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Abstract. The paper provides a proof of a combinatorial result which pertains to the
characterization of the set of equations which are solvable in the composition monoid of
all partial functions on an infinite set.

1. Introduction. The immediate objective of this paper is to prove the
following

Theorem 1. Let m be a positive integer. Let there exist a (partial) func-
tion f ⊆ X×X such that fm¹Y is a bijection from Y onto X where Y ⊆ X
and X \ Y is finite. Then m is a factor of the integer |X \ Y |.

We have stated this theorem to several mathematicians, all of whom
declared it to be trivial. Some of them gave us proofs. But all of those proofs
revealed flaws. Two of us had similar experiences two decades ago with the
theorem. In fact, one of us subsequently published a proof that was at least
incomplete if not indeed downright wrong; see [2, Theorem 1]. What seems to
happen to a reader confronting Theorem 1 is that its hypotheses may beguile
into one or more false assumptions. At first sight, for instance, one might be
tempted to surmise that the hypotheses of Theorem 1 necessitate that the
set inclusion Y ⊆ f [Y ] holds. In fact, if it were indeed always the case that
Y ⊆ f [Y ] then the proof of Theorem 1 would be short and straightforward.
But, curiously, this inclusion may fail, as the following example shows.

Let X = ω, Y = X \ {1, 3, 8, 10}, and let f ⊂ X × X be defined by
f(x) = x − 4 for x even and x ≥ 4, f(x) = x for x odd and x ≥ 5,
f(x) = x + 1 for x = 0, 1, 2, and f(3) = 0. Then, for m = 2, fm¹Y is a
bijection from Y onto X and Y 6⊆ f [Y ].

2000 Mathematics Subject Classification: Primary 03E20, 03E05; Secondary 05C20,
08A50.

[83]



84 W. Dziobiak et al.

Our work lies in the area of universal terms; see [1] and [2]. A word
w is said to be universal in a monoid G iff for each g ∈ G there is a
homomorphism h(w, g) : w∗ → G such that h(w, g)(w) = g, where w∗ is the
free monoid of the letters occurring in w. Theorem 1 is a tool for the study
of equations in the composition monoids G which are submonoids of the
monoid P (X ×X) := {b : b ⊆ X ×X} of all binary relations on X. These
G include G = Prt(X) := {p : p is a function} ∩ P (X × X), the monoid
of partial transformations on X. They include the submonoid G = XX of
Prt(X), where X := {t : t ∈ Prt(X) and X = Dom(t)}. And they include
the groups of permutations of the set X.

By [2] our Corollary 4 implies that, if w := xpymxq is a word such that
for each X and each f ∈ Prt(X) there exists a homomorphism h satisfying
the equation f = h(w), then |p| = |q| = 1. Hence w is universal in Prt(X),
for X infinite, if and only if |p| = |q| = 1.

The present paper applies to Prt(X). A sequel will append to the list
of conditions which Corollary 4 declares to be equivalent, another which
extends to P (X ×X) the study of equations in composition monoids.

The set of all nonnegative integers is written ω. When k ∈ ω then
k := {0, 1, . . . , k − 1}. When S is a set and f is a function, f¹S is the
restriction {〈s, f(s)〉 : s ∈ S} of f to S, and f [S] denotes {f(s) : s ∈ S}.
When f ⊆ X ×X then $(f) := Dom(f)∪Rng(f). The expression id¹X de-
notes the identity permutation on X. The expression h0 denotes id¹X when
h ∈ Prt(X). Henceforth m denotes an arbitrary positive integer. The word
“function” may mean “partial function” in this paper. For convenience we
write C to denote the finite set X \ Y . There is another purpose in our
doing so: The idea is that the finite set C is fixed, but the sets Y and X
vary according to circumstances.

2. Proof of the Theorem. Theorem 1 is immediate from Lemmas 2
and 3 below. Both make claims about an entity we call a “liable quadruple”.
Accordingly we now introduce this notion.

For a set X, a (partial) function h ⊆ X × X, 〈x, y〉 ∈ X × X, and
∅ 6= S ⊆ X we define

hgt(h, x, y) := min({∞} ∪ {j : j ∈ ω and hj(x) = y}),
Hgt(h, x, S) := min{hgt(h, x, s) : s ∈ S},
Λ(X,S,m, h) := {x : ∃i ∈ m+ 1(hi(x) ∈ hm[S])}.

The quadruple 〈X,S,m, h〉 is said to be liable if and only if the following
three criteria are satisfied:

L1. Λ(X,S,m, h) ⊆ hm[X \ S].
L2. hm¹(X \ S) is injective.
L3. S ⊆ Dom(hm).
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Lemma 2. Let Y be infinite with Y ∩ C = ∅, and let X := Y ∪ C. Let
there be a function h ⊆ X ×X such that hm¹Y is a bijection from Y onto
X. Then there is a function f such that 〈X,C,m, f〉 is a liable quadruple.

P r o o f. Note that X \Dom(h) ⊆ C, since Y ⊆Dom(hm)⊆Dom(h)⊆X.
Define f := h∪id¹(X\Dom(h)). Since Λ(X,C,m, f) ⊆ X = hm[Y ] = fm[Y ],
the quadruple 〈X,C,m, f〉 satisfies the condition L1. Since fm¹Y = hm¹Y ,
it also satisfies L2. Finally, since X = Dom(f), it satisfies L3. Therefore
〈X,C,m, f〉 is liable.

Lemma 3. Let 〈X,C,m, f〉 be a liable quadruple for some X and f . Then
m is a factor of the integer |C|.

P r o o f. Arguing by induction on |C| we suppose that for each pair of
sets Z and D ⊆ Z with |D| < |C|, if there exists g ∈ Prt(Z) for which
〈Z,D,m, g〉 is liable then m is a factor of |D|.

Now suppose that 〈X,C,m, f〉 is liable. By L3 there exists a maximal
connected subdigraph f0 of f such that C ∩ $(f0) 6= ∅. Let X0 := $(f0),
C0 := C ∩X0, X1 := X \X, C1 := C ∩X1, and f1 := f \ f0. Notice that
both quadruples 〈Xi, Ci,m, fi〉 for i ∈ 2 are liable, and |C0|+ |C1| = |C|. If
C1 6= ∅ then both C0 and C1 are finite, nonempty, and with fewer than |C|
elements. So by the inductive hypothesis, m is a factor of |C0| and of |C1|
and consequently of |C|. So henceforth we may and do suppose that f as a
digraph is connected, and furthermore that X = $(f).

For the remainder of the proof we select a subset M of $(f) satisfying
the following three conditions:

P1. f¹M is injective.
P2. If x ∈M ∩Dom(f) then f(x) ∈M.

P3. If x ∈M ∩ Rng(f) then x = f(y) for some y ∈M .

Such a set M does exist. Indeed, if f has a subset g which is a directed cycle
then M := $(g) satisfies P1–P3. On the other hand, if f has no such subset
g then with the aid of Zorn’s Lemma we can choose a maximal h ⊆ f such
that h is injective and connected; in this event we let M := $(h), and note
that P1–P3 are satisfied.

By hypothesis the quadruple 〈X,C,m, f〉 is liable, and so Λ(X,C,m, f)
⊆ fm[X \ C], fm¹(X \ C) is injective and C ⊆ Dom(fm). Now obviously
fm[M ∩ C] ⊆ fm[C] ⊆ Λ(X,C,m, f). Therefore fm[M ∩ C] ⊆ fm[X \ C].
Hence, by L2, for every x ∈M ∩ C there is a unique element η(x) ∈ X \ C
such that fm(η(x)) = fm(x). This defines a function η : M ∩ C → X \ C.
Since fm¹M is injective by P1 and P2, η is also injective. Define

C1 := (C \M) ∪ η[M ∩ C].

We establish the following claim:
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A1. |C1| = |C| and the quadruple 〈X,C1,m, f〉 is liable.

That |C1| = |C| is evident by the injectivity of η. Clearly fm[η[M∩C]] =
fm[M ∩ C]. So

fm[C1] = fm[C \M ] ∪ fm[η[M ∩ C]] = fm[C \M ] ∪ fm[M ∩ C] = fm[C].

Consequently, Λ(X,C1,m, f) = Λ(X,C,m, f). Note that X \C1 = (M ∩ C)
∪ ((X \ C) \ η[M ∩ C]). Then

fm[X \ C1] = fm[M ∩ C] ∪ fm[(X \ C) \ η[M ∩ C]]

= fm[η[M ∩ C] ∪ ((X \ C) \ η[M ∩ C])] = fm[X \ C].

Summarizing, we have Λ(X,C1,m, f) = Λ(X,C,m, f) ⊆ fm[X \ C] =
fm[X \ C1]. That is, the quadruple 〈X,C1,m, f〉 satisfies the condition L1.

Next we show that fm¹(X \ C1) is injective. To this end, note that
fm¹(M ∩C) is injective by P1 and P2. Moreover, fm¹((X \C) \ η[M ∩C])
is injective. Of course (M ∩ C) ∩ ((X \ C) \ η[M ∩ C]) = ∅. And now recall
that X \C1 = (M ∩C) ∪ ((X \C) \ η[M ∩C]). So fm¹(X \C1) is injective
if fm(x) 6= fm(x′) for every pair 〈x, x′〉 ∈ (M ∩ C)× ((X \ C) \ η[M ∩ C]).
Clearly x′ 6= η(x). But {x′, η(x)} ⊆ X \C. Moreover, fm¹(X \C) is injective
since 〈X,C,m, f〉 is liable. It follows that fm(x′) 6= fm(η(x)). Hence the
quadruple 〈X,C1,m, f〉 satisfies L2.

The liability of 〈X,C,m, f〉 gives C ⊆ Dom(fm). Moreover, η[M ∩C] ⊆
Dom(fm). So C1 = (C \M) ∪ η[M ∩ C] ⊆ Dom(fm). Hence 〈X,C1,m, f〉
satisfies L3. So 〈X,C1,m, f〉 is liable, and A1 is proved.

We will need some terminology: For f ∈ Prt(X) and x ∈ X, let

f−(x) := {y : ∃i ∈ ω(f i(y) = x)}, f+(x) := {f i(x) : i ∈ ω},
I(x, f) := {y : f(y) = x}.

For B a set, let f−(B) :=
⋃{f−(b) : b ∈ B} and let f+(B) :=

⋃{f+(b) :
b ∈ B}.

Let h := max{Hgt(f, t,M) : t ∈ C1}. By A1 we know that C1 is
a finite subset of X. Since the digraph f is connected, we have $(f) =
f−(M). Therefore h is a nonnegative integer. Choose d ∈ C1 for which h =
Hgt(f, d,M). From A1 and L1 we have C1 ⊆ Λ(X,C1, f,m) ⊆ fm[X \ C1].
Hence there exists x ∈ X \ C1 such that fm(x) = d. By our choice of d we
have fm−1(x) ∈ X \ C1. Next we establish the following claim.

A2. If h < m then for every integer k ≥ 1 the following two assertions
hold :

(i) k ≤ h.
(ii) There is a subdigraph yh−k 7→ yh−k+1 7→ . . . 7→ yh−1 7→ yh 7→ fh(d)

of f with {yh−k, yh−k+1, . . . , yh−1, yh} ⊆M .
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Suppose that h < m. We need M ∩ C1 = ∅. It suffices to prove that
M∩η[M∩C] = ∅. So, assume that η(v) ∈M∩η[M∩C] for some v ∈M∩C.
By the definition of η then fm(η(v)) = fm(v). But fm¹M is injective, by
P1 and P2, and hence η(v) = v. Recalling that Rng(η) ⊆ X \C we then get
v = η(v) ∈ X \C; this contradicts v ∈M ∩C. So M ∩C1 = ∅. This, by the
definitions of h and d, gives h ≥ 1 and d 6∈M ∩ C1.

Now we argue by induction on k.
Let k := 1. Then h ≥ 1 implies that k ≤ h. So to show A2 we only need

to prove the existence of yh−1 and yh in M such that yh−1 7→ yh 7→ fh(d) is a
subdigraph of f . Obviously fh(d) ∈M ∩Rng(f). Therefore, by P3 we know
that M contains an element yh with f(yh) = fh(d). So, since 1 ≤ h < m, we
have 0 < m−h and 2 ≤ m−h+1 ≤ m. Thus fm−h+1(yh) = fm−h(f(yh)) =
fm−h(fh(d)) = fm(d) ∈ fm[C1], whence yh ∈ Λ(X,C1,m, f). So, by A1 we
have yh ∈ fm[X \C1]. Furthermore, since yh ∈M ∩Rng(f), P3 shows that
there exists yh−1 ∈M with f(yh−1) = yh. It follows that f has a subdigraph
yh−1 7→ yh 7→ fh(d) with {yh−1, yh} ⊆M .

Now let k be arbitrary, and suppose that the assertions of A2 hold for
this k. Then k ≤ h, and yh−k 7→ yh−k+1 7→ . . . 7→ yh−1 7→ yh 7→ fh(d) is a
subdigraph of f for some {yh−k, yh−k+1, . . . , yh−1, yh} ⊆M .

First we show as required that k + 1 ≤ h. Assume that k + 1 > h.
Then the inductive hypothesis k ≤ h implies that k = h. Observe that
fh+1(fm−1(x)) = fh(fm(x)) = fh(d). Then y0 =yh−k ∈M and fh+1(yh−k)
= fh+1(y0) = fh(d) because k = h. Thus fh+1(fm−1(x)) = fh+1(yh−k).
Since fm¹(X \ C1) is injective, f i¹(X \ C1) is injective for all nonnegative
integers i ≤ m. Now recall that yh−k ∈ M ⊆ X \ C1, fm−1(x) ∈ X \ C1,
and h + 1 ≤ m. It follows that fm−1(x) = yh−k. Hence d = f(fm−1(x)) =
f(yh−k) = yh−k+1. Since yh−k+1 ∈M by the inductive hypothesis, we reach
the impossibility d ∈M ∩ C = ∅. So k + 1 ≤ h as we wish.

In order to conclude the inductive step it now suffices to show that
there exists yh−k−1 ∈ M with f(yh−k−1) = yh−k. Since by hypothesis
h < m, we have m − h + k + 1 > m − h > 0. Hence fm−h+k+1(yh−k) =
fm−h(fk+1(yh−k)) = fm−h(fh(d)) = fm(d) ∈ fm[C1]. Since k + 1 ≤ h,
we have m − h + k + 1 ≤ m, and hence yh−k ∈ Λ(X,C1,m, f). But
Λ(X,C1,m, f) ⊆ fm[X \ C1] by A1. So yh−k ∈ fm[X \ C1]. In particu-
lar yh−k ∈ Rng(f). So, since yh−k ∈ M , by P3 we have yh−k = f(u) for
some u ∈M . Let yh−k−1 := u. This completes the proof of A2.

Since h is finite, from A2 we infer that m ≤ h.
Next we prove

A3. If 0 ≤ i ≤ m− 2 then I(f i+1(d), f) = {f i(d)}.
Choose any y for which f(y) = f i+1(d). Since fm−i(y) = fm−(i+1)(f(y))

= fm−(i+1)(f i+1(d)) = fm(d) ∈ fm[C1], and since 〈X,C1,m, f〉 is liable by
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A1, we have y ∈ fm[X \C1]. It follows that y = fm(x′) for some x′ ∈ X \C1.
Since i ≤ m− 2 ≤ h− 2, we get

fh+(m−1)−i(f(x′)) = fh−i(fm(x′)) = fh−i(y) = fh−m(fm−i(y))

= fh−m(fm(d)) = fh(d).

So hgt(f, f(x′), fh(d)) ≤ h+ (m− 1)− i. Now assume that there is a non-
negative integer q < h + (m − 1) − i with fq(f(x′)) = fh(d). Recalling
that fh(d) ∈ M , by P2 we have f j(f(x′)) ∈ M for all j ≥ q. In particular
fh+(m−2)−i(f(x′)) ∈M . But

fh+(m−2)−i(f(x′)) = fh−i−1(fm−1(f(x′))) = fh−i−1(fm(x′)) = fh−i−1(y)

= fh−m(fm−i−1(y)) = fh−m(fm−i−2(f(y)))

= fh−m(fm−i−2(f i+1(d))) = fh−m(fm−1(d))

= fh−1(d) 6∈M,

giving a contradiction. It follows that hgt(f, f(x′), fh(d)) = h+ (m− 1)− i.
Therefore, since fh−1(d) 6∈ M , we infer from P2 that Hgt(f, f(x′),M)
= h+(m−1)− i. Since i ≤ m−2, we see that h+1 ≤ h+(m−1)− i. Conse-
quently, f(x′) ∈ X \C1 because h := max{Hgt(f, t,M) : t ∈ C1}. However,
fm(f(x′)) = f(fm(x′)) = f(y) = f i+1(d) = f i+1(fm(x)) = fm(f i+1(x)),
and of course f i+1(x) ∈ X \ C1 by our choice of d. Thus f(x′) = f i+1(x)
since fm¹(X \ C1) is injective. So finally we have y = fm−1(f(x′)) =
fm−1(f i+1(x)) = f i(fm(x))=f i(d). That is to say, I(f i+1(d), f) = {f i(d)}.
The assertion A3 is proved.

Since d ∈ C1, we have fm(d) ∈ Λ(X,C1,m, f) ⊆ fm[X \C] since by A1
the quadruple 〈X,C1,m, f〉 is liable. So there exists z ∈ X \ C1 such that
fm(d) = fm(z).

Our next task is to establish

A4. {f i(z) : 0 ≤ i ≤ m− 1} ∩ {f i(d) : 0 ≤ i ≤ m− 1} = ∅.
Assume A4 to be false. Then fp(z) = fr(d) for some {p, r} ⊆ m. As-

sume additionally that p > r. Since m + r − p ≥ 0 while m − p ≥ 0, we
have fm+r−p(d) = fm−p(fr(d)) = fm−p(fp(z)) = fm(z) = fm(d). But
we also have h + r − p ≥ m + r − p ≥ 0, and consequently fh+r−p(d) =
fh−m(fm+r−p(d)) = fh−m(fm(d)) = fh(d) ∈ M . But fh+r−p(d) ∈ M im-
plies h ≤ h + r − p by the choice of d, contrary to the assumption that
p > r.

It follows that p ≤ r. So now we have 0 ≤ r − p ≤ r ≤ m − 1. By
A3 and the assumption fp(z) = fr(d) we get z = fr−p(d). It follows that
p < r, since 〈z, d〉 ∈ (X \ C1) × C1 entails that z 6= d. So r − p > 0,
and fr−p(fm(d)) = fm(fr−p(d)) = fm(z) = fm(d). We inferred m ≤ h
from A2. Thus there is a least integer s ≥ 0 such that h ≤ (r − p)s + m.
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Since fr−p(fm(d)) = fm(d) (see above), f (r−p)s(fm(d)) = . . . = fm(d),
whereupon fm(d) = f (r−p)s+m(d) = f (r−p)s+m−h(fh(d)). Therefore, since
fh(d) ∈ M , P2 shows that fm(d) ∈ M and every vertex in the cycle
fm(d) 7→ fm(d) 7→ . . . 7→ fm+r−p−1(d) 7→ fm+r−p(d) = fm(d) is an el-
ement of M . Among these vertices there is one, u, satisfying the condition
fm−(r−p)(u) = fm(d). Since fm−(r−p)(z) = fm(d) and {u, z} ⊆ X \C1, and
fm−(r−p)¹(X \ C1) is injective, it follows that u = z. Thus z ∈ M . Hence
fr−p(d) ∈M as z = fr−p(d). So, by the choice of d, we have h ≤ r− p. But
r − p ≤ m− 1. So h ≤ m− 1, contradicting the previously established fact
that m ≤ h. The proof of A4 is complete.

The function f i¹(X \ C1) is injective for every nonnegative integer i ≤
m− 1, and furthermore fm(z) = fm(d). Hence, we deduce from A4 that if
j ≤ m − 1 and f j(d) ∈ X \ C1 then f j(z) ∈ C1. Let τ be the involution
on X whose only nontrivial cycles are those transpositions (f i(z)f i(d)) for
which i ≤ m− 1 and at the same time f i(d) ∈ X \ C1.

Define

A := {f i(z) : 0 ≤ i ≤ m− 1 and f i(d) ∈ X \ C1},
C2 := (C1 \A) ∪ τ [A].

Our next task is to prove

A5. |C2| = |C1| and 〈X,C2,m, f〉 is liable.

Since |A| = |τ [A]|, and since A ⊆ C1 while τ [A] ⊆ X \ C1, we get
immediately the desired conclusion |C2| = |C1|. So it remains to prove that
〈X,C2,m, f〉 is liable. Notice that

X \ C2 = ((X \ C1) \ τ [A]) ∪A.
From this, together with the facts τ [A] ⊆ X \C1 and fm[A] = fm[τ [A]], we
can easily deduce that fm[X \ C2] = fm[X \ C1] and fm[C2] = fm[C1]. It
follows that Λ(X,C2,m, f) = Λ(X,C1,m, f). Since 〈X,C1,m, f〉 is liable,
we now have Λ(X,C2,m, f) ⊆ fm[X\C1] = fm[X\C2]. Thus the quadruple
〈X,C2,m, f〉 satisfies L1.

By A1, fm¹(X \ C1) is injective. Therefore so is fm¹τ [A] since τ [A] ⊆
X \ C1. Hence fm¹A is injective since fm¹A = (fm¹τ [A]) ◦ (τ¹A). Since
X \ C2 = ((X \ C1) \ τ [A]) ∪ A and ((X \ C1) \ τ [A]) ∩ A = ∅, in order to
prove that fm¹(X\C2) is injective it suffices to show that fm(t) 6= fm(f i(z))
for every pair 〈t, f i(z)〉 ∈ ((X \C1)\τ [A])×A. Note that ((X \C1)\τ [A])×
τ [A] ⊆ (X \ C1) × (X \ C1), and of course ((X \ C1) \ τ [A]) ∩ τ [A] = ∅.
So, since fm¹(X \ C1) is injective, and since f i(d) = τ(f i(z)) ∈ τ [A], we
surely have fm(t) 6= fm(f i(d)). However f i(z) = τ(f i(d)), and therefore
fm(f i(d)) = fm(τ(f i(d)) = fm(f i(z)). So fm(t) 6= fm(f i(z)) as required.
Hence fm¹(X \ C2) is injective, and thus 〈X,C2,m, f〉 satisfies L2.
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By A1 we have C1 ⊆ Dom(fm). Consequently, since A ⊆ C1, we have
both C1 \ A ⊆ Dom(fm) and A ⊆ Dom(fm). But the latter implies τ [A] ⊆
Dom(fm): For f i(z) ∈ A we have fm(f i(z)) = f i(fm(z)) = f i(fm(d)) =
fm(f i(d)) and therefore f i(d) = τ(f i(z)) ∈ Dom(fm). We have established
that C2 = (C1 \ A) ∪ τ [A] ⊆ Dom(fm). It follows that the quadruple
〈X,C2,m, f〉 satisfies L3, and therefore is liable. So the proof of the assertion
A5 is finished.

We now prove the following three claims grouped under the title A6.

A6.1. {f i(d) : 0 ≤ i ≤ m− 1} ⊆ C2.
A6.2. f−(fm−1(x)) ⊆ X \ C2.
A6.3. f¹f−(fm−1(d)) is injective.

A6.1: Choose any nonnegative integer i ≤ m − 1. Then by A4 and the
definition of A we have f i(d) 6∈ A. So if f i(d) ∈ C1 then f i(d) ∈ C1\A ⊆ C2.
But if f i(d) ∈ X \ C1 then f i(z) ∈ A and so f i(d) = τ(f i(z)) ∈ τ [A] ⊆ C2.
The assertion A6.1 follows.

A6.2: Recall that d was chosen so that d ∈ C1 and h = Hgt(f, d,M).
Recall also fm(x) = d and fh(d) ∈ M . Indeed h is the largest “height” of
any point in C1 above the set M . Therefore f−(fm−1(x)) ⊆ X \ C1. Since
X \ C2 = ((X \ C1) \ τ [A]) ∪ A, in order to establish that f−(fm−1(x)) ⊆
X \ C2 it suffices to show that f−(fm−1(x)) ∩ τ [A] = ∅. So we assume
on the contrary that there exists v ∈ τ [A] such that f j(v) = fm−1(x) for
some nonnegative integer j. Since v = τ(f i(z)) for some nonnegative integer
i ≤ m − 1 with f i(d) ∈ X \ C1, we have v = f i(d) by the definition of τ .
Therefore f1+j+i(d) = f1+j(f i(d)) = f1+j(v) = f(f j(v)) = f(fm−1(x)) =
fm(x) = d. Since fh(d) ∈M , by P2 we thus infer that if h ≤ 1 + j + i then
d = f1+j+i(d) ∈ M . So, since d ∈ C1, it follows that d ∈ M ∩ C1. But we
know that M∩C1 = ∅. So we must have instead h > 1+j+i, whence for any
integer k such that (1 + j + i)k ≥ h we again infer that f (1+j+i)k(d) = d;
thus again by P2 we get the impossibility d ∈ M . The assertion A6.2 is
proved.

A6.3: We have f−(fm−1(d)) = {f i(d) : 0 ≤ i ≤ m − 1} ∪ f−(d) by
A3. Now, {f i(d) : 0 ≤ i ≤ m − 1} ∩ f−(fm−1(x)) = ∅ by A6.1 and A6.2.
Also, since f¹(X \C1) is injective and f−(fm−1(x)) ⊆ X \C1, we find that
f¹f−(fm−1(x)) is injective. Thus we see by A3 that A6.3 will be proved
when we show that I(d, f) = {fm−1(x)}. But I(d, f) ⊆ X \ C1 by the
choice of d. Therefore I(d, f) = {fm−1(x)} since f¹(X \C1) is injective and
f(fm−1(x)) = d. The assertion A6.3 follows.

Define b := f¹f−(fm−1(d)). Then let

X3 := X \ f−(fm−1(d)), C3 := C2 ∩X3.

We next need to show
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A7. 〈X3, C3,m, f \ b〉 is liable, and |C3| = |C2| −m.

Since f(fm−1(x)) = d, we deduce from A6 that C2 ∩ f−(fm−1(d)) =
{f i(d) : 0 ≤ i ≤ m − 1}. By A3 we see that |{f i(d) : 0 ≤ i ≤ m− 1}|
= m. Therefore |C2 ∩ f−(fm−1(d))| = m, whence |C3| = |C2| − m as
claimed. It is clear by A6 that Λ(X3, C3,m, f \ b) = X3 ∩ Λ(X,C2,m, f)
and X3 ∩ fm[X \C2] = (f \ b)m[X3 \C3]. Therefore, since Λ(X,C2,m, f) ⊆
fm[X \C2] by A5, we get Λ(X3, C3,m, f \ b) ⊆ (f \ b)m[X3 \C3]. Obviously
(f \ b)¹(X3 \ C3) = f¹(X3 \ C3) and X3 \ C3 ⊆ X \ C2. Therefore, since
f¹(X \ C2) is injective by A5, we find that (f \ b)¹(X3 \ C3) is also injec-
tive. Since Dom((f \ b)m) = X3 ∩ Dom(fm), and since C2 ⊆ Dom(fm) by
A5, we deduce furthermore that C3 ⊆ Dom((f \ b)m). Hence the quadruple
〈X3, C3,m, f \ b〉 is liable. The assertions A7 are now proved.

Recall now that our original aim was to show that m is a factor of |C|. By
A1, A5, and A7 we have |C| = |C3|+m. However, by A7 and the inductive
hypothesis, since |C3| < |C| we know that m is a factor of |C3|. It follows
that m is a factor of |C|.

Theorem 1 is an immediate consequence of Lemmas 2 and 3.

3. Concluding remarks. The following corollary supplies a correct
proof of [2, Theorem 1].

Corollary 4. The following four assertions are equivalent :

(4.1) m is a factor of |C|.
(4.2) For each infinite set X with C ⊂ X there is a function g : X → X

such that gm is a bijection from X onto X \ C.
(4.3) For each infinite set X with C ⊂ X there is a function f ⊆ X×X

such that fm¹(X \ C) is a bijection from X \ C onto X.

P r o o f. (4.1)⇒(4.2): Without loss of generality we suppose that mq =
C ⊆ ω ⊂ X for some integer q ≥ 0. For any permutation p on the set X \ ω
we define g := p ∪ {〈i, i + q〉 : i ∈ ω}. Clearly gm is a bijection of X onto
X \ C.

(4.2)⇒(4.3): Let g : X → X be a function such that gm is a bijection
from X onto X \ C. Then g is injective. So g−1 ∈ Prt(X). Let f := g−1.
The equality (r−1)m = (rm)−1 holds for every binary relation r. Thus
fm = (gm)−1. But (gm)−1 is a bijection from X \ C onto X. It follows
that (gm)−1¹(X \ C) = (gm)−1 = fm = fm¹(X \ C) is a bijection from
X \ C onto X.

(4.3)⇒(4.1): Use Theorem 1.

We conclude this paper by offering two examples that help illuminate the
result established above. Example 1 displays a finite C and an integer m for
which (4.1) holds, and also a function h such that for every set Y ⊆ X \ C
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the injective function hm¹Y fails to be a bijection from Y onto X. It is
clear that Prt(X) contains an extension H of h for which Hm¹(X \ C) is a
bijection from X \C onto X if and only if the set X is infinite. Incidentally,
for no set Y := X \C is it the case that the quadruple 〈X,C,m, h〉 is liable,
since 0 ∈ C \Dom(hm).

Example 1. Let 15 ⊆ X. Let m := 3. Let C := 6. Let h := {〈i, i − 3〉 :
3 ≤ i ≤ 14}. Then the finite injective function h3¹Y merely slides a portion
of the set Y := X \ C over to cover the set C.

Is there a property R, applicable to f with |I(y, f)| > 1 for some y ∈ Y ,
such that if some f ∈ Prt(X) satisfies R then m and |C| are arithmetically
related? In this spirit we pose the following

Problem 1. Let 0 < k ∈ ω. Let X be infinite. Let there exist some
f ∈ Prt(X) with Y ⊆ Dom(fm), |Y ∩ I(x, f)| = k for every x ∈ X, and
f j [Y ] ⊂ X for every j ∈ m, but such that fm[Y ] = X. Then how must m,
k, and |C| be related arithmetically?

The wording of Lemma 3 is delicate: Not just any Y will serve. Indeed,
if X = C = mq for q a positive integer then m is a factor of |C| but there
is no f ∈ Prt(X) for which 〈X,C,m, f〉 is liable.

Define σ(m, q) to be the smallest ordinal α such that there exists f ∈
Prt(α) for which 〈α,mq,m, f〉 is liable. It is easy to see that σ(1, 1) = 3:
A smallest X for C = mq = 1 is attained when X := 3, with the function
f := {〈2, 1〉, 〈1, 0〉, 〈0, 0〉} or f := {〈2, 1〉, 〈1, 0〉, 〈0, 1〉}.

Problem 2. Characterize σ(m, q) for all positive integers m and q.

The next example suggests that mq < σ(m, q) ∈ ω may invariably be
the case.

Example 2. Let C := {3, 4, 5, 11, 12, 13, 14, 15, 16, 32, 33, 34, 35, 36, 42}
where X := 100, let m := 3, and let

f := {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈4, 5〉, 〈5, 3〉,
〈6, 7〉, 〈7, 8〉, 〈8, 9〉, 〈9, 10〉, 〈10, 11〉, 〈11, 12〉, 〈12, 13〉, 〈13, 14〉,
〈14, 15〉, 〈15, 16〉, 〈16, 17〉, 〈17, 18〉, 〈18, 19〉, 〈19, 14〉, 〈20, 21〉,
〈21, 22〉, 〈22, 23〉, 〈23, 24〉, 〈24, 25〉, 〈25, 26〉, 〈26, 27〉, 〈27, 24〉,
〈28, 29〉, 〈29, 30〉, 〈30, 31〉, 〈31, 32〉, 〈32, 33〉, 〈33, 34〉, 〈34, 35〉,
〈35, 36〉, 〈36, 37〉, 〈37, 38〉, 〈38, 39〉, 〈39, 40〉, 〈40, 41〉, 〈41, 42〉,
〈42, 35〉, 〈43, 44〉, 〈44, 45〉, 〈45, 37〉}.

Example 2 indicates that m can be guaranteed to be a factor of |C|
by rather mysterious conditions. There, the set X is finite, the function
f ⊆ X ×X is not injective, but 〈X,C,m, f〉 is liable anyway.
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It is reasonable to ask whether results analogous to our Corollary 4
hold for certain nonpower words. The first such word we would propose for
consideration is the word xmyn of “complexity two”.

Problem 3. Let m and n be positive integers. Let {f, g} ⊆ Prt(X) be
such that gn¹Y and fm¹gn[Y ] are injective, fmgn¹Y is a bijection from Y
onto X, neither gn¹Y nor fm¹gn[Y ] is a restriction of {〈x, x〉 : x ∈ X}, but
fmgn−1[Y ] ⊂ X. Then must m+ n be a factor of |X \ Y |?

Acknowledgments. The clarity of our proofs benefited from our con-
versations with Gregory Hill and with Sylvia Bare Silberger.
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