 0
1

0 0 1
1

0 0
0

0 0 1
0

ց ր ց ր
0 0
1

0 0 0
0

0 0
0

0 0 1
1

0 1
0

0 0 0
0

ր
· · ·�Hence the vector space category HomD(X,modD) is the additive category

of the incidence category of the following partially ordered set of finite rep-
resentation type:

• • •
ց ր ր
•−→•−→•
ց ր
•

Thus there are only finitely many isoclasses of indecomposable D[X]-mod-
ules whose dimension vector is nonzero at the vertex 1∗.

Next, we consider the one-point extension

E = (D[X])[Y ]

with extension vertex 2∗, where Y is the unique indecomposable D[X]-
module (in fact even a D-module) of dimension vector

dim Y =
0

0 1
0

0 1 0
1

The Auslander–Reiten quiver of D[X] contains a full translation subquiver
of the form
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1
0 1
1

0 1 0
0

0
0 0
0

0 0 0
1

0
0 0
1

0 0 1
0

1
0 1
0

0 0 0
0

ր ց ր ց ր ց ր ց
0

0 1
1

0 1 0
0

1
0 1
1

0 1 0
1

0
0 0
1

0 0 1
1

1
0 1
1

0 0 1
0

1
0 0
0

0 0 0
0

. . . ր ց ր ց ր ց ր ց ր
dimY=

0
0 1
0

0 1 0
1
→

0
0 1
1

0 1 0
1
→

0
0 0
1

0 0 0
0
→

1
0 1
2

0 1 1
1
→

1
0 1
1

0 1 1
1
→

1
0 1
1

0 0 1
1

1
0 0
1

0 0 1
0

· · · ց ր ց ր ց ր ց ր ց
0

0 0
1

0 1 0
1

0
0 1
1

0 1 1
1

1
0 1
1

0 0 0
0

1
0 0
1

0 0 1
1

0
0 0
0

0 0 1
0

ց ր ց ր ց ր ց ր
0

0 0
1

0 1 1
1

0
0 1
0

0 0 0
0

1
0 0
1

0 0 0
0

0
0 0
0

1 0 0
1

hence the vector space category HomD[X](Y,modD[X]) is the additive cat-
egory of the category

• •
ր ց ր
• • •

ր ց ր ց ր
•−→• •→ •→ �

ց ր ց ր ց
• • •
ց ր ց
• •

(see [37, (2.4)] for the corresponding notation). In particular, D[X][Y ] is a
domestic (even one-parametric) extension of D[X]. Observe that the convex
subcategory of E = D[X][Y ] given by the vertices a, a∗, 1, 1∗, 2, 2∗, 3 is a

tilted algebra F of type Ẽ6, obtained from the hereditary algebra H of type

Ã6, formed by the vertices a∗, 1, 1∗, 2, 2∗, 3, by one-point coextension using
a simple regular module lying in a stable tube of rank one of the Auslander–
Reiten quiver of H. Moreover, since a is a target in S, we conclude that
a is a source of R. Further, a is a node of B. This implies that for any
indecomposable injective E-module IE(x), with x being an object of T2(R)
different from a and a∗, the restriction of IE(x) to F is projective. In
particular, we conclude that the preinjective component and P1(K)-family
of coray tubes of the Auslander–Reiten quiver of F are full components of
the Auslander–Reiten quiver of E, and moreover, are closed under successors
in modE.

Finally, observe that T2(B) is the one-point extension E[Z], with ex-
tension vertex 3∗, where Z is the unique indecomposable injective module
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IF (a) = IE(a) in the tubular family of the Auslander–Reiten quiver of F .
Therefore, invoking the above remarks, we conclude that the Auslander–

Reiten quiver of T2(B) has a preinjective component of Euclidean type Ẽ6
and a P1(K)-family of tubes, one of them containing the projective-injective
module IT2(R)(a) = IT2(S)(a) = PT2(S)(3

∗) = PT2(R)(3
∗) and the remaining

ones being stable tubes of the Auslander–Reiten quiver of H. As a conse-
quence, we deduce that if M is an indecomposable T2(B)-module whose
support contains one of the vertices 1∗, 2∗, or 3∗, then the support of M is
contained in T2(S). Therefore, T2(B) is tame if and only if D is tame.

Further, taking the APR-cotilt of D (in the sense of [2]) with respect to
the simple injective nonprojective module SD(3), we get an algebra Γ of the
form

T2(R)

a∗ 1y ւ
a←− 3

տ
2

and D is tame provided Γ is tame. Taking now the APR-cotilt of Γ with
respect to the simple injective nonprojective module SΓ (2), we obtain an
algebra Ω of the form

T2(R)

a∗ 1y ւ
a←− 3

ց
2

and such that Ω tame implies Γ tame. We now observe that Ω can be
obtained from a full subcategory of the category B′′ of type (iii) by shrinking
some arrows to identity (see [37, (1.2)]), and consequently, Ω is tame if B′′

is tame (see also [16, Lemma 6] for the fact that a full subcategory of a tame
algebra is also tame). Summing up the considerations above, we infer that
if B′′ is tame then T2(B) is tame.

Consider now the algebra C with S given by the bound quiver

2 3
...ց ւ

...
b←− 1−→ c

from the family Bop. Then T2(C) is of the form
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�1b c2 3b� c�T2(R1) T2(R2)1�2� 3�
Hence T2(C) can be obtained from the algebra D of the form

�1b c2 3b� c�T2(R1) T2(R2)
by iterated one-point extensions creating the vertices 1∗, 2∗, 3∗.

Consider first the one-point extension D[X] with extension vertex 1∗,
whereX is the unique indecomposableD-module of dimension vector dimX
= 0 1 1 0

0 0
0 1 1 1 0

(having 0 at all vertices of T2(R1) and T1(R2) except b, b∗, c,
c∗). The Auslander–Reiten quiver of D has a full translation subquiver of
the form

· · ·
ց
0 1 0 0
0 0

0 0 0 0 0

ր
0 1 0 0
0 1

0 1 1 0 0

ր ց
0 1 0 0
0 0

0 1 1 0 0

0 0 0 0
0 1

0 0 1 0 0

0 0 0 0
1 0

0 0 0 0 0

ր ց ր ց ր
0 1 1 0
0 0

0 1 1 1 0

0 0 0 0
0 0

0 0 1 0 0

0 0 0 0
1 1

0 0 1 0 0

ց ր ց ր ց
0 0 1 0
0 0

0 0 1 1 0

0 0 0 0
1 0

0 0 1 0 0

0 0 0 0
0 1

0 0 0 0 0

ց ր
0 0 1 0
1 0

0 0 1 1 0

ց
0 0 1 0
0 0

0 0 0 0 0

ր
· · ·
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Hence the vector space category HomD(X,modD) is the additive category
of the incidence category of the following partially ordered set:

•
ր
•

ր ց
• •

ր ց ր ց
• • •
ց ր ց ր
• •
ց ր
•
ց
•

Consequently, E = D[x] is a domestic (even one-parametric) extension of D,
and the new one-parametric families of indecomposable E-modules are those
from the P1(K)-family T of stable tubes of the Auslander–Reiten quiver of
the hereditary algebra H given by the quiver

	b� 1� c�2 31
of Euclidean type D̃5.

Let F be the convex subcategory of T2(S) formed by the vertices b, b∗,
1, 1∗, c, c∗, 2 and 3. Then F is a tubular coextension of H of tubular type
(2, 3, 4) given by two one-point coextensions of H by two simple regular
modules lying in a stable tube of rank 2 of the tubular family T . Since
b and c are sources in R1 ∪ R2 and nodes in C, we deduce that for any
indecomposable injective E-module IE(x) with x being an object of T2(R1)
or T2(R2) different from b, b∗, c, c∗, the restriction of IE(x) to F is a pre-
projective F -module. This implies that the preinjective component and the
P1(K)-family T ′ of coray tubes of the Auslander–Reiten quiver of F are full
components of the Auslander–Reiten quiver of E, and moreover, are closed
under successors in modE.

Observe now that T2(C) is a tubular extension E[Y ][Z] of E by the
unique two injective E-modules Y and Z lying in the family T ′. There-
fore, we deduce that the Auslander–Reiten quiver of T2(C) has a prein-

jective component of Euclidean type Ẽ7 and a P1(K)-family T ′′ of tubes;
one of them contains two projective-injective modules IT2(C)(b) = PT2(C)(3

∗)
and IT2(C)(c) = PT2(C)(2

∗), and the remaining ones are stable tubes of the
Auslander–Reiten quiver of A.
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In particular, we deduce that if M is an indecomposable T2(C)-module
whose support contains one of the vertices 1∗, 2∗, or 3∗, then the support
of M is contained in T2(S). Therefore, T2(C) is tame if and only if D is
tame. Taking two APR-cotilts of D with respect to the simple injective
nonprojective modules SD(2) and SD(3), we obtain an algebra Γ of the
form

T2(R1)

b∗ c∗y
y

b←− 2←− 1−→ 3−→c

T2(R2)

and if Γ is tame then so is D. Finally, we observe that Γ is a full subcategory
of the category C ′′ of type (v). Hence, if C ′′ is tame then Γ is tame. Summing
up our considerations we find that if C ′′ is tame then T2(C) is tame. This
finishes the proof.

For each positive integer n, we denote by B[n] the algebra given by the
bound quiver

a

.. .
. . . . . . .. ր

1−→•−→•−→•y.....
y.....

y
•−→•−→•−→2

ր
.. . . . . . . . .

.

•
ց .. .

. . . . . . ..
• 3−→•−→•
ց

y.....
y.....

yց
•−→•−→4 •.. . . . . . . . .

.
ց
•

ր
· · · −→•

. . .

ց
•

.. . .
. . . . . .. ր

4n−3−→•−→•−→•y.....
y.....

y
•−→•−→•−→4n−2

ր
.. . . . . . . . .

.

•
ց .. .

. . . . . . ..
• 4n−1−→•−→•
ց

y.....
y.....

yց
•−→•−→4n •.. . . . . . . . .

.
ց
b

with a = b.
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Lemma 2. For each positive integer n, the algebra B[n] is tame (but not
of polynomial growth).

P r o o f. Fix m. Let H[n] be the convex subcategory (algebra) of B[n]
given by all vertices of B[n] except 1, . . . , 4n. Then H[n] is the path algebra

of a Euclidean quiver of type Ã14n−1 = Ã7n,7n, and B[n] is the biextension
algebra

[N1, . . . , N2n]H[n][M1, . . . ,M2n] =




K2n 0 0
M H[n] 0

D(N)⊗H[n]M D(N) K2n




(in the sense of [18]), whereM = M1⊕. . .⊕M2n, N = N1⊕. . .⊕N2n, D(N) =
HomK(N,K), Mi = radPH[n](2i − 1), Ni = IH[n](2i)/soc IH[n](2i), for 1 ≤
i ≤ 2n. Observe that M1, . . . ,M2n, N1, . . . , N2n are indecomposable regular
H[n]-modules of regular length 2 lying in two stable tubes of rank 7n in
the Auslander–Reiten quiver of H[n]. Moreover, the modules M1, . . . ,M2n
(respectively, N1, . . . , N2n) are Hom-orthogonal. Therefore, applying [18,
Theorem A], we conclude that B[n] = [N1, . . . , N2n]H[n][m1, . . . ,M2n] is
tame. Finally, we note that B[n] contains convex pg-critical subcategories,
and hence is not of polynomial growth.

We are now able to prove the following fact.

Proposition 6. Let A be an algebra from one of the families (T43) or
(T44). Then T2(A) is tame.

P r o o f. We replace each part S = Gi from the families A, B, C, Aop, Bop,
Cop in A by Λ = K∆, for ∆ of the form • ← • ← • ← • → • → • → • or its
opposite, according to the procedure described before Lemma 1, and obtain
an algebra A′. Then T2(A

′) contains a convex subcategory A′′ obtained from
T2(A

′) by replacing each T2(Λ) by

•←−• •−→•y ..
..
.y

y
.....

y
•←−•←−•←−•−→•−→•←−•

and each T2(Λ
op) by

•−→• •←−•y
.....

y
y ..

..
.y

•−→•−→•−→•←−•←−•←−•

Moreover, applying Lemma 1, we infer that T2(A) is tame if A′′ is tame.
Finally, observe that there is a positive integer n such that A′′ = B[n] if A
is of type (T44), or A′′ is a proper convex subcategory of B[n] if A is of type
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(T43). Applying Lemma 2, we conclude that A′′ is tame. Therefore, T2(A)
is also tame.

7.Weakly sincere triangular matrix algebras. For an algebra A, we
say that the algebra T2(A) is weakly sincere if there exists an indecomposable
T2(A)-module M such that for every proper convex subcategory B of A the
support of M is not contained in the convex subcategory T2(B). Clearly, if
T2(A) is sincere then T2(A) is weakly sincere.

The main aim of this section is to prove the following fact.

Proposition 7. Let A be a simply connected algebra of finite represen-

tation type with T2(A) weakly sincere, and assume that neither A nor Aop

has a factor algebra from the family (W). Then A or Aop is a factor algebra

of one of the algebras from the family (T1)–(T43).

In order to prove the proposition we need some concepts and lemmas.
Throughout this section we assume that A = KQ/I is a bound quiver
algebra satisfying the conditions of the above proposition. Since A is simply
connected of finite representation type (hence standard), we may also assume
that I is generated by paths or differences of paths with common sources
and common ends. Moreover, Q has no oriented cycles. We start with the
following two lemmas.

Lemma 3. Assume there is a K-linear relation u − w ∈ I, where u, w
are two paths in Q with a common source a and a common end b. Then

u = βα and w = σγ for a convex bound subquiver of (Q, I)

•
αրցβ

a . . . . . . . . b
γց րσ
•

P r o o f. This follows from the fact that the bound quiver algebras (W1)
and (W14) are not factor algebras of A = KQ/I.

Lemma 4. Assume the bound quiver algebra of the bound quiver

c
αրցγ

a . . . . . . . . b
βց րσ

d

is a convex subcategory of A. Then one of the following cases holds:

(i) A or Aop is a factor algebra of one of the algebras from the family

(T1)–(T6).
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(ii) A admits a convex subcategory given by the bound quiver

c
αր γց

.............
a . . . . . . . . b

ξ
−→ e

βց σր.........
....

d

and α, β, γ, σ, ξ are the unique arrows starting or ending at the vertices a,
b, c, d.

(iii)
c

.....
.....

...րαցγ
e
ξ
−→ a . . . . . . . . b.............ցβ րσ

d

and α, β, γ, σ are the unique arrows starting or ending at the vertices a, b,
c, d.

P r o o f. This follows by a simple analysis of the neighbourhood of the
commutative square formed by βα and σγ in (Q, I), invoking the facts that
T2(A) is weakly sincere and neither A nor Aop has a factor algebra from the
family (W2)–(W11).

It will follow from our further analysis of (Q, I) that if A contains a
convex subcategory of one of the forms (ii) or (iii), then A or Aop is a factor
algebra of an algebra of type (T43). As a consequence we will find that if
Q is not a tree then A or Aop is a factor algebra of one of the algebras
(T1)–(T6) or (T43).

For two vertices x and y of Q, we set x ≤ y if there exists a path from x
to y (including the trivial one for x = y) which does not belong to I. Then
we may assign to each vertex x of Q two partially ordered sets

x− = {y ∈ Q0 | y ≤ x} and x+ = {y ∈ Q0 | x ≤ y}.

Recall that, for a finite partially ordered set S, its width w(S) is the maximal
number of pairwise incomparable vertices of S. For each vertex x of Q,
consider also the full bound subquiver N(x) of (Q, I) given by all vertices
of x− and x+. Moreover, we put w(x) = w(x−) + w(x+).

Lemma 5. Let x be a vertex of Q. Then w(x)≤4. Moreover, if w(x)=4
then A or Aop is a factor algebra of (T1) or is given by the bound quiver of

one of the forms

• •
ց
.............ր
•−→•

ր........
.....ց

• •

• •
ց .. .

. . . . . . ..ր
•−→•−→•

ր ց
• •
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or

|
R a

|
−−−−−→•←−−−−−..... ւ ց ..

..
.

• •

|
b S
|

where a and b are nodes.

P r o o f. Assume that w(x) ≥ 4. We claim that then w(x−) = 2 and
w(x+) = 2, and consequently w(x) = 4. Indeed, suppose that w(x−) ≥ 3 or
w(x+) ≥ 3. Then, invoking Lemmas 3 and 4, we easily conclude that A or
Aop has a factor algebra of one of the forms (W9)–(W11), a contradiction.
Hence w(x−) = 2 = w(x+). Assume now that x is the source and the end of
two arrows. Since A and Aop have no factor algebras of types (W8), (W10)
and (W11), applying Lemma 4, we then infer that A is a factor algebra
of (T1). Finally, assume (by symmetry) that there is only one arrow in Q
starting at the vertex x. Using now the fact that algebras of types (W12),
(W13) and (W23) are not factor algebras of A and Aop, we easily verify that
A or Aop must be one of the algebras given by the bound quivers presented
in the lemma.

From now on we assume that w(x) ≤ 3 for any vertex x of (Q, I).

Lemma 6. Assume there exists a vertex x of Q such that w(x) = 3 and

N(x) is a quiver (without relations). Then A or Aop is a factor algebra of

one of the algebras (T7)–(T10) or of an algebra of the form

•y.. . . . . . . . ..
•−→•−→•−→•

|
R

|

P r o o f. This follows from Lemmas 3, 4 and that Q is a tree and A
contains a convex subcategory which is the path category of a Dynkin quiver
of type D4. Then, since A and Aop have no factor algebras from the family
(W13)–(W23), a direct analysis shows that A or Aop is a factor algebra of
one of the algebras presented in the lemma.

Lemma 7. Assume there exists a vertex x in Q such that w(x) = 3 and

the bound quiver N(x) is bound by a zero-relation of length at least 3. Then

A or Aop is a factor algebra of one of the algebras (T11)–(T18).

P r o o f. This follows from Lemmas 3, 4 and 6, and the fact that A and
Aop have no factor algebras from the family (W39)–(W52).

We note that if A = KQ/I satisfies the conditions of the above lemma
then for each vertex y of Q with w(y) = 3, the quiver N(y) is bound by
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at least two zero-relations, one of them of length at least 3 and another
one of length 2. Observe also that, if w(x) = 3 and N(x) is bound only by
zero-relations of length 2, then N(x) is bound by at most two zero-relations.

Lemma 8. Assume there exists a vertex x in Q with w(x) = 3, and ,
for each vertex y in Q with w(y) = 3, the quiver N(y) is bound only by two

zero-relations of length 2. Then A or Aop is a factor algebra of one of the

algebras (T19)–(T26), or is an algebra of the form

•y
.....

•−→•−→•.. .. . . . . . .
.

|
R

|

which is a factor algebra of the algebra presented in Lemma 4(ii).

P r o o f. This follows from Lemmas 3, 4, 6 and 7, and the fact that A
and Aop have no factor algebras from the family (W53)–(W72).

Lemma 9. Assume w(x)≤2 for any vertex x of Q, and there is a vertex

y in Q with N(y) bound by a zero-relation of length at least 3. Then A or

Aop is a factor algebra of one of the algebras (T27)–(T30).

P r o o f. This follows from the fact that A and Aop have no factor algebras
of the forms (W73)–(W78) and (W81).

Lemma 10. Assume w(x) ≤ 2 for any vertex x of Q and each N(x) is

bound by at most one zero-relation of length 2. Then A or Aop has one of

the following forms: (T31)–(T33) or

|
R a

|
←− • −→

|
b S
|

• • • −→ • −→
|
a R
|

|
R a

|
←− •←− • −→

|
b S
|

• • • −→
|
a R
|

|
R a

|
←− •←− • −→ • −→

|
b S
|

where a and b are nodes.

P r o o f. This follows from the weak sincerity of T2(A) and the fact that
A and Aop have no factor algebras of the forms (W73), (W79)–(W81).
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Lemma 11. Assume there exists a vertex x in Q with w(x) = 3, and
N(x) is bound only by one zero-relation of length 2, and for each vertex y
in Q with w(y) = 3, N(y) is bound by at least one zero-relation. Then A or

Aop is a factor algebra of one of the algebras (T34)–(T42), or has one of the

forms

|
R a

|
−→•←−.....

y
•

|
b S
|

|
R a

|
−→•←−•←−.....

y
•

|
b S
|

|
R a

|
−→•←−.....

y
•−→•−→•

|
b S
|

|
R a

|

−→•←−.....

y
•←−•←−•.. . . . . . . . .

.

|
b S
|

|
R a

|
−→•−→•←−.....

y
•

|
b S
|

|
R a

|
−→•−→•←−.....

y
•−→•

|
b S
|

|
R a

|

−→•−→•←−.....

y
•←−•←−•.. . . . . . . . .

.

|
b S
|

where a and b are nodes.

P r o o f. This follows by a tedious analysis invoking the above lemmas
and the fact that A and Aop have no factor algebras among (W24)–(W38).

Lemma 12. Assume that Q is not a tree, and neither A nor Aop is a

factor algebra of one of the algebras (T1)–(T6). Then A or Aop is a factor

algebra of an algebra of type (T43) whose quiver is not a tree.

P r o o f. This follows from the lemmas proved above.

The final lemma below completes our proof of Proposition 7.

Lemma 13. Assume Q is a tree, and neither A nor Aop is a factor algebra

of one of the algebras (T7)–(T42). Then A or Aop is a factor algebra of an

algebra of type (T43) whose quiver is a tree.

P r o o f. This is a direct consequence of the lemmas proved above.

8. Proofs of the main results. Let A = KQ/I be a standard al-

gebra of finite representation type and Ã → A = Ã/G be its universal
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Galois covering, with Ã a simply connected locally bounded K-category
and G a free group (see [9], [12]). Then the algebra T2(A) admits a univer-

sal Galois covering F (2) : T2(Ã) → T2(A) = T2(Ã)/G with T2(Ã) a simply
connected locally bounded K-category, described in Section 1. Denote by

F
(2)
λ : modT1(Ã) → modT2(A) the associated push-down functor. Since G

is a free group, the induced action of G on the isoclasses of finite-dimensional

indecomposable T2(Ã)-modules is free, and consequently F
(2)
λ preserves the

indecomposable modules and Auslander–Reiten sequences (see [21]). If F
(2)
λ

is dense then we obtain a Galois covering F
(2)
λ : modT2(Ã)→ modT2(A) of

module categories (in the sense of [9], [21]). In particular, in this case, the
Auslander–Reiten quiver ΓT2(A) of T2(A) is the orbit quiver Γ

T2(Ã)
/G of the

Auslander–Reiten quiver Γ
T2(Ã)

with respect to the induced action of G.

We say that an indecomposable locally finite-dimensional T2(Ã)-module
M is weakly G-periodic if its support suppM is infinite and the quotient
category (suppM)/GM is finite, where GM = {g ∈ G | gM ∼= M}. Note
that then GM is infinite. Since G is a free group, by [17, Proposition 2.4],

we see that the push-down functor F
(2)
λ : modT2(Ã) → modT2(A) is dense

if and only if there is no weakly G-periodic module over T2(Ã).

Proof of Theorem 1. Assume T2(A) is tame. Then it follows from [15,

Proposition 2] that T2(Ã) is tame. Hence every finite convex subcategory

B of T2(Ã) is tame and consequently the Tits form qB of B is weakly non-
negative (see [36]). Therefore (i) implies (ii). The implication (ii)⇒(iii) is a
direct consequence of the fact that the Tits form of any concealed algebra
of wild type is not weakly nonnegative (see [25, (6.2)]). Further, the impli-
cation (iii)⇒(iv) follows from Proposition 1. Therefore, it remains to show
that (iv) implies (i).

Assume Ã does not contain a finite convex subcategory Λ such that one
of the algebras from the family (W) is a factor algebra of Λ or Λop. Take

an indecomposable module M in modT2(Ã). Since the category T2(Ã) is
interval-finite in the sense of [12], the convex hull Λ of the support of M is

also finite. But then there exists a finite convex subcategory B of Ã such
that T2(B) is weakly sincere and Λ is a convex subcategory of T2(B). In
particular, M is an indecomposable T2(B)-module. Clearly, neither B nor
Bop has a factor algebra from the family (W). Then, applying Proposition 7,
we conclude that B or Bop is a factor algebra of one of the algebras from
the family (T1)–(T43). Therefore, by Propositions 5 and 6, T2(B) is tame,

and so also is Λ. Hence T2(Ã) is tame.

If the push-down functor F
(2)
λ : modT2(Ã) → modT2(A) is dense then

T2(A) is tame (see [15, Lemma 3]). Therefore, assume F
(2)
λ is not dense.



TAME TRIANGULAR MATRIX ALGEBRAS 299

Then there exists a weakly G-periodicT2(Ã)-module Y .We need a technique

developed in [17, Section 4]. Let R = T2(Ã). For a full subcategory C of R

we denote by Ĉ the full subcategory of R formed by all objects y such that
R(x, y) 6= 0 or R(y, x) 6= 0 for some object x from C. Clearly, if C is finite,
then C is also finite because the category R is locally bounded. For an R-
module M we denote by M |C the restriction of M to C. For X,Y ∈ ModR
we write X∈ Y whenever X is isomorphic to a direct summand of Y .

Fix a family Cn, n ∈ N, of finite convex subcategories of R such that

(1) For each n ∈ N, Cn+1 is the convex hull of Ĉn in R.

(2) R =
⋃
n∈N

Cn.

Since R is connected, locally bounded and interval-finite, such a family
exists. We shall identify a Cn-module Z with an R-module, by setting
M(x) = 0 for all objects x of R which are not in Cn. Let m ∈ N be the least
number such that Y |Cm 6= 0. We define a family of modules Yn ∈ indCn,
n ∈ N, as follows. Put Yn = 0 for n < m and let Ym be an arbitrary indecom-
posable direct summand of Y |Cm. Then there exist Ym+1 ∈ indCm+1 and a
splittable monomorphism ϕm : Ym → Ym+1|Cn such that Ym+1∈ (Y |Cm+1).
Repeating this procedure we can find, for all n ≥ m, Yn ∈ indCn and split-
table monomorphisms ϕn : Yn → Yn+1|Cn such that Yn∈ (Y |Cn). Thus we
obtain a sequence (Y, ϕn)n∈N, called in [17] a fundamental R-sequence pro-
duced by Y . Since in our case Cn are convex subcategories of R, it is in fact
a sequence of finite-dimensional indecomposable R-modules. The following
facts are direct consequences of [17, (4.3)–(4.5)]:

(a) Y = lim
←−

Yn.

(b) For each n ∈ N, there exists p ≥ n such that Yp|Cn ∼= Y |Cn.

(c) For each g ∈ GY and n ∈ N, there exists q ≥ n such that gCn ⊂ Cq
and gYn∈ (Yq | gCn).

For n ≥ m, denote by Dn the support of Yn. Clearly, Dn is contained
in Cn. Moreover, since Y is indecomposable, infinite-dimensional, locally

finite-dimensional, and Cn+1 contains Ĉn, for each n ∈ N, we deduce from
[15, Lemma 2] that, for any n ≥ m, Dn is not contained in Cn−1. Let
s = 2(m+11). Then each of the categories Dn, n ≥ s, has at least 22 objects.
Moreover, we know from the first part of our proof that, for each n ≥ s,

there exists a convex subcategory Bn of Ã such that T2(Bn) is a weakly

sincere convex subcategory of R = T2(Ã) and Yn is an indecomposable
T2(Bn)-module. Further, it follows from Proposition 7 that Bn or Bopn is
a factor algebra of an algebra from the family (T1)–(T43). Since T2(Bn),
for n ≥ s, has at least 22 objects, we conclude that Bn or Bopn is a factor
algebra of an algebra from the family (T43).
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Fix now an element 1 6= g ∈ GY . We know from (b) and (c) that for
any n ≥ s there exists r ≥ n such that gCn ⊂ Cr,

gYn∈ (Yr|gCn), and
Yr|Cn ∼= Y |Cn. Moreover, Y = lim

←−
Yn. Then we conclude that there is a

factor algebra B of an algebra of type (T44), whose quiver contains one
(unoriented) cycle, such that the universal (simply connected) Galois cover

B̃ of B is a convex subcategory Ã and Y is an indecomposable T2(B̃)-
module. We also note that all but finitely many categories Bn have a factor

algebra D with D or Dop from the family (NPG), and consequently T2(Ã)
is not of polynomial growth.

Observe now that in our proof that T2(A) is tame we may assume that
T2(A) is weakly sincere. Under this assumption, applying Proposition 7 and
invoking the shape of the algebras of type (T44) and the properties of the

convex subcategories Cn, n ∈ N, we conclude that T2(Ã) = R =
⋃
n∈N

Cn =

T2(B̃), and consequently T2(A)=T2(B) is tame, by Proposition 6. Therefore
(iv) implies (i), and this finishes the proof.

Proof of Theorem 2. It follows again from [15, Proposition 2] that T2(A)

of polynomial growth implies T2(Ã) of polynomial growth. Then the impli-
cation (i)⇒(ii) follows from the fact that all pg-critical algebras are not of

polynomial growth and all concealed algebras of types ˜̃Am, T5, ˜̃Dn, ˜̃E6, ˜̃E7,
˜̃E8 are wild (see Section 1).

The implication (ii)⇒(iii) is a direct consequence of Propositions 1 and 2.

Assume (iii) holds. Then Theorem 1 yields that T2(Ã) does not contain

a convex subcategory which is concealed of type ˜̃Am, T5,
˜̃Dn, ˜̃E6, ˜̃E7 or

˜̃E8. We also know that the support of any indecomposable T2(Ã)-module is

contained in a weakly sincere convex subcategory T2(B) of T2(Ã) for a finite

convex subcategory B of Ã. But then, by our assumption (iii) and Proposi-

tion 5, we conclude that T2(B) is of polynomial growth. Therefore T2(Ã) is
of polynomial growth. Finally, it follows from the proof of Theorem 1 and

the assumption that Ã has no factor algebra Λ with Λ or Λop from the family

(NPG) that the push-down functor F
(2)
λ : modT2(Ã)→ modT2(A) is dense.

Hence, invoking again [15, Lemma 3], we infer that T2(A) is of polynomial
growth, and (iii) implies (ii).

Proof of Theorem 5. This is a direct consequence of the above proof and

the properties of the push-down functor F
(2)
λ described at the beginning of

this section.

Proof of Theorem 3. It follows from [15, Proposition 2] that if T2(A) is

domestic then T2(Ã) is domestic, and consequently (i) implies (ii).

The implication (ii)⇒(iii) is a direct consequence of Propositions 1–3.
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Assume that (iii) holds. Let Λ be a finite convex subcategory of Ã. Since
Λ and Λop have no factor algebra from the families (W) and (ND), we easily
deduce that Λ and Λop have no factor algebra from the family (NPG). In

particular, by Theorems 2 and 5, T2(Ã) is of polynomial growth and the

push-down functor F
(2)
λ : modT2(Ã) → modT2(A) is dense. Further, it

follows from Propositions 5 and 7 that every weakly sincere finite convex

subcategory of the form T2(B) in T2(Ã) is domestic. Therefore T2(Ã) and
finally T2(A) are also domestic. Hence (iii) implies (i) and this finishes the
proof.

Proof of Theorem 4. It is well known (see [21, Lemma 3.3]) that if T2(A) is

of finite representation type, then T2(Ã) is locally representation-finite, that

is, every object of T2(Ã) belongs to the supports of finitely many isoclasses

of indecomposable T2(Ã)-modules. Thus, clearly, (i) implies (ii).
The implication (ii)⇒(iii) follows from Proposition 4.
Assume (iii) holds. Then Propositions 5 and 7 imply that every weakly

sincere finite convex subcategory of the form T2(B) in T2(Ã) is of finite
representation type and consequently every finite convex subcategory of

T2(Ã) is of finite representation type. In particular, T2(Ã) is of polynomial

growth, and so the push-down functor F
(2)
λ : modT2(Ã) → modT2(A) is

dense. Since T2(Ã) is strongly simply connected, we deduce from [17, Corol-

lary 2.5] that T2(Ã) is locally support-finite [15], that is, for each object x of

T2(Ã) the full subcategory of T2(Ã) formed by the supports of all indecom-

posable finite-dimensional T2(Ã)-modules having x in the support is finite.

But then we conclude that each object x of T2(Ã) lies in the support of at
most finitely many (up to isomorphism) indecomposable finite-dimensional

T2(B̃)-modules, that is, T2(Ã) is locally representation-finite in the sense of
[9], [21]. Therefore, by [21, Theorem 3.6], T2(A) is of finite representation
type. Thus (iii) implies (i).
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