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Chains and antichains in Boolean algebras

by

M. L o s a d a and S. T o d o r č e v i ć (Toronto and Paris)

Abstract. We give an affirmative answer to problem DJ from Fremlin’s list ([8]) which
asks whether MAω1 implies that every uncountable Boolean algebra has an uncountable
set of pairwise incomparable elements.

1. Introduction. Every Boolean algebra B has a natural ordering which
is especially apparent when we think of B as a field of subsets of some set.
In this case the ordering of B is simply the inclusion relation ⊆ and one
usually keeps this notation even in the situation when the representation of
B as a field of sets is not explicit. Two elements a and b in B are comparable
if either a ⊆ b or b ⊆ a; otherwise we say that a and b are incomparable.
The comparability relation on B can sometimes be used when finding dis-
tinctions between various classes of Boolean algebras. For example, if B is a
free algebra then, regardless of its size, the order relation is not very present
in B. An old result of Galvin and Jónsson (see [9]) states that no free lattice
B can have an uncountable chain and, in fact, that there is a decomposition
B =

⋃∞
n=0 Bn such that for every n, any two distinct elements of Bn are

incomparable (we will generally call a set of pairwise incomparable elements
of B an antichain of B). On the other hand, Bonnet and Shelah [5] and
the second author [16] have constructed examples of chains L ⊆ P(ω) such
that the Boolean subalgebra B(L) of P(ω) generated by L does not have
an antichain of size equal to the size of L. So in this case the comparability
relation is much more present than incomparability. However, an examina-
tion of the class of interval algebras (such as B(L) above) shows that no
uncountable interval algebra can be represented as the union of countably
many chains. Thus, while one cannot expect that every uncountable Boolean
algebra has an uncountable chain, it is still possible to ask whether every
uncountable Boolean algebra contains an uncountable antichain. The afore-
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mentioned examples of Bonnet–Shelah [5] and the second author [16] show
that an affirmative answer to this question must involve an extra axiom of
set theory since the Continuum Hypothesis (CH) gives a counterexample.
An educated guess is that a natural candidate for such an axiom is Mar-
tin’s axiom, MAω1 (see [7]). A major breakthrough in this area was made
by Baumgartner [2] when he constructed a model of MAω1 in which every
uncountable Boolean algebra contains an uncountable antichain. After the
discovery of the Proper Forcing Axiom, PFA, he pointed out that his proof
in fact shows that PFA is an extra axiom of set theory that implies that
every uncountable Boolean algebra contains an uncountable antichain (see
[3]). However, this still left open whether MAω1 itself is strong enough to
give the same conclusion.

The related problem, asking whether every uncountable partially ordered
set must contain either an uncountable chain or an uncountable antichain,
is much older. A well-known example of Sierpiński and Kurepa ([14], [10]) is
an actual counterexample. It is an ordering of R obtained by intersecting the
usual ordering with a well-ordering. An unpublished result of Galvin, show-
ing that no uncountable subset of the Sierpiński poset can be represented
as (X,⊆) for some X ⊆ P(ω), hinted that the question of chains versus
antichains should really be restricted to the class of suborderings of P(ω).
This indeed turned out to be the right approach since Baumgartner’s proof
(see [3]) also shows that PFA implies that every uncountable subset of P(ω)
contains an uncountable chain or an uncountable antichain; a statement
which almost immediately (see [2] or [3]) implies that every uncountable
Boolean algebra contains an uncountable antichain. Thus a question that
naturally arises again is whether MAω1 itself is sufficient to give us the same
conclusion.

Interestingly enough, MAω1 does not imply that every uncountable sub-
set X of P(ω) must contain an uncountable chain or an uncountable an-
tichain. This follows from a result of Abraham and Shelah [1] which states
that MAω1 is consistent with the existence of a one-to-one function f from
some uncountable set A ⊆ R into R which is not monotonic on any uncount-
able subset of A. To see this, note that (R,⊆) is isomorphic to a chain in
(P(ω),⊆) via the embedding

r 7→ {n : qn < r},
for some fixed enumeration {qn : n < ω} of the rationals. Thus we can find
two uncountable chains A0 ⊆ P(2N+ 1) and B0 ⊆ P(2N) and a one-to-one
map f : A0 → B0 which is not monotonic on any uncountable subset of A0.
Then

Xf = {a ∪ (2N \ f(a)) : a ∈ A0}
is a subposet of (P(N),⊆) without uncountable chains or uncountable an-
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tichains. Note that such an f , and therefore such an Xf , can be constructed
using CH. Even more, one can use CH to get a P(ω)-analogue of the Sier-
piński poset, that is, an uncountable well-founded subset of P(ω) without
uncountable antichains (or chains). This was first done by Baumgartner
and Kunen, see [2]. In fact, there is a ZFC-example of an uncountable
well-founded subset X of P(ω) which contains no antichain of size equal
to the size of X (see [17]; Lemma 16). On the other hand, Boolean-algebraic
analogues of the Sierpiński poset have also been constructed by Baumgart-
ner and Komjáth [4] using ♦, and by Shelah [13] using CH, exhibiting un-
countable Boolean algebras without uncountable chains or uncountable an-
tichains.

The purpose of this paper is to show that MAω1 is indeed a sufficiently
strong additional axiom of set theory to imply that every uncountable
Boolean algebra contains an uncountable antichain, showing thus a strik-
ing discrepancy between the class of uncountable Boolean algebras and the
wider class of uncountable partial orderings.

2. Preliminaries. As we mentioned above, throughout this paper we
address the following question.

Question 2.1. (MAω1) Does every uncountable Boolean algebra B have
an uncountable set of pairwise incomparable elements?

In this section we collect some known results related to Question 2.1.
We have already indicated above that the corresponding question for un-
countable partially ordered sets is much older and that we can hope for a
(consistent) affirmative answer only in the case of uncountable suborderings
of (P(ω),⊆). We shall need a general fact about the effect of MAω1 on such
suborderings of P(ω). To state it we need the following definition.

Definition 2.2. An uncountable linearly ordered set (L,≤) is called
Countryman if its Cartesian square is the union of countably many chains.

Remark 2.3. It is easily seen that no set X of reals is Countryman.
To see this, choose f : X → X such that f−1(x) is uncountable for every
x ∈ X. If X2 can be covered by countably many chains then f would contain
a nondecreasing restriction g = f¹Y such that

Z = {z ∈ X : g−1(z) is uncountable}
is uncountable. Note that for y 6= z in Z, g−1(y) and g−1(z) are two disjoint
convex subsets of Y . So we would be able to obtain from g−1(z) (z ∈ Z) an
uncountable family of disjoint open intervals of Y , a contradiction.

Remark 2.4. Note also that if (L,≤) is Countryman then every finite
power of (L,≤) with the coordinatewise (Cartesian) ordering is also the
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union of countably many chains. To see this, let c : L2 → ω be a fixed
chain-decomposition of L2. For an integer n ≥ 2 define cn : Ln → ωn

2
by

letting

cn(x0, . . . , xn−1) = 〈c(xi, xj) : i, j < n〉.
It is easily checked that cn is a chain-decomposition of Ln.

The following lemma is due to Kunen in the case of well-orderings
(see [7]) and to Baumgartner [2] in the more general case of Aronszajn
orderings. For our purposes we will only need the special case of Coun-
tryman orderings rather than Aronszajn and, in order to make this paper
self-contained, we give a proof of this special case.

Lemma 2.5. (MAω1) Suppose X ⊆ P(ω) is uncountable and there exists
a strictly increasing map f : (X,⊆)→ (L,≤), where L is either a well-order
or a Countryman order. Then X has an uncountable antichain.

P r o o f. Our assumption on X ⊆ P(ω) implies that there is a total or-
dering � on X such that (X,�) is either a well-ordered set or a Countryman
ordering and such that x ⊆ y implies x � y for all x, y ∈ X. In fact, the only
property of (X,�) that we need to complete the proof (besides the fact that
it does not contain an uncountable subordering isomorphic to the reals) is
the property that every uncountable subset of some finite power of (X,�)
contains a chain under the coordinatewise ordering. Let P be the poset of all
finite antichains of X ordered by inclusion. By MAω1 it suffices to show that
P is a c.c.c. forcing notion. Otherwise, using a standard ∆-system argument
one can find an integer n and an uncountable family F of pairwise disjoint
subsets of X, all of size n, such that F ∪ G is not an antichain of (X,⊆)
for all F 6= G in F . Note that since an element F of F is an antichain of
(X,⊆) there is a k = kF < ω such that {x ∩ {0, . . . , k − 1} : x ∈ F} is
also an antichain of size n. Going to an uncountable subfamily of F we may
assume that there is a single integer k and a single antichain {t0, . . . , tn−1}
of n subsets of {0, . . . , k− 1} such that for every F ∈ F if {xF0 , . . . , xFn−1} is
an �-increasing enumeration of F then

xFi ∩ {0, . . . , k − 1} = ti for i < n.

It follows that for F 6= G in F there is an i < n such that either xFi ⊆ xGi
or vice versa, xGi ⊆ xFi . Using the assumption on the total ordering � we
may assume, by going to an uncountable subset of F and identifying each
F in F with 〈xF0 , . . . , xFn−1〉, that F is a chain in the Cartesian n-power of
(X,�). For F ∈ F , set

CF = {〈x0, . . . , xn−1〉 ∈ P(ω)n : xi ⊆ xFi for some i < n}.
Considering P(ω)n as the topological n-power of the Cantor space we

see that each CF is a closed subset of the power. Note that if F 6= G are
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members of the family F then

xF0 ≺ xG0 implies 〈xF0 , . . . , xFn−1〉 ∈ CG but 〈xG0 , . . . , xGn−1〉 6∈ CF .
It follows that (X0 = {xF0 : F ∈ F},�) is isomorphic to a chain

({CF ∩ F : F ∈ F},⊆)

of closed subsets of F , when F is considered as a separable metric space with
the topology induced from P(ω)n. Hence, in particular, (X0,�) is isomor-
phic to a set of reals with the usual ordering, a contradiction. The lemma
follows.

In general, it will be useful to restrict ourselves to P(ω) when answering
Question 2.1; the precise way is stated in the following well-known lemma
([4] or [11]).

Lemma 2.6. Every Boolean algebra B without an uncountable set of
pairwise incomparable elements is isomorphic to a subalgebra of the power
set P(ω).

P r o o f. Note that the conclusion of the lemma is equivalent to the
statement that B is σ-centered, or equivalently that the Stone space of
B is separable. Otherwise, since B is a c.c.c. algebra, we can find disjoint
a, b ∈ B+ = B \ {0} such that neither of the restrictions B+¹a and B+¹b is
σ-centered. Using this recursively on countable ordinals, pick sequences

{aα : α < ω1} ⊆ B+¹a and {bα : α < ω1} ⊆ B+¹b
such that aβ ⊆ aα or bβ ⊆ bα can only happen when β > α. Let

X = {aα ∪ (b \ bα) : α < ω1}.
Clearly, X is an uncountable antichain of B. The lemma follows.

Remark 2.7. Note that the argument shows that in Lemma 2.6 we have
a stronger conclusion: B has a countable order-dense subset.

Therefore, without loss of generality, we may assume that B is a sub-
algebra of P(ω). Furthermore we may assume that B does not have an
uncountable subset satisfying the conditions of Lemma 2.5. In particular,
this will mean that all ideals of subalgebras of B are countably generated.
For assume that the ideal I ⊆ B is not countably generated. Then we can
construct inductively a sequence S = 〈xγ : γ < ω1〉 ⊆ I such that for each
α 6= β < ω1, if xα ⊆ xβ then α < β. When this happens we say that the
inclusion relation on S is extended by the well-ordering on its index set ω1.
In other words, there is a strictly increasing map from S into ω1 which, by
Lemma 2.5, implies that B has an uncountable family of pairwise incompa-
rable sets.
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The following lemma is also a part of the folklore and gives another
restriction on B that we may assume when trying to answer Question 2.1.

Lemma 2.8. (MAω1) Let B be an uncountable Boolean algebra with an
uncountable chain. Then B has an uncountable antichain.

P r o o f. Let L be a fixed uncountable chain in B. Recall that we may
assume that B is a subalgebra of P(ω). It follows that L has a countable
order-dense subset D. Note that there must be an element d in D such that
L0 = {x ∈ L : x ⊂ d} and L1 = {x ∈ L : d ⊂ x} are both uncountable.
Pick an arbitrary one-to-one mapping f : L0 → L1. (If L1 has smaller size
than L0 we switch the roles of L0 and L1.) If there is an uncountable set
K ⊆ L0 such that f¹K is increasing then {x∪(−f(x)) : x ∈ K} would be an
uncountable antichain of B. We can obtain such a K by applying MAω1 to
the poset P of all finite subsets p of L0 such that f¹p is increasing. For this
we need to assume that P satisfies the countable chain condition (c.c.c.). So
the lemma would be proved once we show the following:

Claim 2.9. If P is not c.c.c. then B contains an uncountable set of
pairwise incomparable elements.

P r o o f. Assume we can choose an uncountable sequence 〈pα : α < ω1〉 of
pairwise incompatible elements of P. Using a standard ∆-system argument
we may assume, by refining and removing the root, that the pα’s are disjoint
and have all the same size n. For each α we fix sequences I0

α, . . . , I
n−1
α and

J0
α, . . . , J

n−1
α of disjoint closed intervals with endpoints in D which separate

pα and its image f ′′pα, respectively. In other words, for each i < n there is
a unique element x′α in pα ∩ Iiα whose image f(x′α) is the unique member of
(f ′′pα)∩ J iα. Since there exist only countably many such sequences of inter-
vals, there is an uncountable set Ω ⊆ ω1 and I0, . . . , In−1 and J0, . . . , Jn−1

such that Iiα = Ii and J iα = J i for all α ∈ Ω and i < n. Let di = min Ii and
ei = min J i (i < n). Finally, for α ∈ Ω, let

aα = (x0
α \ d0) ∪ . . . ∪ (xn−1

α \ dn−1)

∪ (f(x0
α) \ e0) ∪ . . . ∪ (f(xn−1

α ) \ en−1).

For α 6= β in Ω the fact that pα and pβ are incompatible in P means
that f is not increasing on the union pα ∪ pβ , which in turn amounts to
the fact that aα 6⊆ aβ and aβ 6⊆ aα. This proves Claim 2.9, and hence also
Lemma 2.8.

The rest of the paper contains an approach to Question 2.1 which is
briefly described as follows. In Section 3 we begin the study of a general B
and the natural poset P of all finite antichains of B. Since we are assuming
MAω1 , the c.c.c.-ness of this poset P will give us an affirmative answer to
Question 2.1. Hence, assuming the poset P is not c.c.c. we try to find an
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uncountable antichain of B using some Boolean combinations of elements
of some fixed uncountable set of pairwise incompatible elements of P, in a
way similar to the proof of Lemma 2.8. Sections 4 and 5 both pertain to
the case where a specific setting like this (arrived at in Section 3) cannot
be attained. In this case it will be useful to work with the Stone space of
our Boolean algebra B. Auxiliary orders will be defined on a partition of the
Stone space of B that will either help us define uncountable antichains or
reduce our problem to Lemma 2.5.

3. Separation. In this section we prove the following lemma which
isolates a crucial object that will be considered in the rest of the paper.

Lemma 3.1. (MAω1) Suppose B is an uncountable subalgebra of P(ω)
which contains no uncountable antichain. Then there is a sequence X0 =
〈xα : α < ω1〉 of elements of B such that whenever M is a countable el-
ementary submodel of Hc+ containing B and X0, and b0, b1 ∈ B ∩M are
disjoint , then for every α < ω1, at least one of xα ∩ b0 or xα ∩ b1 belongs
to B ∩M .

P r o o f. It is natural to consider the following partial order, where X is
an arbitrary uncountable subset of B.

Definition 3.2. Let P = P(X ) be the partial order of all finite sets
of pairwise incomparable elements of X ordered by inclusion. That is, each
condition p ∈ P is of the form p = {x0, . . . , xm} ⊆ X for some m < ω such
that xi 6⊆ xj and xj 6⊆ xi for all i 6= j ≤ m. If p, q ∈ P then p extends q if
and only if q ⊆ p.

Note 3.3. P cannot be a c.c.c. poset or else we would be able to use
MAω1 on P and produce an uncountable antichain of B. So let A = 〈pα =
{xα0 , . . . , xαmα} : α < ω1〉 be an uncountable strong antichain of P. Using a
∆-system argument to refine A we may assume that the pα’s are disjoint
and there exists an integer n < ω such that mα = n for all α < ω1.

Refining further we may assume that for a fixed k < ω and all α < ω1,
xαi ∩ {0, . . . , k} 6⊆ xαj ∩ {0, . . . , k} for all i 6= j ≤ n. In fact, we may assume

that for all α 6= β < ω1, xαi ∩ {0, . . . , k} = xβi ∩ {0, . . . , k} for all i ≤ n.
Thus for α 6= β < ω1 we see that pα is incompatible with pβ if and only

if there exists an i = iαβ ≤ n such that either

xαi ⊆ xβi or xβi ⊆ xαi .
Since the above means that the incompatibility of two conditions of A

can be viewed as a comparability question of their corresponding elements,
it seems useful to separate the individual elements of each condition of the
strong antichain according to the following definition.
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Definition 3.4. Suppose there is a sequence 〈C0, . . . , Cn〉 of pairwise
disjoint elements of B and an uncountable set Ω ⊆ ω1 such that

(a) Ci ∩ xαi 6= ∅ and Ci \ xαi 6= ∅ for all α ∈ Ω and i ≤ n, and
(b) Ci ∩ xαi 6= Ci ∩ xβi for all α 6= β in Ω and i ≤ n.

Then we say that the sequence 〈C0, . . . , Cn〉 separates A.

A natural way to try to prove the existence of a sequence 〈C0, . . . , Cn〉
that would separate an uncountable subsequence of A is by induction on
n. Clearly, there is no problem at stage n = 0. So suppose we have found
uncountableΩn−1 ⊆ ω1 and a disjoint sequence separating {{xα0 , . . . , xαn−1} :
α ∈ Ωn−1}. If the family

{
xαn \

⋃

i<n

Ci : α ∈ Ωn−1

}

of sets is uncountable we could let Cn be the complement of
⋃
i<n Ci and

refine Ωn−1 to Ωn accordingly. Otherwise there is an i0 < n such that

{xαn ∩ Ci0 : α ∈ Ω} is uncountable.

Thus we would be done if we could refine Ci0 into two disjoint sets Ci0
and Cn that would separate {{xαi0 , xαn} : α ∈ Ω′} for some uncountable
Ω′. This means that the problem reduces to separating strong antichains A
of two-element conditions. Suppose this is impossible for a particular such
A = {{xα0 , xα1 } : α ∈ ω1}.

Pick a countable elementary submodel M of some large enough structure
such as Hc+ (the collection of all sets whose transitive closures have size ≤ c)
such that M contains B and X0 = {xα0 : α ∈ ω1}. Suppose δ < ω1 is such
that δ = M ∩ω1. Then, in particular, for α ≥ δ the element xα0 is not in M .
Pick two disjoint nonempty elements b0, b1 in B ∩M and some α ≥ δ. Then

(#) xα0 ∩ b0 ∈ B ∩M or xα0 ∩ b1 ∈ B ∩M.

Otherwise, M would satisfy the following statement with parameters b0, b1,
B, and X0 which all lie in M : For each δ < ω1 there exists an α ≥ δ such
that

xα0 ∩ b0 6= xβ0 ∩ b0 and xα0 ∩ b1 6= xβ0 ∩ b1 for all β < δ.

By elementarity this holds in Hc+ , so we can recursively construct an un-
countable set Ω ⊆ ω1 such that

xα0 ∩ b0 6= xβ0 ∩ b0 and xα0 ∩ b1 6= xβ0 ∩ b1 for all α 6= β in Ω.

Since the sequence {xα1 : α ∈ ω1} is one-to-one, there must be a set C1 ∈
{b0, b1, ω \ (b0 ∪ b1)} and an uncountable set Ω′ ⊆ Ω such that

xα1 ∩ C1 6= xβ1 ∩ C1 for all α 6= β in Ω′.



Chains and antichains in Boolean algebras 63

Pick C0∈{b0, b1} to be disjoint from C1. Then 〈C0, C1〉 separates {{xα0 , xα1 } :
α ∈ Ω′}, contradicting our assumption.

Remark 3.5. We have just proved the following. Suppose that for some
strong antichain A of P we cannot find a sequence 〈C0, . . . , Cn〉 that sepa-
rates an uncountable subantichain of A. Then we can obtain an uncountable
one-to-one sequence

X0 = {xα := xα0 : α < ω1}
of elements of B such that for every countable elementary submodel M of
Hc+ containing B and X0, every pair b0, b1 of disjoint and nonempty elements
of B ∩M , and every α ≥ δ = M ∩ ω1, (#) holds. In other words, we have
the conclusion of Lemma 3.1.

Now we proceed further and consider an even stronger form of separa-
tion whose failure also leads to an occurrence of a sequence satisfying the
conclusion of Lemma 3.1. However, this time we will be able to show that
this stronger separation leads to an uncountable subantichain of B. This will
clearly complete the proof of Lemma 3.1.

Remark 3.6. Suppose there exist a sequence 〈C0, . . . , Cn〉 that separates
A and another sequence 〈D0, . . . , Dn〉 of elements of the Boolean algebra B
such that the following holds for every α 6= β < ω1 and i ≤ n:

(†) xαi ∩ Ci ∩Di 6= xβi ∩ Ci ∩Di and Ci \ (Di ∪ xαi ) 6= Ci \ (Di ∪ xβi ).

Then the elements

Bα =
⋃

i≤n
(xαi ∩ Ci ∩Di) ∪ (Ci \ (Di ∪ xαi )),

for α < ω1, form an uncountable antichain of B.
To show this choose α 6= β < ω1. Then by Note 3.3 there exists an

i = iαβ ≤ n such that xαi ⊆ xβi or vice versa. In the former case we have

xαi ∩ Ci ∩Di ⊂ xβi ∩ Ci ∩Di and Ci \ (Di ∪ xβi ) ⊂ Ci \ (Di ∪ xαi ).

In the latter case the containments reverse. But in both cases Bα is incom-
parable to Bβ since the elements of 〈C0, . . . , Cn〉 are pairwise disjoint.

Therefore from now on we can assume that the separation defined in
Remark 3.6 is impossible, or in other words that:

(††) for every sequence 〈C0, . . . , Cn〉 separating a strong antichain A =
〈{xα0 , . . . , xαmα} : α < ω1〉 and every tuple 〈D0, . . . , Dn〉 of elements
of B, there is no uncountable set Ω ⊆ ω1 such that for all α 6= β in
Ω and i ≤ n the condition (†) holds.

It follows that any attempt to successively pick sets D0, . . . , Dn in B and
uncountable subsets Ω0 ⊇ . . . ⊇ Ωn of ω1 in order to satisfy (†) for α 6= β
in Ωj and i ≤ j ≤ n, must stop at some stage i0 < n. In other words having
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constructed sets D0, . . . , Di0−1 and uncountable sets ω1 ⊇ Ω0 ⊇ . . . ⊇ Ωi0−1

such that (†) holds for α 6= β in Ωi0−1 and i < i0, we will be unable to find
a set Di0 and an uncountable set Ω ⊆ Ωi0−1 that would satisfy (†) for all
α 6= β in Ω and i = i0.

From now on let X0 = {xα := xαi0 ∩ Ci0 : α ∈ Ωi0−1}. Without loss
of generality we may work entirely inside the Boolean algebra B¹Ci0 . So,
in order to simplify notation, we assume Ci0 = ω, which results in the
assumption i0 = n = 0. Moreover, we assume that B is generated by X0.

Note 3.7. Let M be a countable elementary submodel of Hc+ that
contains B and X0. Then for every pair of nonempty disjoint elements
b0, b1 ∈ B ∩M and every α > δ = M ∩ ω1,

(##) xα ∩ b0 ∈M or xα ∩ b1 ∈M.

In other words, we have reached again the conclusion of Lemma 3.1.
For if this fails for some α > δ and b0, b1 ∈ B∩M then, as before,M would

satisfy the following statement with parameters b0, b1,B,X0 ∈ M : for all
δ < ω1 there exists an α > δ such that both xα∩b0, xα∩b1 6∈M . Hence using
elementarity this statement is true in Hc+ and we can recursively construct
an uncountable subsequence of X0 satisfying (†) for i = i0, Di0 = b0, and
Ci0 = ω or b0 ∪ b1. This contradicts (††). Lemma 3.1 is proved.

4. An equivalence relation on the Stone space. Fix a sequence
X0 = {xα : α ∈ ω1} of elements of B satisfying Lemma 3.1. The rest of the
paper analyzes the sequence X0 in depth. Let M be a countable elementary
submodel of Hc+ that contains B and X0.

Note 4.1. Suppose that for α < ω1, we define the set

IMα = {b ∈ B ∩M : xα ∩ b ∈M}.
Then for every α ≥ δ = M ∩ ω1, the set IMα is a prime ideal of the Boolean
algebra B ∩M . We frequently rely on this observation in what follows.

Denote by U the Stone space of B whose elements are all the ultrafilters
of B. We define the following equivalence relation on U (for more on this
see [19]).

Definition 4.2. If t, u ∈ U then t ≡M u if and only if for every b in
B ∩M ,

t ∈ b is equivalent to u ∈ b,
where we identify b with the set of all ultrafilters that contain b. We denote
the equivalence class of t by [t].

The following lemma provides the setting we work in throughout the rest
of the paper.
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Lemma 4.3. For each α ≥ δ there exists exactly one equivalence class [t]
such that there exist u0, u1 ∈ [t] with u0 ∈ xα but u1 6∈ xα. We denote this
equivalence class by [tα]. We say that xα splits [tα].

P r o o f. Assume not. First suppose that xα does not split any [t]. Then
we can express xα as the union of all [t] such that [t] ⊆ xα. Let {bn : n < ω}
be a fixed enumeration of B∩M . By the definition of the equivalence relation,
each [t] ∈ U/≡M can be expressed as [t] =

⋂{bn : [t] ⊆ bn}.
Claim 4.5. For each [t] ∈ U/≡M such that [t] ⊆ xα there exists an

m ∈ ω such that [t] ⊆ bm ⊆ xα.

P r o o f. The claim follows from the compactness of the Stone space U .
Since [t] =

⋂{bn : [t] ⊆ bn}, we see that its complement, and therefore the
complement of xα, is contained in the union of the family {bcn : [t] ⊆ bn} of
clopen sets. So there is a finite set F ⊆ ω such that [t] ⊆ bn for each n ∈ F
and such that

xc
α ⊆

⋃

n∈F
bcn.

Let m be the index of the element
⋂{bn : n ∈ F} of B ∩M . Then [t] ⊆ bm

⊆ xα.

Hence we can fix for each [t] ⊆ xα an integer m([t]) such that [t] ⊆
bm([t]) ⊆ xα. In this case

xα =
⋃
{bm([t]) : [t] ⊆ xα}.

Since xα is also compact, as a subspace of U , it follows that xα =
⋃
n∈F ′ bn,

where F ′ is a finite set of integers. Thus xα ∈ B∩M , which is a contradiction.
Therefore xα must split at least one [t] ∈ U/≡M .

Now assume that [t0] and [t1] are two different equivalence classes split
by xα. Hence there exists an element b ∈ B ∩M such that t0 ∈ b but t1 6∈ b.
That is, t1 ∈ bc. Since xα ∩ b splits [t0] and xα ∩ bc splits [t1] and since no
member of B ∩M can split either [t0] or [t1], we must have both xα ∩ b and
xα ∩ bc off B ∩M , contradicting the fact that IMα is a prime ideal of B ∩M
(see Note 4.1). The lemma follows.

We now distinguish two possibilities.

5. Case 1: Cantor tree. Suppose that there is a countable elementary
submodel M of Hc+ containing all the relevant objects such that the set of
equivalence classes of U/≡M that are split is uncountable, i.e., there is an
uncountable set Ω ⊆ ω1 such that XΩ = {xα : α ∈ Ω} ⊆ X0 \M satisfies
[tα] 6= [tβ ] whenever α 6= β ∈ Ω.

Definition 5.1. Let xα, xβ ∈ XΩ . Recall that xα and xβ are subsets of
ω, so it is natural to define xα <lex xβ to mean that there exists an n0 < ω
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such that for m < n0,

m ∈ xα if and only if m ∈ xβ
but

n0 ∈ xβ \ xα.
Definition 5.2. Let Q be the poset of all finite F ⊆ XΩ such that for

all xα 6= xβ ∈ F ,
xα <lex xβ implies [tα] ⊆ xβ .

Let R be the poset of all finite F ⊆ XΩ such that for all xα 6= xβ ∈ F ,

xα <lex xβ implies [tβ ] 6⊆ xα.
Remark 5.3. The reason for considering these posets is that we will

prove, using MAω1 , that if Q and R are both c.c.c. then there is an un-
countable chain Y in the power set algebra of some set S, such that if 〈Y 〉
is the subalgebra generated by Y , then incomparable elements in 〈Y 〉 cor-
respond to incomparable elements in B. Thereby the problem is reduced
to Lemma 2.8. On the other hand, Lemmas 5.5 and 5.7 show that if one
of Q or R is not c.c.c. then B also has an uncountable family of pairwise
incomparable sets. Hence, in general, under the assumptions of Case 1 we
get a positive answer to Question 2.1.

Lemma 5.4. (MAω1) If Q and R are c.c.c. then B has an uncountable
antichain.

P r o o f. Applying MAω1 successively to Q and then R we obtain an
uncountable set Γ ⊆ Ω such that for α, β ∈ Γ ,

xα <lex xβ implies [tα] ⊆ xβ and [tβ ] 6⊆ xα.
Let S =

⋃
α∈Γ [tα]. Then for α, β ∈ Γ , xα <lex xβ implies xα ∩ S ⊂ xβ ∩ S.

Let Y = {xα ∩ S : α ∈ Γ}. Then Y is a chain in the Boolean algebra P(S).
Furthermore, by Lemma 2.8 the Boolean algebra 〈Y 〉 generated by Y has
an uncountable antichain. Note that

〈Y 〉 = {x ∩ 〈S〉 : x ∈ 〈{xα : α ∈ Γ}〉}.
So an uncountable antichain of 〈Y 〉 leads to an uncountable antichain of
〈{xα : α ∈ Γ}〉 and therefore one of B.

Lemma 5.5. If Q is not c.c.c. then B has an uncountable antichain.

P r o o f. Assume that Q is not c.c.c. Then Q has an uncountable strong
antichain A′ = 〈qα : α < ω1〉. Using a standard ∆-system argument, we
may assume that there is an n′ < ω such that for all α < ω1,

qα = {xαi : i ≤ n′}
is listed according to <lex and qα ∩ qβ = ∅ for α 6= β < ω1.
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Here xαi splits [tαi ] for i ≤ n′.
Recall that B ∩M is countable and that 〈bn : n ∈ ω〉 is a fixed enumer-

ation of the elements of B ∩M . Hence we may assume there exist a k < ω
and distinct elements si ∈ {0, 1}k for i ≤ n′ such that

(1) For each α < ω1, i ≤ n′, and j < k,

[tαi ] ⊆ bj if and only if si(j) = 1.

(2) The sets C ′i =
⋂{bj : j < k, si(j) = 1} (i ≤ n′) are disjoint and they

separate the elements split by qα for all α < ω1 (i.e., [tαi ] ⊆ C ′i for all i ≤ n′
and α < ω1).

For i ≤ n′ and α < ω1 define Cαi to be the minimal element of the
Boolean algebra generated by {xαj : i 6= j ≤ n′} ∪ {C ′i} that contains [tαi ].
Note that by (2) the elements Cα0 , . . . , C

α
n′ are pairwise disjoint. Since for

each j ≤ n′, j 6= i, the element xαj ∩C ′i is in B∩M it follows that Cαi is also
in B ∩M . Since B ∩M is countable, we may assume by further refining the
strong antichain that for some fixed sequence C∗0 , . . . , C

∗
n′ we have Cαi = C∗i

for all α < ω1 and i ≤ n′. Note that this, in particular, means that C∗i ⊆ xαj
for all 0 ≤ i < j ≤ n′ and α < ω1.

Thus for α 6= β < ω1,

(+) there is an i = iα,β ≤ n′ such that xαi <lex x
β
i but [tαi ] 6⊆ xβi , or vice

versa (with the roles of α and β interchanged).

Refining even more, if necessary, we may assume that for i ≤ n′ and
α 6= β < ω1,

xαi ∩ (ω \ C∗i ) = xβi ∩ (ω \ C∗i ).

Hence xαi ∩ C∗i <lex x
β
i ∩ C∗i if and only if xαi <lex x

β
i .

For α < ω1, define

dα =
⋃

i≤n′
(xαi ∩ C∗i ).

Fix any α 6= β < ω1. The lemma follows from

Claim 5.6. dα is incomparable to dβ.

P r o o f. By (+) we may assume without loss of generality that there is
an i ≤ n′ such that xαi <lex x

β
i but [tαi ] 6⊆ xβi . This implies that [tαi ]∩xβi = ∅,

which means that xαi \ xβi 6= ∅ as witnessed by [tαi ]. Thus (xαi ∩ C∗i ) \ (xβi ∩
C∗i ) 6= ∅. On the other hand, since xαi ∩ C∗i <lex xβi ∩ C∗i if and only if
xαi <lex x

β
i , by definition we have (xβi ∩ C∗i ) \ (xαi ∩ C∗i ) 6= ∅.

Hence xαi ∩C∗i is incomparable to xβi ∩C∗i . Since the elements of 〈C∗0 , . . .
. . . , C∗n′〉 are pairwise disjoint, dα is incomparable to dβ as desired. This
shows Claim 5.6 and hence also Lemma 5.5.
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Similarly one can prove

Lemma 5.7. If R is not c.c.c. then B has an uncountable antichain.

P r o o f. Keeping the same notation as above, we separate an arbitrary
strong antichain A′ of R with 〈C∗0 , . . . , C∗n′〉. Note that in this case, xαi ∩C∗j
= ∅ for all 0 ≤ i < j ≤ n′ and α < ω1.

Thus we may also assume that for α 6= β < ω1,

(++) there is an i = iα,β ≤ n′ such that xαi <lex x
β
i but [tβi ] ⊆ xαi , or

vice versa (with the roles of α and β interchanged),

and, similarly, that for i ≤ n′ and α 6= β < ω1,

xαi ∩ (ω \ C∗i ) = xβi ∩ (ω \ C∗i ).

Hence again xαi ∩C∗i <lex x
β
i ∩C∗i if and only if xαi <lex x

β
i . Once again for

α < ω1, define

dα =
⋃

i<n′
(xαi ∩ C∗i ).

As before, it remains to prove the following claim.

Claim 5.8. dα is incomparable to dβ for α 6= β < ω1.

P r o o f. By (++) there is an i ≤ n′ such that xαi <lex x
β
i but [tβi ] ⊆ xαi .

As in the previous proof, in this case it is also true that xαi \xβi 6= ∅, although
here the fact is witnessed by [tβi ]. Thus (xαi ∩ C∗i ) \ (xβi ∩ C∗i ) 6= ∅. On the
other hand, since xαi ∩ C∗i <lex x

β
i ∩ C∗i if and only if xαi <lex x

β
i , by the

definition of <lex we have (xβi ∩C∗i ) \ (xαi ∩C∗i ) 6= ∅. This proves Claim 5.8
and hence Lemma 5.7.

This finishes our analysis of Case 1.

6. Case 2: Aronszajn tree. The set of equivalence classes of U/≡M
that are split by elements of the set X0 = {xα : α < ω1} of Lemma 3.1 is
countable for any countable elementary submodel M of Hc+ .

Let 〈Mα : α < ω1〉 be a continuous ∈-chain of countable elementary
submodels of (Hc+ ,∈). Assume that B,X0 ∈ M0. For α < ω1, let Bα =
B ∩Mα. Let

Ω = {α ∈ ω1 : Mα ∩ α = α}.
Then Ω is a closed unbounded subset of ω1. Note that for α ∈ Ω, xα 6∈ Bα
but there exists β ∈ Ω with xα ∈ Bβ .

Definition 6.1. For α ∈ Ω we define [tα] as follows. Let ≡α be the
equivalence relation on the Stone space induced by Bα as defined above in
Definition 4.2. Then [tα] is the equivalence class of ≡α split by xα.
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Note 6.2. Let A be the set of all split equivalence classes (by members of
the set X0) induced by the equivalence relation ≡α for some α ∈ Ω. Let Aα
denote the set of split equivalence classes of ≡α. Note that the hypotheses of
Case 2 imply that each Aα is countable. Note also that A does not have an
uncountable chain since a strictly decreasing ω1-sequence of closed sets of U
(elements of A) easily gives an uncountable Y ⊆ B which is well-founded
under ⊆ and hence, by Lemma 2.5, B would have an uncountable antichain.
It follows that A is an Aronszajn tree ordered under reverse inclusion. Let
S = {[tα] : α ∈ Ω} ⊆ A. Going to an uncountable (or even stationary)
subset of Ω, we may assume (cf. [15, 9.5] or Lemma 6.5 below) that S is an
antichain of A. Hence for α < β in Ω, xβ does not split [tα] (and vice versa,
xα does not split [tβ ]).

Notation 6.3. Let γ ≤ β < ω1. We denote by [xβ ]γ the equivalence
class of ≡γ split by xβ . Note that in this notation, [tβ ] = [xβ ]β .

Remark 6.4. Let α 6= β be members of Ω and let γ = min{α, β}. Then
[xα]γ 6= [xβ ]γ . This means that either [xα]γ ⊆ xβ or [xα]γ ∩ xβ = ∅. In
particular, for all [s] ∈ A included in [xα]γ we have [s] ⊆ xβ if and only if
[xα]γ ⊆ xβ . This observation is used repeatedly (and implicitly) below.

We shall rely frequently on the following well-known result about Aron-
szajn trees (see [15, Chapters 5 and 9] for more details related to this fact).

Lemma 6.5. (MAω1) Suppose T is an Aronszajn tree and F is an un-
countable family of pairwise disjoint finite subsets of T . Then there is an
uncountable subfamily F0 such that for every pair F and G of distinct ele-
ments of F0, every node of F is incomparable with every node of G.

P r o o f. Clearly, we may assume that elements of F are all of the same
fixed size n + 1 and that for each F ∈ F we have fixed its enumeration
{xF0 , . . . , xFn }. By MAω1 , T contains no Suslin subtree, or equivalently, every
uncountable subset of T contains an uncountable antichain. Applying this
successively n + 1 times, and going to an uncountable subfamily of F , we
may assume that for each i ≤ n, the set {xFi : F ∈ F} is an antichain of T .
Refining F further we may assume we have a natural well-ordering � of F
respecting the heights in T , i.e., F ≺ G in F implies that every node of F is
of smaller height than any node of G. For i, j ≤ n, let Ki,j be the collection
of all pairs {F,G} of elements of F such that F ≺ G implies that xFi <T x

G
j .

Applying the Dushnik–Miller partition theorem ([6]), either we can find an
uncountable F0 ⊆ F with no pair belonging to any set Ki,j or there exist
three elements F ≺ G ≺ H of F and a pair of coordinates i, j ≤ n such that

{F,H}, {G,H} ∈ Ki,j .
Thus xFi and xGi are both predecessors of xHj and are therefore comparable,
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contradicting our initial assumption that the ith projection of the family
F is an antichain of T . This shows that the first alternative given by the
Dushnik–Miller theorem must take place, giving us the conclusion of the
lemma.

We shall also work extensively with lexicographical orderings of the
Aronszajn tree A. In what follows we include some of the definitions. The
reader is referred to [15] for more details about this.

Definition 6.6. For a given tree T , let P (T ) denote the collection of
all paths of T , i.e., chains of T which are downwards closed. For example, if
u and v are nodes of T then p(u, v) is the path of all t ∈ T such that t ≤T u
and t ≤T v. For a given p ∈ P (T ) let Np be the collection of all u ∈ T such
that t <T u for all t ∈ p but no v <T u has this property. Thus Np is the
collection of all “immediate successors of p”. A lexicographical ordering <Lex

of T is determined by the collection (Np, <p) (p ∈ P (T )) of total orderings
as follows: s <Lex t if and only if s <T t or s and t are incomparable and
u <p v where p = p(s, t) and where u is the unique element of Np that
precedes s and where v is the unique element Np that precedes t.

Note 6.7. It has been shown that every Countryman ordering (see Def-
inition 2.2) is isomorphic to a lexicographically ordered Aronszajn tree and
that there exist Aronszajn trees with lexicographical orderings that are
Countryman (see [12], [15], [18]).

The following lemma describes the typical behaviour of uncountable se-
quences of finite subsets of some lexicographically ordered Aronszajn tree.

Lemma 6.8. Suppose T is a given Aronszajn tree with a fixed lexico-
graphical ordering <Lex. Then for every positive integer n and every ω1-
sequence 〈{tα1 , . . . , tαn} : α < ω1〉 of pairwise disjoint n-element subsets of T
listed according to <Lex, there exist an uncountable set Γ ⊆ ω1, an integer
0 < k ≤ n, a sequence of integers s0, s1, . . . , sk with s0 = 0, a one-to-one
sequence r1, . . . , rk of elements of some fixed level Tγ0 of T , and for each
γ ∈ Γ a sequence rγ1 , . . . , r

γ
k of elements of Tγ such that

(a) s0 + s1 + . . .+ sk = n,
(b) rγi extends ri for all γ ∈ Γ and i ∈ {1, . . . , k},
(c) tγi extends rγj whenever γ ∈ Γ , j < k and s0 + . . . + sj < i ≤

s0 + . . .+ sj+1.

P r o o f. Re-enumerating the sequence we may assume that tαi has height
greater than or equal to α for all α < ω1 and i = 1, . . . , k. So let {rαj : 1 ≤ j ≤
kα} enumerate according to <Lex the projection of the set {tαi : 1 ≤ i ≤ n}
onto the αth level of T . Then there is a stationary set ∆ ⊆ ω1 and an integer
k such that kα = k for all α. For a limit ordinal γ ∈ ∆ let f(γ) < γ be some
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ordinal with the property that the projection of {rγj : 1 ≤ j ≤ k} onto Tf(γ)
is one-to-one. Find a stationary set Γ ⊆ ∆ and an ordinal γ0 < ω1 such
that f(γ) = γ0 for all γ ∈ Γ and such that for some r1, . . . , rk ∈ Tγ0 the
projection of rγj onto Tγ0 is equal to rj for all γ ∈ Γ and j = 1, . . . , k.
Note that by the definition of a lexicographical ordering, the enumeration
r1, . . . , rk respects <Lex since for every γ ∈ Γ and 1 ≤ j, l ≤ k the relation
rγj <Lex rγl is determined at the same splitting node where the relation
rj <Lex rl is determined. Note also that for a fixed γ ∈ Γ the sets

Iγj = {i ∈ {1, . . . , n} : tγi extends rj} (1 ≤ j ≤ k)

are intervals of integers with the property that Iγj lies below Iγl whenever
1 ≤ j < l ≤ k. Let sγj = |Iγj | for j = 1, . . . , k. Shrinking Γ further we may
assume that for some fixed sequence of integers s1, . . . , sk we have sγj = sj
for all γ ∈ Γ and 1 ≤ j ≤ k. It should be clear that the objects thus obtained
satisfy the conditions (a), (b) and (c) above.

From now on we consider a fixed lexicographic order <Lex on the tree of
all split equivalence classes A. It will be useful to assume that (A,<Lex) is
a Countryman order. We will justify our assumption below in Lemma 6.16.

Definition 6.9. Let Q = Q〈[tα], xα : α ∈ Ω〉 be the partial order of all
finite subsets q = {[t1], . . . , [tm]} of S such that for 0 < i, j ≤ m,

[ti] <Lex [tj ] implies [ti] ⊆ xj ,
where for 0 < j ≤ m, xj is the corresponding element of X0 that splits [tj ]
(i.e., if [tj ] = [tα] for some α ∈ Ω then xj is the element xα of X0).

Note 6.10. We define the partial order Q depending on the parameter
〈[tα], xα : α ∈ Ω〉 since we may need to replace it with any other parameter
〈[rα], yα : α ∈ Ω1〉, where

(1) Ω1 is an uncountable subset of Ω,
(2) [rα] is a split equivalence class of ≡α,
(3) yα is a member of B which splits [rα] but not any other class of ≡α,
(4) 〈[rα] : α ∈ Ω1〉 is an antichain of the tree A.

The posets of the form Q〈[rα], yα : α ∈ Ω1〉 for some parameter 〈[rα], yα :
α ∈ Ω1〉 satisfying (1)–(4) will be called versions of Q.

We now show that regardless of whether Q is c.c.c. or not, there is an
uncountable subset Y of (B,⊆) and a strictly increasing map from (Y,⊆)
into a Countryman order. Hence Lemma 2.5 implies that in both cases we
obtain an uncountable antichain of B.

Lemma 6.11. If Q is not c.c.c. then an uncountable subset of (B,⊆) can
be extended to a Countryman order.
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P r o o f. Assume Q is not c.c.c. Let R = 〈qα = {[tα1 ], . . . , [tαmα ]} : α < ω1〉
be an uncountable sequence of pairwise incompatible elements of Q. Using
a ∆-system argument we may assume that the elements of R are pairwise
disjoint and there exists an n < ω such that mα = n for all α < ω1.

Using Lemma 6.8 and refining still further, we may assume there exist an
integer k ≤ n, a γ ∈ ω1, elements r1, . . . rk ∈ Aγ and integers s0, . . . , sk ∈ ω
with s0 = 0 and s0 + . . .+ sk = n such that:

(1) If j < k and s0 + . . .+sj < i ≤ s0 + . . .+sj+1 then [tαi ] extends rj+1.
(2) For each α < ω1 there exist elements rα1 , . . . r

α
k ∈ A such that for

j < k, rαj+1 extends rj+1 and [tαi ] extends rαj+1 for all sj < i ≤ sj+1, where
sj = s0 + . . . + sj . If for some 0 < j ≤ k we have sj = 1 then we take
rαj = [tαsj ].

(3) For each α < ω1 and 0 < j ≤ k, the height of rαj in the tree is ≥ α.

Applying Lemma 6.5 we may further assume that

(4) For each α 6= β < ω1 and 0 < i, j ≤ k, rαi and rβj are incomparable
in A.

Before we proceed, let us explain the scenario of the rest of the proof.
We show below that the fact that R is a strong antichain implies that for
α 6= β < ω1 there exists an i = iα,β such that

(+) [tαi ] <Lex [tβi ] but [tαi ] 6⊆ xβi ,
which in turn implies that xαi 6⊆ xβi . In other words, xαi ⊆ xβi implies
[tβi ] <Lex [tαi ]. (Recall that xαi is our notation for the associated element
of X0 that splits [tαi ].)

As with the posets in Case 1, we take advantage of this fact by separating
R with a suitable sequence 〈C1, . . . , Cn〉 of elements of B. The difference in
this case will be that we do not need the separating sequence 〈C1, . . . , Cn〉
to obtain (+).

On the other hand, since we have assumed that A with the ordering
<Lex is a Countryman ordering then we may also assume that R is a chain
in An when we replace its elements by the n-tuples that enumerate them.
Therefore for α 6= β < ω1,

xαi ⊆ xβi implies that, in fact, [tβ1 ] <Lex [tα1 ].

Define, for α < ω1,

aα =
⋃

0<i≤n
(xαi ∩ Ci).

Then whenever α 6= β < ω1 the inclusion aα ⊆ aβ implies that [tβ1 ] <Lex [tα1 ].
Hence an uncountable subset of B is extended by the lexicographic order
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on A, which is also a Countryman order. This reduces the case to Lemma 2.5.
The particulars follow.

Claim 6.12. For α 6= β < ω1 there exists an i = iα,β such that [tαi ] <Lex

[tβi ] but [tαi ] 6⊆ xβi .

P r o o f. Since R is a strong antichain, for α 6= β < ω1 there exist 0 <
i, j ≤ n such that

[tαi ] <Lex [tβj ] but [tαi ] 6⊆ xβj .
In particular, this means that xβj ∩ [tαi ] = ∅.

If there are 0 < l0 6= l1 ≤ k such that [tαi ] extends rl0 and [tβj ] extends rl1 ,

then [tβi ] also extends rl0 . By assumption xβj ∩ [tαi ] = ∅, hence by Remark 6.4

xβj ∩ rl0 = ∅. Therefore xβj ∩ [tβi ] = ∅, which is a contradiction.

So let 0 < l ≤ k be such that both [tαi ] and [tβj ] extend rl. Using Re-

mark 6.4 again we see that xβj ∩ [tαi ] = ∅ implies xβj ∩ rαl = ∅. In particular,

it follows that xβj ∩ [tαj ] = ∅. Thus we may assume that i = j.

We now argue that the general case can be reduced to the case k = n.
To show this we associate with each element of R an element of some other
version of Q of size k which effectively represents it as a member of a strong
antichain in that version of Q.

For α < ω1, let q′α = {rα1 , . . . , rαk } be the element that corresponds to
qα ∈ R. With each rαj+1 ∈ A with α < ω1 and j < k, we associate the
element

Xα
j+1 =

⋂

sj<i≤sj+1

xαi ∈ B,

where as above sj = s0 + . . .+ sj .
In particular, if sj+1 = 1 then Xα

j+1 = xαsj+1 .

Remark 6.13. Note that since xαi splits rαj+1 for all sj < i ≤ sj+1, it
follows by Remark 6.4 that if Xα

j+1 splits any equivalence class at the level
of rαj+1 at all, it must split rαj+1. Thus Xα

j+1 splits rαj+1 if Xα
j+1∩rαj+1 6= ∅. If

sj+1 = 1 then by assumption Xα
j+1 = xαsj+1 splits rαj+1 = [tαsj+1 ]. Otherwise,

since qα ∈ Q, by definition xαi contains [tαsj+1] ⊆ rαj+1 for all sj + 1 < i ≤
sj+1. Hence ∅ 6= [tαsj+1] ∩ xαsj+1 ⊆ Xα

j+1 ∩ rαj+1 and thus Xα
j+1 splits rαj+1.

Therefore the elements {rαj , Xα
j : α < ω1, 0 < j < k} can be re-

enumerated as 〈rα, Xα : α ∈ Ω1〉, which satisfies the conditions (1)–(4)
of Note 6.10. Thus for our purposes here we can replace Q〈[tα], xα : α ∈ Ω〉
in Definition 6.9 with its version Q〈rα, Xα : α ∈ Ω1〉 since the properties
(1)–(4) of Note 6.10 are all the properties of our original sequences needed
in this proof.
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Claim 6.14. For each α < ω1, q′α ∈ Q〈rα, Xα : α ∈ Ω1〉. Furthermore,
the set R′ = {q′α : α < ω1} is a strong antichain in Q.

P r o o f. We first show that q′α satisfies the condition of Definition 6.9
for (rα, Xα : α ∈ Ω1). Let α < ω1 and 0 < j, j′ < k. Assume rαj <Lex r

α
j′ .

Then for any sj < i ≤ sj+1 and all sj
′
< i′ ≤ sj

′+1 we have rαj ⊆ [tαi ] and
[tαi ] ⊆ xαi′ . Thus rαj ⊆

⋂
sj′<i′≤sj′+1 xαi′ = Xα

j′ as required.
We now show that R′ is a strong antichain. Let α 6= β < ω1. Then, as

we have seen above, there exists an 0 < i ≤ n such that [tαi ] <Lex [tβi ] but
[tαi ] 6⊆ xβi . Let 0 < j ≤ k be such that both [tαi ] and [tβi ] extend rj . Then
[tαi ] <Lex [tβi ] implies that rαj <Lex r

β
j . Moreover, xβi ∩ rαj = ∅ implies that

Xβ
j ∩ rαj = ∅. So q′α is incompatible with q′β as desired. The claim follows.

The previous proof illustrates how R′ represents R. Hence k can be taken
to be n. From now on we will assume k = n for the strong antichain R of
Q〈[tα], xα : α ∈ Ω〉, which we started with at the beginning of the proof.

Since γ < ω1 is such that all the elements r1, . . . , rn belong to Aγ , we
can define a sequence 〈C1, . . . , Cn〉 ∈ Mγ ∩ Bn separating r1, . . . , rn and,
therefore, R as in the proof of Lemma 5.5.

The fact that R consists of pairwise incompatible conditions of Q means
that for γ < α 6= β < ω1 there exists an 0 < i ≤ n such that [tαi ] <Lex [tβi ]
but [tαi ] 6⊆ xβi ∩ Ci, which in turn implies xαi ∩ Ci 6⊆ xβi ∩ Ci.

In other words, if for all 0 < i ≤ n we have xαi ∩Ci ⊆ xβi ∩Ci, then there
must exist a 0 < j ≤ n such that [tβj ] <Lex [tαj ].

We now define, for α < ω1,

aα =
⋃

0<i≤n
(xαi ∩ Ci).

Then whenever γ < α 6= β and aα ⊆ aβ there exists an 0 < i ≤ n such that
[tβi ] <Lex [tαi ]. Identifying a member qα of R with the n-tuple 〈[tα1 ], . . . , [tαn]〉
which enumerates it according to <Lex we can take R to be a subset of the
Cartesian cube An. By our assumption (A,<Lex) is a Countryman ordering,
so An is the union of countably many chains. So going to an uncountable
subset of R we may in fact assume that R is a chain in An. It follows that
for γ < α 6= β, the inclusion relation aα ⊆ aβ implies that [tβ1 ] <Lex [tα1 ].
The lemma follows.

Hence from now on we may assume that (some version of) Q is c.c.c.
Therefore we finish via the following.

Lemma 6.15. (MAω1) Assume that a version of Q is c.c.c. Then there
exists an uncountable subset of B which can be extended to a Countryman
order.
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P r o o f. It suffices to show this for the original version of Q since the
properties (1)–(4) of Note 6.10 are all that is needed here. Applying MAω1

to Q gives us an uncountable subset Ω1 of Ω such that if α 6= β are in Ω1

then [tβ ] <Lex [tα] implies [tβ ] ⊆ xα and, therefore, xα 6⊆ xβ . This means
that xα ⊆ xβ implies [tα] <Lex [tβ ]. The lemma follows.

We now justify the use of a Countryman lexicographical ordering on A.

Lemma 6.16. (MAω1) Let S and T be Aronszajn trees. Then there exists
an uncountable subset Γ of ω1, a downwards closed uncountable subtree
S0 ⊆ S and a strictly increasing level-preserving map f : S0¹Γ → T .

Note 6.17. In particular, if T has a Countryman lexicographical order
then we can define a Countryman lexicographical order on S0. Thus if we
apply Lemma 6.16 to the downward closure of the set {[tα] : α ∈ Ω} ⊆ A,
we get an uncountable subset Γ of Ω and a lexicographical ordering <Lex

on the downward closure of {[tα] : α ∈ Γ} such that ({[tα] : α ∈ Γ}, <Lex)
is Countryman.

P r o o f (of Lemma 6.16). Let R be the poset of finite partial strictly
increasing level-preserving functions p from S into T such thatDp = dom(p),
and therefore Rp = ran(p), have the following properties:

(a) Dp ⊆ S¹Γp (respectively, Rp ⊆ T¹Γp) for some finite set Γp ⊆ ω1,
(b) every node of Dp has extensions in Dp in all levels of Γp above its

own (and similarly, this is true also for Rp),
(c) every node of Dp has predecessors in Dp in all levels of Γp below its

own (and similarly, this is true also for Rp).

Assume E is a given uncountable subset of R. Using the standard ∆-
system argument we may assume that Dp (p ∈ E) forms a ∆-system with
root D, that Rp (p ∈ E) forms a ∆-system with root R, and that Γp (p ∈ E)
forms a ∆-system with root Γ ′. Moreover we may assume that for p 6= q in
E , every ordinal from Γp \ Γ ′ is smaller than every ordinal from Γq \ Γ ′, or
vice versa. By Lemma 6.5, we can find p 6= q in E such that every node of
Dp \D is incomparable with every node in Dq \D and, similarly, every node
of Rp \R is incomparable with every node in Rq \R. Supplement Dp ∪Dq

to some subtree Dr ⊆ S¹(Γp ∪ Γq) satisfying (a), (b) and (c), and extend p
and q to some r : Dr → Rr, where Rr ⊆ T ¹(Γp ∪ Γq) also satisfies (a), (b)
and (c), such that r is strictly increasing and level-preserving. Then r ∈ R
and r ≤ p, q. This shows that R is a c.c.c. poset. For α < ω1 let

Dα = {p ∈ R : Γp contains some ordinal > α}.
It is easily seen that each Dα is a dense open set of R. Let G ⊆ R be a
{Dα : α < ω1}-generic filter. Let f =

⋃G, Γ =
⋃
p∈G Γp and S0 be the

downward closure of
⋃
p∈G Dp. The lemma follows.
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