A note on a question of Abe

by

Douglas Burke (Las Vegas, NV)

Abstract. Assuming large cardinals, we show that every κ -complete filter can be generically extended to a V-ultrafilter with well-founded ultrapower. We then apply this to answer a question of Abe.

1. Weakly precipitous filters. A set \mathcal{F} is a *filter* if it is closed under intersections, $\emptyset \notin \mathcal{F}$, and whenever $A \subseteq B \subseteq \bigcup \mathcal{F}$ with $A \in \mathcal{F}$, then $B \in \mathcal{F}$. In what follows κ is always a regular cardinal $> \omega$. A filter \mathcal{F} is κ -complete iff it is closed under intersections of size $< \kappa$.

DEFINITION 1.1. Let \mathcal{F} be a κ -complete filter. We say \mathcal{F} is weakly precipitous if there is a partial order \mathbb{P} and a \mathbb{P} -name \dot{G} such that it is forced that \dot{G} is a V- κ -complete ultrafilter extending \mathcal{F} with well-founded ultrapower. We say \mathcal{F} is α -weakly precipitous if there is a partial order \mathbb{P} and a \mathbb{P} -name \dot{G} such that it is forced that \dot{G} is a V- κ -complete ultrafilter extending \mathcal{F} with $j_{\dot{G}}(\alpha)$ in the well-founded part of the ultrapower.

If κ is strongly compact then every κ -complete filter can be extended to a κ -complete ultrafilter. If we use a generic embedding instead of a strongly compact embedding, then (large cardinals imply that) for every κ , every κ -complete filter is weakly precipitous.

Recall that S is stationary if for every $f: (\bigcup S)^{<\omega} \to \bigcup S$ there is an $a \in S$ that is closed under f. We have $\mathbb{P}_{<\delta} = \{S \in V_{\delta} \mid S \text{ is stationary}\}$, ordered by $S \leq T$ iff $\bigcup S \supseteq \bigcup T$ and for all $a \in S$, $a \cap (\bigcup T) \in T$. This generalization of stationary and the following theorem appear in [W1] and [W2].

THEOREM 1.2 (Woodin). Assume δ is a Woodin cardinal, $G \subseteq \mathbb{P}_{<\delta}$ is generic, and $j_G : V \to M$ is the generic embedding. Then $M^{<\delta} \subseteq M$ in V[G].

LEMMA 1.3. Assume \mathcal{F} is a κ -complete filter and there is a Woodin cardinal > $|\bigcup \mathcal{F}|$. Then \mathcal{F} is weakly precipitous.

2000 Mathematics Subject Classification: Primary 03E40, 03E55.

^[95]

Proof. We may assume $\bigcup \mathcal{F}$ is a cardinal λ and $\lambda \geq \kappa$. Let $\delta > \lambda$ be a Woodin cardinal. The forcing \mathbb{P} that witnesses that \mathcal{F} is weakly precipitous is

$$\mathbb{P}_{<\delta} | \{ a \subseteq V_{\lambda+1} \mid |a| < \kappa \& a \cap \kappa \in \kappa \}.$$

Let $H \subseteq \mathbb{P}$ be generic and $j : V \to M$ the generic embedding (so M is well-founded). It is easy to see (using techniques from [W1]; also see [M2], Chapter 9) that $\operatorname{cp}(j) = \kappa$, $j'' \mathcal{F} \in M$, and $j(\kappa) > |j'' \mathcal{F}|$ (this last inequality holds since $\mathcal{F} \subseteq V_{\lambda+1}$). Since $j(\mathcal{F})$ is a $j(\kappa)$ -complete filter and $j'' \mathcal{F} \subseteq j(\mathcal{F})$, there is a $c \in \bigcap j'' \mathcal{F}$.

Now in V[H] define a V-ultrafilter \mathcal{G} on λ by $A \in \mathcal{G}$ iff $c \in j(A)$. Clearly, \mathcal{G} is a V- κ -complete ultrafilter extending \mathcal{F} . Since $\text{Ult}(V, \mathcal{G})$ can be embedded into M (by the map k([f]) = j(f)(c)), $\text{Ult}(V, \mathcal{G})$ is well-founded. Finally, standard forcing facts give a name \dot{G} for \mathcal{G} .

We can get by with much smaller large cardinals if all we want is α -weakly precipitous.

LEMMA 1.4. Assume \mathcal{F} is a κ -complete filter and there is a measurable cardinal $\delta > |\bigcup \mathcal{F}|$. Then \mathcal{F} is δ -weakly precipitous.

Proof. We may assume $\bigcup \mathcal{F} = \lambda$ a cardinal and $\lambda \geq \kappa$. Since $\delta > \lambda$ is measurable,

$$S = \{ a \subseteq V_{\delta} \mid a \cap \kappa \in \kappa \& |a \cap V_{\lambda+1}| < \kappa \& |a| = \delta \}$$

is stationary ([W1]). Let \mathbb{P} be all stationary subsets of S ordered by inclusion, and $H \subseteq \mathbb{P}$ generic. Then we have an embedding $j : V \to (M, E)$ with $\operatorname{cp}(j) = \kappa, \delta$ in the well-founded part of $(M, E), j(\delta) = \delta, j'' \mathcal{F} \in M$, and $|j'' \mathcal{F}| < j(\kappa)$ (this is all standard—see [W1] or [M2]). Now we argue as above to get a V- κ -complete ultrafilter \mathcal{G} extending \mathcal{F} . Let $j_{\mathcal{G}} : V \to \operatorname{Ult}(V, \mathcal{G})$ and $k : \operatorname{Ult}(V, G) \to (M, E)$ be the canonical maps. Then $j_{\mathcal{G}}(\delta)$ is in the well-founded part of $\operatorname{Ult}(V, G)$ since $k(j_{\mathcal{G}}(\delta)) = j(\delta) = \delta$.

2. A question of Abe. It is possible that one can use large cardinals (and weakly precipitous filters) instead of precipitous filters. For example, in [M1] Magidor proves that if there is a precipitous ideal on ω_1 and a measurable cardinal then all Σ_3^1 sets are Lebesgue measurable. If we use Theorem 1.2 instead of a precipitous ideal on ω_1 , Magidor's proof gives that all Σ_3^1 sets are Lebesgue measurable cardinal above a Woodin cardinal. Magidor goes on to show that all Σ_4^1 sets are Lebesgue measurable from this proof and Theorem 1.2, one sees that a measurable cardinal above n Woodin cardinals implies that all Σ_{n+2}^1 sets are Lebesgue measurable.

In this section we give another example of this in answering a question of Abe from [A]. The following definition and two theorems are due to Abe and appear in [A]. DEFINITION 2.1 (Abe). Assume \mathcal{F} is a filter on $\mathcal{P}_{\kappa}\lambda$ (all filters on $\mathcal{P}_{\kappa}\lambda$ are κ -complete and fine). \mathcal{F} is weakly normal iff $\forall f$ if $\{a \in \mathcal{P}_{\kappa}\lambda \mid f(a) \in a\} \in \mathcal{F}$ then $\exists \beta < \lambda$ such that $\{a \in \mathcal{P}_{\kappa}\lambda \mid f(a) < \beta\} \in \mathcal{F}$. Further, \mathcal{F} is semi-weakly normal iff $\forall f$ if $\{a \in \mathcal{P}_{\kappa}\lambda \mid f(a) \in a\} \in \mathcal{F}^+$ then $\exists \beta < \lambda$ such that $\{a \in \mathcal{P}_{\kappa}\lambda \mid f(a) \in a\} \in \mathcal{F}^+$ then $\exists \beta < \lambda$ such that $\{a \in \mathcal{P}_{\kappa}\lambda \mid f(a) < \beta\} \in \mathcal{F}^+$.

THEOREM 2.2 (Abe). Assume \mathcal{F} is a filter on $\mathcal{P}_{\kappa}\lambda$. Then \mathcal{F} is weakly normal iff \mathcal{F} is semi-weakly normal and there is no sequence of $\operatorname{cof}(\lambda)$ many disjoint \mathcal{F} -positive sets.

THEOREM 2.3 (Abe). If λ is regular and there is a weakly normal filter on $\mathcal{P}_{\kappa}\lambda$, then $\lambda^{<\kappa} = 2^{<\kappa} \cdot \lambda$.

This last result generalizes the well-known result of Solovay [S].

Also in [A], Abe proved a similar result when $\operatorname{cof}(\lambda) \leq \kappa$ and asked if one can compute $\lambda^{<\kappa}$ when $\kappa < \operatorname{cof}(\lambda) < \lambda$. Abe could answer this question assuming that a certain filter was precipitous—we show that λ weak precipitousness suffices.

THEOREM 2.4. Assume β is regular and there is a filter \mathcal{F} on $\mathcal{P}_{\kappa}\beta$ that has no β sequence of disjoint sets from \mathcal{F}^+ (and there is a measurable cardinal $>\beta$). Then there is a weakly normal filter on $\mathcal{P}_{\kappa}\beta$.

REMARK. Matsubara has proved that if there is a β saturated precipitous ideal on $\mathcal{P}_{\kappa}\beta$ then $\beta^{<\kappa} = 2^{<\kappa}\cdot\beta$ ([M3], [M4]). Our result (combined with 2.3) eliminates the precipitous assumption (at the expense of a large cardinal). We also seem to have a weaker saturation hypothesis.

Proof (of Theorem 2.4). Let \mathcal{F} be a filter on $\mathcal{P}_{\kappa}\beta$ with no β sequence of disjoint sets from \mathcal{F}^+ . Since there is a measurable cardinal $> \beta$ there is a partial order \mathbb{P} and a \mathbb{P} -name \dot{G} such that \mathbb{P} forces $\dot{G} \supseteq \mathcal{F}$ is a V- κ -complete ultrafilter on $\mathcal{P}_{\kappa}\beta$ with $j_{\dot{G}}(\beta)$ in the well-founded part of the ultrapower. Now fix $f: \mathcal{P}_{\kappa}\beta \to \text{Ord}$ and $p \in \mathbb{P}$ such that $p \Vdash "[f] = \sup(j''_{\dot{G}}\beta)$ ".

Define a filter \mathcal{E} on $\mathcal{P}_{\kappa}\beta$ by $A \in \mathcal{E}$ iff $p \Vdash A \in G$. It is easy to see that \mathcal{E} is a κ -complete fine filter on $\mathcal{P}_{\kappa}\beta$, $\mathcal{F} \subseteq \mathcal{E}$, and there is no β sequence of disjoint \mathcal{E} positive sets. Because $p \Vdash "[f] = \sup(j''_{\dot{G}}\beta)$ ", we have

(1)
$$\forall \gamma < \beta \ \{ a \in \mathcal{P}_{\kappa}\beta \mid f(a) \ge \gamma \} \in \mathcal{E}.$$

Note that $T \in \mathcal{E}^+$ iff $\exists q \leq p$ such that $q \Vdash T \in \dot{G}$. Using this, and again the fact that $p \Vdash "[f] = \sup(j''_{\dot{G}}\beta)$, we have

(2)
$$\forall g \text{ if } \{a \in \mathcal{P}_{\kappa}\beta \mid g(a) < f(a)\} \in \mathcal{E}^+ \text{ then}$$

 $\exists \gamma < \beta \text{ with } \{a \in \mathcal{P}_{\kappa}\beta \mid g(a) < \gamma\} \in \mathcal{E}^+.$

Finally, define a filter \mathcal{D} on $\mathcal{P}_{\kappa}\beta$ by

$$A \in \mathcal{D} \text{ iff } \{a \in \mathcal{P}_{\kappa}\beta \mid a \cap f(a) \in A\} \in \mathcal{E}$$

Clearly, \mathcal{D} is a κ -complete filter on $\mathcal{P}_{\kappa}\beta$. Using (1) and the fact that \mathcal{E} is fine, we find that \mathcal{D} is fine. Note that $A \in \mathcal{D}^+$ iff $\{a \in \mathcal{P}_{\kappa}\beta \mid a \cap f(a) \in A\} \in \mathcal{E}^+$. So there is no β sequence of disjoint \mathcal{D} positive sets. Using (2) we see that \mathcal{D} is semi-weakly normal. Therefore \mathcal{D} is a weakly normal filter on $\mathcal{P}_{\kappa}\beta$.

COROLLARY 2.5. Assume $\operatorname{cof}(\lambda) \geq \kappa$ and there is a filter on $\mathcal{P}_{\kappa}\lambda$ with no λ sequence of disjoint \mathcal{F} -positive sets (and there is a measurable cardinal $> \lambda$). Then $\lambda^{<\kappa} = 2^{<\kappa} \cdot \lambda$.

Proof. If λ is regular then we use 2.4 and 2.3.

So assume $\kappa \leq \operatorname{cof}(\lambda) < \lambda$. Let \mathcal{F} be a filter on $\mathcal{P}_{\kappa}\lambda$ with no λ sequence of disjoint, positive sets. It is easy to see that there is a $\gamma < \lambda$ and $S \in \mathcal{F}^+$ such that S cannot be split into γ many disjoint positive sets. Replace \mathcal{F} with $\mathcal{F} \upharpoonright S$ (so there is no γ sequence of disjoint positive sets) and take $\gamma \geq \operatorname{cof}(\lambda)$.

Now given any regular β with $\gamma \leq \beta < \lambda$, let \mathcal{F}_{β} be the projection of \mathcal{F} to $\mathcal{P}_{\kappa}\beta$ ($\mathcal{F}_{\beta} = \{\{a \cap \beta \mid a \in S\} \mid S \in \mathcal{F}\}$). So \mathcal{F}_{β} is a κ -complete fine filter on $\mathcal{P}_{\kappa}\beta$ with no β sequence of disjoint positive sets (no γ sequence in fact). So by 2.4 and 2.3, $\beta^{<\kappa} = 2^{<\kappa} \cdot \beta$.

Finally, since $\operatorname{cof}(\lambda) \ge \kappa$, we have $\lambda^{<\kappa} = \bigcup_{\beta < \lambda} \beta^{<\kappa}$, and therefore $\lambda^{<\kappa} = 2^{<\kappa} \cdot \lambda$.

References

- [A] Y. Abe, Weakly normal ideals on $\mathcal{P}_{\kappa}\lambda$ and the singular cardinal hypothesis, Fund. Math. 143 (1993), 97–106.
- [J] T. J. Jech, Set Theory, Academic Press, 1978.
- [M1] M. Magidor, Precipitous ideals and Σ_4^1 sets, Israel J. Math. 35 (1980), 109–134.
- [M2] D. A. Martin, Borel and Projective Games, book to be published.
- [M3] Y. Matsubara, private communication.
- [M4] —, Saturated ideals and the singular cardinal hypothesis, J. Symbolic Logic 57 (1992), 970–974.
- [S] R. M. Solovay, Strongly compact cardinals and the GCH, in: Proc. Tarski Symposium, Proc. Sympos. Pure Math. 25, Amer. Math. Soc., Providence, R.I., 1974, 365–372.
- [W1] W. H. Woodin, Supercompact cardinals and Σ_1^2 sets, handwritten notes, May 1985.
- [W2] —, Supercompact cardinals, sets of reals, and weakly homogeneous trees, Proc. Nat. Acad. Sci. U.S.A. 85 (1988), 6587–6591.

Department of Mathematics University of Nevada Las Vegas, NV 89154, U.S.A. E-mail: dburke@nevada.edu

Received 1 September 1999