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Dedicated to Rob Tijdeman on the occasion of his T5th birthday,
with many more to come!

1. Introduction. A striking result of Erdds and Selfridge [8] is that the

Diophantine equation
nn+1)---(n+k—1) =y

has no solution in positive integers n, k, y and ¢ with min{k, £} > 2. Attempts
to derive an analogous statement for the equation
(1.1) n(n+d)---(n+ (k—1)d) =",
where a similar nonexistence of solutions has been conjectured by Erdés to
hold for n, d positive and coprime and k suitably large, have led to a large
number of interesting conditional results (see e.g. [11], [14], [15], [18]-[20],
[22], [25]-|27]). For fine surveys of the extensive literature on this problem,
the reader is directed to Gyory [9], Shorey [23], [24] and Tijdeman [28].

Very recently, the author, jointly with Siksek [2], proved that, for fixed
k > ko, equation has only finitely many solutions (where n,d,y # 0
and ¢ > 2 are variable, and gcd(n,d) = 1). While ko here is effectively
computable, it is not explicitly determined in [2], but certainly exceeds el0%,

For small values of k, finiteness results for (1.1) (under coprimality as-
sumptions) have been obtained for k£ < 82 in [I, Theorem 1.4] and, in com-
pletely explicit form for & < 34, in [I0]. The techniques of [I] do not allow
for substantial strengthening of these results, however. The goal of the paper
at hand is to considerably extend [1, Theorem 1.4| using techniques from [2]
and a variety of new ideas. We prove
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THEOREM 1.1. There exist at most finitely many integersn, d, y, £ and k
with ged(n,d) = 1, £ > 2 and 4 < k < 15177 for which equation (1.1)) is
satisfied.

The outline of this paper is as follows. In Section [2] we derive two re-
sults by associating certain Frey—Hellegouarch curves to solutions to ((1.1)).
In Sections[3H5 we detail a number of combinatorial identities that will pro-
vide us with a powerful tool for applying the results of Section [2] Finally,
in Section [0 we combine these techniques to prove Theorem [I.I]} through
the addition of explicit bounds for the size of sets without 3-term arithmetic
progressions, and complete solutions of certain S-unit equations due to von
Kénel and Matschke [12].

2. Applications of the modular method. If we have a solution to
(1.1]) in coprime nonzero integers, we can write

(2.1) n—+id = b,;yf,
where P(b;), the greatest prime factor of b;, satisfies P(b;) < k and we may

assume that each b; is £th power free. Our goal is to use this information to
find integers A, B, C, a, b and ¢ for which

(2.2) Ad+ B =Cc™, me {2,3,¢},
where we can guarantee the existence of a prime p which divides ab, while
failing to divide 6ABC'. If we can accomplish this, we will bound £ as follows.
PROPOSITION 2.1. Let A, B and C be nonzero coprime integers and £ be
prime. Form € {2,3,(}, define Ky, = ki (C) by
29 if m=14,
Rm = 27 Hq|C q Zf m = 27
3 yca if m=3,
where the products are over prime values of q. If there exist nonzero integers
a,b and ¢ satisfying (2.2)) and a prime p, relatively prime to 6ABC, for which
plab, then
(2.3) (< (\/;5 + 1)(1+“m [gac a)/6

Proof. If we suppose we have such a solution to (2.2)), then, by combining
results from [3], [4] and [I3], there exists a cuspidal newform f =" -, c,q"
of weight 2 and level N, where ;

N | km H q.

q|ABC
Furthermore, since we assume that p|ab and pt6ABC, we have
(2.4) p+1==+c, (mod A),

where A |/ is a prime in the totally real field K = Q(cq, ¢2,. . .).
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We thus have
¢| Normpg g(p +1F ¢p),

and hence, as ¢, is bounded by 2,/p in all the real embeddings of K, via the
Hasse—Weil theorem,

(< (p+1+2yp)EU = (/p+1)2EQ,
Denoting the dimension of S3*V(N) by g (N), we thus have [K : Q] <
gg (), whereby, since Theorem 2 of Martin [16] implies that
N +1
12 7

g0 (N) <
we deduce inequality ([2.3)), as desired. =

To apply this result, we must show that a solution to , under certain
hypotheses at least, necessarily implies the existence of integers A, B, C, a,
b, ¢, m € {2,3,¢} and p prime, such that p|ab, pt ABCc and p is bounded
as a function of k. To do this, we will appeal to a number of polynomial
identities which we will deduce in the next three sections.

Additionally, in case we are not able to guarantee the existence of such
a p (or to bound its size), we will have use of the following.

PROPOSITION 2.2. Suppose that k > 4, n,d,y,{ is a solution to
with ged(n,d) = 1 and prime £ satisfying logl > 3, and {i,i + j,i + 25}
is a nontrivial 3-term arithmetic progression of indices in {0,1,...,k — 1}.
Define an elliptic curve Ey (given in Cremona’s tables [5] as 32a2) by

Ey: y?=2%— 2.

Then there exists an elliptic curve E/Q with full rational 2-torsion, without
complex multiplication, and with conductor Ng dividing 16 R, where

R = Rad(bibit;bi+25),

and the by are as defined in (2.1)). If we further assume that p is a prime for
which p|d and £ > 4,/p, then

ap(E) = Fap(Ep)-
In particular, if p=3 (mod 4), then a,(E) = 0.

Proof. From [10], we may suppose that k£ > 35. Arguing as in [2], proof
of Lemma 5.1| and appealing to [I3, Théoréme 4|, we see that if

)(1GR+1)/12

)

(2.5) > (1 + \/2RlogRexp(0.27 + 5/log R)

then there exists a curve E of conductor Ng|16R, with full rational 2-
torsion, for which

ay(E) = =a,(F) (mod 0),
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for each prime p that fails to divide (n + id)(n + (i + j)d)(n + (i + 25)d),
where the elliptic curve F' is defined via
F: oy =z —n—id)(z+n+ (+25)d).

Since

R< H q< 61.000081197
q<k

where the last inequality is a consequence of work of Schoenfeld [21], the

right hand side of 1D is readily seen to be bounded above by e3k, provided

k > 33. If p|d, we thus have a,(F') = ta,(Ep) (since the curve given by the

model 32 = 2% — n%x is a quadratic twist of Ep). It follows that

ap(E) = %a,(Ep) (mod 0),

whence a,(E) = =apy(Ep) via the Hasse-Weil bounds, since we assume
¢ > 4,/p. The fact that the curve E does not have complex multiplication
(which eliminates the possibility that R = 2) is a consequence of [2, proof
of Proposition 6.1]. The additional fact that a,(E) =0 for p = 3 (mod 4) is
classical. m

3. Combinatorial identities
3.1. Notation. Let j be a positive integer. Denote by

{al,...,aj;bl,...,bj;cl,...,cj}

three j-tuples of integers with the property that there exist integers «,
and «, not all zero, satisfying the polynomial identity

J J J

(3.1) aH(J:Jrai)+BH(az+bi)+7H(x+ci) = 0.
i=1 i=1 i=1
Further, by
[al,...,aj;bl,...,bj]

we mean two distinct j-tuples of integers satisfying the polynomial identity

J J J J
(3.2) [[@+a) - ][@+0:)=]]a: - [0
i=1 A

i=1 i=1 i= i=1

Henceforth, we will write v,(m) for the largest integer j such that p’ divides
a nonzero integer m.

3.2. Primes dividing n + id for precisely one value of i. Let us
begin by supposing that p divides precisely one of the terms

n,n+d,....,n+ (k—1)d,
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say p| n+id. This is certainly the case if p |y in and p > k (and possibly
the case if p|y and k/2 < p < k). Then one of {i —2;i—1;¢} or {i;i+1;i+2}
(which each give with («, 8,7) = (1, —2,1)) consists entirely of indices
in {0,1,...,k — 1}. Writing x = n/d + i thus leads to an equation of the
shape with m = ¢, P(ABC) < k, p|ab and p{6ABC.

3.3. Primes dividing n+id for precisely two values of ¢. If a prime
p divides precisely two of the terms
n,n+d,...,n+ (k—1)d,

then we may assume that p|n+id and p | n+(i+p)d, where 0 < i < k—p—1.
In this case, we consider the tuple

{0)pa bla b?a C1, 62}-

In order for there to exist a nontrivial polynomial identity of the shape (3.1)),
where we wish to have

0 < b1,ba,c1,c0 < p,

it is necessary that

1 1 1
p bi+by c1+c2 | =0.
0 b1b2 C1C9

This is obviously easy to arrange by taking, for instance,
bi=1, bp=p—-1, a=2 c=p-2
which are all distinct from 0 and p, provided p > 5, corresponding to (3.1])
with
p—3 p—1
=, = 2 — d = —_—
a 5 I3 p and 7« 5

Once again, we are led to a solution to (2.2)) with m = ¢, P(ABC) < k, p|ab
and pt6ABC.

3.4. First conclusions. From the preceding subsections, we have the
following (which is essentially contained in [Il, proof of Theorem 1.5]; see also
[2, Lemma 4.1]).

LEMMA 3.1. If k>4, n,d, ! is a nontrivial solution to (L.1)), and k/2 <
p < k is prime, then either p|d or

log ¢ < 3.

Proof. As before, we may suppose that k > 35. If p < k is prime then
either p|d, or

pln(n+d)---(n+ (k—1)d).
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Since we assume that (|1.1)) is satisfied, if p{d it follows from k/2 < p < k
that p divides either one or two of the terms
n,n+d,...,n+ (k—1)d.

From our preceding arguments, in either case, we find a nontrivial solution to
an equation of the shape (2.2)) with m = ¢, P(ABC) < k, p|aband p{6ABC.
Dividing through by suitable common factors, we appeal to Proposition [2.1

Since
II <1l

q|ABC q<k

where the latter product is over all primes less than k, we deduce, via Schoen-

feld [21], that
H q< 61.000081k

g|ABC
and hence, from ([2.3)) and the fact that p <k,

(< (VE 4+ 1)L/6H(16/3)e 000081k gk

where the last inequality is valid for all £k > 23.

4. Primes dividing n + id for precisely three values of i. We sup-
pose next that we have a nontrivial solution to ([1.1) and that p is a prime
such that there exist precisely three indices i € {0,1,...,k — 1} for which
n + id is divisible by p, say

pln+id, p|ln+(i+p)d and p|n+ (i+ 2p)d.

Note for future use that since we assume ¢ > 4, p? divides precisely one of
n+id, n+ (i +p)d or n+ (i + 2p)d.

We would like to argue as in the preceding section, by finding a tuple of
the shape {0, p, 2p; b1, ba, bs; c1, ca, c3}, with the b; and ¢; positive integers,
each coprime to p and lying in the interval (0,2p). If the corresponding
coefficients «, 8 and v in are also coprime to p, then we can apply
Proposition to deduce an upper bound upon /. It is a finite computation
to verify the existence of such identities, for a given value of p, and we can
confirm that there exist identities with the desired properties for each prime p
with 11 < p < 500. It seems likely that such an identity in fact exists for
every p > 11. We will not, however, prove this, rather choosing to approach
the problem somewhat differently.

If p? | n + (i + p)d, then it follows that

I/p(bier) =/¢—2 and I/p(bi) = Vp(bi+2p) =1.
We consider the tuple
{07O7pa 17 2p - 27 2p - 2) 2’ 27p - 1},
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corresponding to the identity
(p—2)2*(x+p)+ @+ 1)(@x+2p—2)%=(p—1)(z+2)*(x+p—1).
Writing as before * = n/d + i, we thus have a solution to (2.2)) with,
from (2.1)),
b?bH_p 2 2
A=(p-2) o B =bit1biy9, 9,  C=(p—1)bjobisp-1,
@ = PY;Yitp, b=yit1Yirop2 €= Yiralitp-1
and m = £. After dividing through by any common factors, we once again
have a solution to (2.2]) with coprime coefficients A, B and C' each composed
of primes factors smaller than k, pt ABC and p| ab.
For the remainder of this section, we may therefore suppose that
plln+(i+p)d.
We will handle this situation by considering the cases p = —1 (mod 12),
p=1 (mod 4) and p =1 (mod 3) separately.

4.1. p = —1 (mod 12). In this case, let us begin by noting that Theo-
rem 112 of Nagell [I7] guarantees the existence of positive integers r and s
such that p = 3r% — 52, where max{r,s} < \/m We claim that r > s: if
not, then

p:37°2—52<252 <p,
an immediate contradiction. The tuple

{0, p, 2p; b1, ba, bs; 1, ¢2, c3}

with
bi=s(r—s), ba=(r+s)(3r—2s), b3=2r3r—s),
c1=2s(r—s), ca="2r(3r—2s), c3=(r+s)(3r—s)
thus corresponds to an identity of the shape (3.1) with « = v = 1 and
B8 = —2. Here, the assumption r > s ensures that

0<s(r—s)=b <r®<3r?—s*=np,
and, in fact, it is easy to show that
0<by <c1 <p<by <ecg,cg3 <by<2p.

A short check that we cannot have ¢y = ¢3 completes the construction (i.e.
ensures that the b; and ¢; are distinct indices in the interval (0,2p), each
coprime to p). We are thus led, once more, to an equation of the shape ([2.2)
with m = ¢, P(ABC) < k, p|ab and p{6ABC.

We can, in fact, employ an almost identical argument in case p = 1
(mod 12), using the fact that such primes may be represented by the quad-
ratic form 72 — 3s2.
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4.2. p = 1 (mod 4). Here, there exist unique positive integers r and s
such that r > s and p = 2 +s2. If p? | n+id, we note the polynomial identity

s(r—s)(z42r?)(z + (r+5)?) + pr(z +p) = r(r + s)(x + 12 — s3)(x + 2rs),
corresponding to the tuple
{0,p; 202, (r + 5)% 72 — 52, 2rs}.
From the fact that p = 72 + s2 with > s positive, it follows that
0<2r, (r+s)2r*—s%2rs < 2p
and that p fails to divide any of 272, (r + )%, 7% — s? and 2rs. We thus have
0<2r+i,(r+s)?2+i,r?—s+i,2rs+i<k—1.

We apply this, as previously, with x = n/d + i, multiplying through
by d?, to again obtain a solution to with m = ¢, P(ABC) < k, p|ab
and pt6ABC.

Analogously, when p || n + id, the tuple

{p,2p; 25, (r — 8)%; 1% + 352, 2(r* + 52 — rs)}
corresponds to an identity of the shape with

a=p, pB=s(r—s) and y=—r(r-+s),
and hence leads to a like conclusion.

4.3. p = 1 (mod 3). In this remaining case, we will instead appeal to
identities corresponding to tuples of the shape [a1, ag, as; b1, ba, bs]. For such
primes, we may (following classical work of Fermat) write p = r2 + 3s2,
whereby we have the tuple

[p. p, 2p; b1, ba, bs]
with
by =712 —2rs + 552, by=1’42rs+5s> and b3 = 2(r? + s?).
This corresponds to the fact that
(4.1) (z+p)2%(z+2p) — (4 b1)(x + by)(z + b3) = 45°(r? — s%)2.
We also have
[O7p7p7 b17 b27 b3]7
where
by=(r+s)? by=(—s)? and bg=4s’
corresponding to
(4.2) z(z+p)? — (z+b1)(x +by)(x + b3) = —4s%(r? — s%)2.

Yet again we write z = n/d + i and multiply (4.1) and (4.2) through
by d3 to obtain equations of the shape (2.2) with m = 3, P(AB) < k
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and C = 45%(r? — 5%)2, where

(4.3) s <\/p/3<k/6 and |r?—s% <p<k/2.

In the case corresponding to (4.1]), we have p|ab and pt ABC precisely when
p?|n+ (i + 2p)d, while in the case corresponding to (4.2)), we see that p|ab

and pf ABC when p? | n + id.

4.4. Conclusions. We thus have

LEMMA 4.1. Ifk > 4, n,d, ¢ is a nontrivial solution to , and k/3 <
p < k is prime, then either p|d or

log ¢ < 4.

Proof. Suppose that pfd. From Lemma we may also suppose that

k/3 <p<k/2and
pln(n+d)---(n+ (k- 1)d),
so that p divides either two or three terms among
n,n+d,....,n+ (k—1)d.

If we are led to a solution to (2.2)) with m = ¢, P(ABC) < k, p|ab and
p16ABC, then we argue precisely as in the proof of Lemma to conclude
that log ¢ < 3. If, however, we are led to a solution to With m =3,
P(AB) <k, C = 45*(r? — 5?)%, p| ab and pf6ABC, then we apply Proposi-
tion 2.1 to conclude that

0 < (vp+ 1)L @ s 9/,
Since [21] and (4.3)) imply that

log<H ¢ H q) <log(2|s||r? — s%|) + Zlogq < 1.000081k + 1.5log k,
qC  qlAB q<k

after a little work we conclude as desired (since we may assume that k& > 35).
Note here that the upper bound log ¢ < 4F may be sharpened to log ¢ < 3F
provided we assume that k£ > 105. =

5. Primes dividing n+id for precisely four values of i. The last case
we will consider in this paper is when we have a nontrivial solution to
and a prime p such that there exist precisely four indices i € {0,1,...,k—1}
for which n + id is divisible by p, say

pln+id, pln+(+p)d, p|ln+(@+2p)d, pln+ (i+3p)d.

In this situation, we will suppose further that p = 1 (mod 4) and p > 5, so
that we can write p = r? + s? with r and s positive integers, say r < s. We
appeal to the identity corresponding to

[Oapa 2p7 3pa bla b27 b37 b4]7
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where we set
(rs +3s2,72 — 3rs +2s%) if s < 3r,
(b1, b2) = 2 2 2y -
(rs+3r,s®—3rs+2r°) if s > 3r,
bs = 3p—>b1 and by = 3p—by. We check that, with these choices, we have both
0 < b; < 3p and ged(b;,p) = 1, for each i € {1,2,3,4} (this last condition
requires the assumption that p > 5).
From the identity
(x 4+ b1)(z + b2)(x + b3)(x + by) — x(x + p)(x + 2p)(z + 3p) = b1babsby,
we argue as previously, setting # = n/d + 4 and multiplying through by d*
to obtain an equation of the shape (2.2) with m =2, P(AB) < k, |C| < k*,
P(C) < Vk, p|ab and pt ABC. We thus have
LEMMA 5.1. Ifk >4, n,d, ! is a nontrivial solution to (1.1)), and k/4 <
p < k/3 is prime with p = 1 (mod 4), then either p|d or
log ¢ < 5*.
Proof. If k/4 < p < k/3 and p{d, then p divides either three or four of

the terms in
n,n+d,....,n+ (k—1)d.

As before, we apply Proposition to conclude that
(< (\/]3+ 1)(1+128Hq|c q? [Igapa)/6
and appeal to the inequalities p < k/3 and

log(H ¢ H q) <dlogk + Zlogq < 1.000081% + 4log k.
qlC q|AB q<k

The desired result is a consequence of the fact that k£ > 28. If we assume
that k& > 267, we may replace the bound log ¢ < 5% by logf < 3%. u

6. Computational finiteness. We now proceed with the proof of The-
orem Suppose that we have a nontrivial solution to , where, from
[1, Theorem 1.4], we may assume that k£ > 83. By Lemmata and
if log¢ > 5%, then necessarily p|d for every prime p with /3 < p < k
and for every prime p = 1 (mod 4) with k/4 < p < k/3. We claim that,
for 83 < k < 15177, we can find a nontrivial 3-term arithmetic progression
{i,i+j,i+ 25} (i.e. with j # 0) of indices in {0,1,...,k — 1} such that
(6.1) P(bibi+jbi+gj) < 53.

Notice that, for k& < 177, Lemma (4.1 ensures that P(b;) < 53 for all 4, and
hence such a result is immediate for such k (taking the indices {0,1,2} for

example). To see this for larger k, note that the number of indices ¢ for which
we can have p|b; for a given prime p is at most [(k — 1)/p] + 1. It follows
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that the number of indices ¢ € {0,1,...,k — 1} such that P(b;) < 53 is at
least

N (s O ()

59<p<k/4 k/A<p<k/3
p=3 (mod 4)

where the sum is over prime p. A short computation reveals that this exceeds
0.27k for all £ < 15177.
We next have need of a computational result on the size r(IN) of the
largest subset S of
Sy={1,...,N}, NEeN,

that fails to contain a nontrivial 3-term arithmetic progression. Work of
Dybizbanski [7] implies that we have

N r(N) N r(N) N r(N)
1 1 30,31 12 82,83 23
2,3 2 32,33,34,35 13 84,85,...,91 24
4 3 36,37, 38,39 14 92,93,94 25
5,6,7,8 4 40 15 95,96, ...,99 26
9,10 5 41,42,....50 16 100,101,102,103 27
11,12 6 51,52,53 17 104,105,...,110 28
13 7 54,55,56,57 18 111,112,113 29
14,15,...,19 8 58,59,...,62 19 114,115,...,120 30
20,21,22,23 9 63,64,...,70 20 121 31
24,25 10 71,72,73 21 122,123 32

26,27,28,29 11 74,75,...,81 22

To deduce upper bounds for r(N) for larger values of N without further
computation, we can simply appeal to the fact that

r(N+ M) <r(N)+r(M).
Choosing a modulus ¢ and writing N = aq + qo with 0 < g9 < k — 1, we
therefore have
r(N) < ar(q) +r(q),
where we take 7(0) = 0. It follows that, if S is any subset of Sy without
three-term arithmetic progressions, then we have

IS| _ ar() + r(a0)
N~ ag+q

PROPOSITION 6.1. Let N > 178 be an integer and suppose that S C Sy
has cardinality |S| satisfying |S| > 0.27N. Then we may conclude that S con-
tains a nontrivial 3-term arithmetic progression. That is, there exist s1, S2, S3
in S with s1 < s9 < s3 and s1 + s3 = 2s9.

(6.3)
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Proof. Suppose that N > 178 and that S C Sy. Suppose further that S
contains no nontrivial 3-term arithmetic progressions. Applying inequality
(6.3]) with ¢ = 123, we find that
|51 - 32a + 7(qo)
N — 123a+ qo

Since N > 178, we see that a > 1, and checking each value 0 < Ny < 122
separately, we may readily verify that implies |S| < 0.27N unless
N < 533. For the remaining values of N for which (6.4)) fails to imply
|S| < 0.27N, we appeal to with either ¢ = 120 or ¢ = 110. We find that
|S| < 0.27N unless ¢ < 185. To handle 182 < N < 185, we use the partition
N =94+ (N — 94), so that

r(N) < r(94) +7(91) = 49 < 0.27TN  for 182 < N < 185.
Finally, for 178 < N < 181, we write N = 91 4 (N — 91), whereby
r(N) < 7(91) +7(90) = 48 < 0.27N  for 178 < N < 181.

(6.4) ,  where 0 < gg < 122.

Applying this result shows that, for k£ < 15177, there necessarily exists a
3-term arithmetic progression {i,i+j,i+2j} of indices in {0, 1, ..., k—1} such
that (6.1)) holds. From Proposition and the assumption that log¢ > 5%
there thus exists an elliptic curve E/Q with full rational 2-torsion, without
complex multiplication and with good reduction outside

(6.5) S ={2,3,5,7,11,13,17,19, 23,29, 31, 37, 41, 43, 47, 53}.

In recent work of von Kénel and Matschke [12], one finds the complete
solution to the equation a + b = ¢ in S-units a, b and ¢ (i.e. integers a, b
and ¢ with all their prime factors in S) for S as in (6.5]). There are 1663449
triples of such solutions with 0 < a < b < ¢, each corresponding to an elliptic
curve with model

(6.6) Eup: v* =z(x —a)(z +b).

Such a curve has full rational 2-torsion and good reduction outside S. Con-
versely, any elliptic curve over QQ with full rational 2-torsion and good reduc-
tion outside S is isomorphic to a model (which need not be minimal) of the
shape , for integers a and b such that a, b and a + b are all S-units. It
follows that the E whose existence is guaranteed by Proposition [2.2] is nec-
essarily a quadratic twist of E,; for one of the 1663449 possibilities found
in [12].

It remains then to check, for each 83 < k < 15177, whether we ever have,
say,
(6.7) ap(Eqp) = £ap(Ep) for every prime p with k/3 < p < k.

By way of example, if £k = 83, then we may restrict our attention
to E,, with good reduction outside Py3 = {2,3,5,7,11,13,17,19,23}. The
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only E,; we find with good reduction outside P3 and a,(E,p) = 0 for
p € {59,67,71,79,83} are quadratic twists of the following curves:

Curve Conductor a b
Eo 2° -1 0
Eq 2%.5.7-11-17-19-23 498 —408595

In the first case, the corresponding twists necessarily have complex multipli-
cation. In the second, we have ag1(E7) = —6, while ag1(Ep) = —10.

For each value of k£ in question, it is a short computation to verify that
the only E,; satisfying themselves have complex multiplication (and
hence cannot be isogenous to E).

It follows, therefore, that log¢ < 5* for each 83 < k < 15177. Since a
result of Darmon and Granville [6] implies that the number of nontrivial
solutions to is finite for each fixed pair (k,¢) with k + ¢ > 6, this
completes the proof of Theorem

7. Concluding remarks. From the proof of Theorem it is straight-
forward to obtain results for the more general equation

n(n+d)---(n+ (k—1)d) = by,

where b is an integer whose greatest prime factor P(b) is restricted in some
fashion. We will omit the details here.

Acknowledgements. This research was supported in part by a grant
from NSERC.

References

[1]l M. A. Bennett, N. Bruin, K. Gyéry and L. Hajdu, Powers from products of consecutive
terms in arithmetic progression, Proc. London Math. Soc. 92 (2006), 273-306.

[2] M. A. Bennett and S. Siksek, A conjecture of Erdds, supersingular primes and short
character sums, submitted for publication.

[3] M. A. Bennett and C. M. Skinner, Ternary Diophantine equations via Galois repre-
sentations and modular forms, Canad. J. Math. 56 (2004), 23-54.

[4] M. A. Bennett, V. Vatsal and S. Yazdani, Ternary Diophantine equations of signature
(p,p, 3), Compos. Math. 140 (2004), 1399-1416.

[5] J. E. Cremona, Algorithms for Modular Elliptic Curves, 2nd ed., Cambridge Univ.
Press, 1997.

[6] H. Darmon and A. Granville, On the equations z™ = F(z,y) and Az? + By? = Cz",
Bull. London Math. Soc. 27 (1995), 513-543.

[7] J. Dybizbariski, Sequences containing no 3-term arithmetic progressions, Electron. J.
Combin. 19 (2012), Paper 15, 5 pp.

[8] P. Erdés and J. L. Selfridge, The product of consecutive integers is never a power,
Ilinois J. Math. 19 (1975), 292-301.


http://dx.doi.org/10.1112/S0024611505015625
http://dx.doi.org/10.4153/CJM-2004-002-2
http://dx.doi.org/10.1112/S0010437X04000983
http://dx.doi.org/10.1112/blms/27.6.513

100 M. A. Bennett

[9] K. Gyéry, Power values of products of consecutive integers and binomial coefficients,
in: Number Theory and Its Applications, S. Kanemitsu and K. Gyéry (eds.), Kluwer,
1999, 145-156.

[10] K. Gy6ry, L. Hajdu and A. Pintér, Perfect powers from products of consecutive terms
in arithmetic progression, Compos. Math. 145 (2009), 845-864.

[11]| K. Gy6ry, L. Hajdu and N. Saradha, On the diophantine equation n(n +d)---(n +
(k — 1)d) = by', Canad. Math. Bull. 47 (2004), 373-388.

[12] R. von Kéinel and B. Matschke, Solving S-unit, Mordell, Thue, Thue—Mahler and
generalized Ramanujan—Nagell equations via Shimura—Taniyama conjecture, arXiv:
1605.06079 (2016).

[13]| A. Kraus, Majorations effectives pour l’équation de Fermat généralisée, Canad. J.
Math. 49 (1997), 1139-1161.

[14] S. Laishram and T. N. Shorey, Perfect powers in arithmetic progressions, J. Combin.
Number Theory 7 (2016), 95-110.

|15]| R. Marszalek, On the product of consecutive elements of an arithmetic progression,
Monatsh. Math. 100 (1985), 215-222.

|16]| G. Martin, Dimensions of the spaces of cusp forms and newforms on Io(N) and
I (N), J. Number Theory 112 (2005), 298-331.

[17] T. Nagell, Introduction to Number Theory, Wiley, New York, 1951.

[18]| N. Saradha, Applications of the explicit abc-congecture to two Diophantine equations,
Acta Arith. 151 (2012), 401-419.

[19]| N. Saradha and T. N. Shorey, Almost perfect powers in arithmetic progression, Acta
Arith. 99 (2001), 363—-388.

[20]| N. Saradha and T. N. Shorey, Contributions towards a conjecture of Erdds on perfect
powers in arithmetic progression, Compos. Math. 141 (2005), 541-560.

[21] L. Schoenfeld, Sharper bounds for the Chebyshev functions 0(x) and ¥ (x) II, Math.
Comp. 30 (1976), 337-360.

[22] T. N. Shorey, Some exponential Diophantine equations, in: New Advances in Tran-
scendence Theory, A. Baker (ed.), Cambridge Univ. Press, 1988, 352-365.

[23] T. N. Shorey, Exponential diophantine equations involving products of consecutive
integers and related equations, in: Number Theory, R. P. Bambah et al. (eds.), Hin-
dustan Book Agency, 2000, 463-495.

[24] T. N. Shorey, Powers in arithmetic progressions (I1I), RIMS Kokyuroku 1274 (2002),
202-214.

[25] T. N. Shorey, Diophantine approzimations, Diophantine equations, transcendence and
applications, Indian J. Pure Appl. Math. 37 (2006), 9-39.

[26] T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical pro-
gression, in: A Tribute to Paul Erdés (A. Baker et al., eds.), Cambridge Univ. Press,
1990, 385-389.

[27] T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical
progression, Compos. Math. 75 (1990), 307-344.

[28] R. Tijdeman, Diophantine equations and diophantine approzimations, in: Number
Theory and Applications, Kluwer, 1989, 215-243.

Michael A. Bennett

Department of Mathematics
University of British Columbia
Vancouver, BC, Canada V6T 172
E-mail: bennett@math.ubc.ca


http://dx.doi.org/10.1112/S0010437X09004114
http://dx.doi.org/10.4153/CMB-2004-037-1
http://arxiv.org/abs/1605.06079
http://arxiv.org/abs/1605.06079
http://dx.doi.org/10.4153/CJM-1997-056-2
http://dx.doi.org/10.1007/BF01299269
http://dx.doi.org/10.1016/j.jnt.2004.10.009
http://dx.doi.org/10.4064/aa151-4-4
http://dx.doi.org/10.4064/aa99-4-5
http://dx.doi.org/10.1112/S0010437X04001125
http://dx.doi.org/10.1017/CBO9780511897184.023
http://dx.doi.org/10.1017/CBO9780511983917.032

	1 Introduction
	2 Applications of the modular method
	3 Combinatorial identities
	3.1 Notation
	3.2 Primes dividing n+id for precisely one value of i
	3.3 Primes dividing n+id for precisely two values of i
	3.4 First conclusions

	4 Primes dividing n+id for precisely three values of i
	4.1 p -1  (mod 12)
	4.2 p 1  (mod 4)
	4.3 p 1  (mod 3)
	4.4 Conclusions

	5 Primes dividing n+id for precisely four values of i
	6 Computational finiteness
	7 Concluding remarks
	References

