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Minimal periods of maps of rational exterior spaces

by

Grzegorz Graff (Gdańsk)

Abstract. The problem of description of the set Per(f) of all minimal periods of a
self-map f : X → X is studied. If X is a rational exterior space (e.g. a compact Lie group)
then there exists a description of the set of minimal periods analogous to that for a torus
map given by Jiang and Llibre. Our approach is based on the Haibao formula for the
Lefschetz number of a self-map of a rational exterior space.

1. Introduction. Let f : X → X be a self-map of a topological
space X. For m ≥ 1 we define Pm(f) = Fix(fm) and Pm(f) = Pm(f) \⋃

0<n<m P
n(f). The last is the set of m-periodic points of f . If Pm(f) 6= ∅

then m is called a minimal period of f . The set of all minimal periods of f
is denoted by Per(f).

The classical Lefschetz theorem states that for a self-map f of a nice
space (e.g. finite CW-complex, compact manifold) if L(f) 6=0 then Fix(f) 6=∅.
Applying this theorem to the mth iteration fm we find that L(fm) 6= 0
implies Pm(f) 6= ∅, but there is no information about Pm(f). Another clas-
sical fixed point theorem, the Lefschetz–Hopf formula, says that L(fm) =
I(fm, X), where I(fm, X) is the fixed point index of fm. Again a direct
application of this relation to the iterations of f does not pick up minimal
periods in general.

Note that the Lefschetz number is defined as the alternating sum of
the traces of the maps induced by f on the cohomology spaces of X.
This yields some properties of the sequence {L(fm)}∞m=1 and consequently
{I(fm, X)}∞n=1 such as fulfilment of congruences (called Dold’s relations),
rationality of the generated zeta function, and others (cf. [D], [BB], [MP]).
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Consequently, these conditions, and other forced by the form of the in-
duced map f∗ or by the structure of H∗(X;Q), may be useful in finding
m-periodic points.

Another way of gathering additional information about the local fixed
point index is possible by putting some analytical or geometrical conditions
on f . A typical example is the result of Shub and Sullivan [SS] which states
that the sequence of local indices of a C1 map f at an isolated fixed point
x0 is bounded provided it is well defined. From this fact it follows that a
C1 map f of a compact manifold has infinitely many periodic points if the
sequence {L(fm)}∞m=1 is unbounded. This theorem was improved by Chow,
Mallet-Paret and Yorke [CMPY] and also by Babenko and Bogaty̆ı [BB],
who proved that the sequence of fixed point indices is an integral linear
combination of elementary periodic sequences with periods determined by
the spectrum of the derivative Df(x0) of f at x0.

The comparison of the so-called k-adic expansion of {I(fm, X)}∞m=1 with
the same expansion of {L(fm)}∞m=1 gives the existence of minimal periods
for transversal maps provided the cohomology ring of X has a special form
(e.g. X is a sphere or a projective space) [M].

Jiang and Llibre have recently discussed the arithmetic of the sequence
{det(I − Am)}∞m=1, where A is an integral square matrix, to apply it to
the study of the minimal periods of torus maps [JL]. Using a deep fact
on algebraic numbers they showed that for every m > m0(X) for which
L(fm) 6= 0, m is an algebraic period, i.e. im(f) =

∑
k/m µ(k)L(fm/k) 6= 0.

For a torus map this implies that m is a minimal period, since there is
equality, up to sign, of the Lefschetz and Nielsen numbers [JL].

On the other hand Haibao [H] observed that for self-maps of so-called
rational exterior spaces we have a formula for the Lefschetz number of the
iterated map: L(fm) = det(I − Am), where A is an integral k × k matrix
with k depending on X but independent of f .

In this paper we show that the algebraic number theorem of [JL] can be
adapted to study minimal periods of self-maps of rational exterior spaces
in view of the Haibao theorem. We consider the class of so-called essential
maps. For self-maps f of rational exterior spaces the requirement is that
{L(fn)}∞n=1 be unbounded (Prop. 3.13). The main results of this paper are
the following.

We show that there exists a constant mX depending only on the space X
(more precisely on the dimension of the matrix A) such that for every essen-
tial self-map f of a rational exterior space and all m > mX with L(fm) 6= 0,
m is an algebraic period (im(f) 6= 0) (Th. 5.1). As a consequence for the
class of transversal maps we show that if m > mX then m is a minimal
period of f if m is odd, and either m/2 or m is a minimal period of f if
m is even (Th. 6.1). This generalizes the results from [M] and [CLN] to the
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class of rational exterior spaces. We also indicate another class of spaces for
which this remains true (simple rational Hopf spaces, cf. Def. 4.1).

For C1 maps we prove that almost all primes are minimal periods of each
essential self-map of a rational exterior compact manifold (Th. 7.3), which
is a refinement of a result of Marzantowicz and Przygodzki who noticed the
presence of an infinite sequence of primes among the minimal periods of a
compact manifold X such that dimHi(X;Q) ≤ 1 [MP].

Under the assumption that X is a rational exterior space (or simple
rational Hopf space) we give a refined version of the estimate for the number
of periodic orbits of a C1 self-map of a compact manifold proved by Babenko
and Bogaty̆ı [BB] (Th. 7.4).

2. Dold’s relations and transversal maps. For the rest of the paper
we make the following assumption: if X is a manifold then we only consider
self-maps f of X such that all fixed points of fn for every n are isolated and
contained in IntX.

In this section we recall the relations among elements of the sequence
{I(fm, X)}∞n=1 for self-maps of ENRs, where I(f) denotes the fixed point
index of f . We also define the class of transversal maps and list their prop-
erties connected with the behaviour of {I(fm, X)}∞n=1.

If f is a self-map of a compact ENR and I(f) is the fixed point index of
f in X, then there are some important relations between I(fm) for distinct
m. For every m ∈ N define

im(f) =
∑

k|m
µ(k)I(fm/k),

where µ(k) denotes the Möbius function (cf. [Ch]).
Then the following congruences (called Dold’s relations) hold [D]:

2.1. Proposition. For every m ∈ N we have im(f) ≡ 0 (mod m).

This formula has a clear interpretation for a self-map f of a discrete
countable set X. In that case we have |Pm(f)| = im(f) and the congruence
in 2.1 results from the fact that Pm(f) consists of m-orbits, i.e. the orbits
which consist of points with minimal period m ([D]).

2.2. Definition (cf. [D], [Mats]). Let f : X → X be a C∞ map of an
open subset of a manifold X. We say that f ∈ ∆, or that f is a transversal
map, if for any m ∈ N and x ∈ Pm(f) we have 1 6∈ σ(Dfm(x)).

Notice that if f ∈ ∆ and x ∈ Pm(f) then the Hopf formula gives

I(fm, x) = sign det(I −Dfm(x)).

We can divide Pm(f) into a disjoint union PE
m(f) ∪ PO

m(f), depending on
whether the index is 1 or −1. We say that x ∈ Pm(f) is a twisted
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m-periodic point if I(fm, x) = −I(f2m, x), and is nontwisted otherwise.
In this way we can split PE

m(f) and PO
m(f) as PE

m(f) = PEE
m (f) ∪ PEO

m (f),
PO
m(f) = POE

m (f) ∪ POO
m (f), where

PEE
m (f) = {x ∈ Per(fm) : σ+(x), σ−(x) are even},

PEO
m (f) = {x ∈ Per(fm) : σ+(x) is even, σ−(x) is odd},
POE
m (f) = {x ∈ Per(fm) : σ+(x) is odd, σ−(x) is even},

POO
m (f) = {x ∈ Per(fm) : σ+(x), σ−(x) are odd},

and σ+(x) (resp. σ−(x)) denotes the number of real eigenvalues of D(fm(x))
greater than one (smaller than −1 respectively) counted with multiplicity.
The set P tw

m (f) = PEO
m (f) ∪ POO

m (f) denotes the set of twisted points.
For the class of transversal maps we have the following Dold equalities

(cf. [D]).

2.3. Proposition. If f is transversal , then

im(f) =
∑

x∈Pm(f)

I(fm, x) if m is odd,(Dodd)

im(f) =
∑

x∈Pm(f)

I(fm, x)− 2
∑

x∈P tw
m/2(f)

I(fm/2, x)(Deven)

if m is even,

which can also be written in the form

im(f) = |PE
m(f)| − |PO

m(f)| if m is odd ,(D′odd)

im(f) = |PE
m(f)| − |PO

m(f)| − 2(|PEO
m/2(f)| − |POO

m/2(f)|)(D′even)

if m is even.

2.4. Definition. A natural number m is called an algebraic period of a
self-map f if im(f) 6= 0.

2.5. Corollary. Let f be a transversal self-map of a compact manifold
X and let m be an algebraic period of f . Then m is a minimal period for m
odd , and either m or m/2 is a minimal period for m even.

P r o o f. An immediate consequence of Dold’s equalities (Dodd) and
(Deven).

Let Or(f,m) denote the number of m-orbits of f .

2.6. Proposition. Let f be a transversal self-map of a compact manifold
X. Then for every odd m,

Or(f,m) ≡ im(f) (mod 2).
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P r o o f. By (D′odd) we have

Or(f,m) = |Pm(f)|/m = (|PE
m|+ |PO

m |)/m = 2|PO
m |/m+ im(f)/m,

which gives the assertion.

3. Lefschetz numbers for maps on rational exterior spaces. We
now briefly sketch the main result of Haibao’s paper [H] and prove some
facts about the growth of the sequence {L(fm)}∞m=1 for a self-map of a
rational exterior space.

For a given spaceX and an integer r ≥ 0 letHr(X;Q) be the rth singular
cohomology space with rational coefficients. LetH∗(X;Q)=

⊕s
r=0H

r(X;Q)
be the cohomology algebra with multiplication given by the cup product.
An element x ∈ Hr(X;Q) is decomposable if there are pairs (xi, yi) ∈
Hpi(X;Q)×Hqi(X;Q) with pi, qi > 0, pi+qi = r > 0 so that x =

∑
xi∪yi.

Let Ar(X) = Hr(X)/Dr(X), where Dr is the linear subspace of all decom-
posable elements. For a continuous map f : X → X let f∗ be the induced
homomorphism on cohomology and A(f) the induced homomorphism on
A(X) =

⊕s
r=0A

r(X).

3.1. Definition. Let f be a self-map of a space X and let I : A(X) →
A(X) be the identity morphism. The polynomial

Af (t) = det(tI −A(f)) =
∏

r≥1

det(tI −Ar(f))

will be called the characteristic polynomial of f . The zeros of this polyno-
mial: λ1(f), . . . , λk(f), k = rankX, where rankX is the dimension of A(X)
over Q, will be called the quotient eigenvalues of f .

3.2. Theorem ([H]). If f is a self-map of a space X, then Af (t) ∈ Z[t].
Moreover , if dimAr(X) is either 1 or 0 for all r ≥ 1, then the quotient
eigenvalues λ1(f), . . . , λk(f) are all integers and Af (t) =

∏k
i=1(t− λi(f)).

Now we introduce the class of rational exterior spaces.

3.3. Definition. A connected topological space X is called rational exte-
rior if there are some homogeneous elements xi ∈ Hodd(X;Q), i = 1, . . . , k,
such that the inclusions xi ↪→ H∗(X;Q) give rise to a ring isomorphism
ΛQ(x1, . . . , xk) = H∗(X;Q). Additionally if the set {xi}ki=1 can be ordered
so that dimx1 < . . . < dimxk, we call X a simple rational exterior space.

The rational exterior spaces are a wide class of spaces that encompass:
finite H-spaces, including all finite-dimensional Lie groups and some real
Stiefel manifolds, and spaces that admit a filtration

X = X0
p0−→ X1

p1−→ . . .
pk−1−→ Xk

pk−→ Xk+1 = {point}
where pi is the projection of an odd-dimensional sphere bundle [H].
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The Lefschetz number for self-maps of a rational exterior space can be
expressed in terms of quotient eigenvalues.

3.4. Theorem ([H]). Let f be a self-map of a rational exterior space and
Af (t) be the characteristic polynomial of f. Then L(f) = Af (1).

We can repeat the construction of A(f), given at the beginning of this
section, for cohomology with integer coefficients. Consider the cohomology
group Hr(X;Z) and its subgroup Br(X;Q) generated by all r-dimensional
decomposable elements. Define Ãr(X) = Hr(X)/Br(X), r > 0. Let Ã(f)
be the homomorphism induced by f on Ã(X) =

⊕s
r=0 Ã

r(X), and Ãf (t)
be the characteristic polynomial of f on Ã(X). Then (cf. [H], Lemmas 4.2
and 4.3) Ãr(X) is a free Z-module, rankZÃr(X) = dimQAr(X) and

Af (t) = Ãf (t).

As a consequence we obtain:

3.5. Theorem ([H]). Let f be a self-map of a rational exterior space,
and let λ1, . . . , λk be the quotient eigenvalues of f . Let A denote the integral
matrix of Ã(f). Then L(fn) = det(I −An) =

∏k
i=1(1− λni ).

The sequence {det(I −Am)}∞m=1 = {L(fm)}∞m=1, where A is an integral
square matrix, has a nice arithmetic structure, which was observed by Jiang
and Llibre [JL] for self-maps of tori. The algebraic framework of their paper
was developed in order to obtain a complete description of the minimal set
of homotopy periods of a torus map f : T r → T r defined as MPer(f) =⋂
g'f Per(g), where g is homotopic to f . The topological part of their work

bases on the fact that for self-maps of tori we have |L(fm)| = N(fm) ≥ 0,
where N(fm) is the Nielsen number of fm, which is the lower bound for the
number of fixed points of fm.

Although rational exterior spaces do not have such a nice property, the
algebraic structure of {L(fn)}∞n=1 is the same as in the case considered by
Jiang and Llibre. This makes it possible to use their results to find minimal
periods of self-maps of rational exterior spaces.

For a square matrix G ∈ Mr×r(Z), we define FG(m) := |det(I − Gm)|
and TG := {m ∈ N : FG(m) 6= 0}.

Let % be the spectral radius of G, i.e. the maximal modulus of eigenvalues
of G.

3.6. Theorem ([JL]). There exists m0(r) such that for every G∈Mr×r(Z)
with % > 1 and all m,n ∈ TG with n |m, m > m0(r) we have

FG(m)/FG(n) > 1.

3.7. Remark. The number m0(r) is effectively computable.
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As a matter of fact Theorem 3.6 in this formulation easily follows from
the classical Schinzel theorem on primitive divisors (cf. [Sch], [JM]). How-
ever, Jiang and Llibre gave a proof which was based on some nontrivial
inequalities for algebraic numbers.

We have the following modification of Theorem 3.6.

3.8. Lemma. Let ε = ε(m) be a fixed sequence of positive numbers such
that

lim sup
n→∞

ε(m) < 1.

Then there exists a natural number m(r, ε) such that for every G ∈Mr×r(Z)
with % > 1 and all m,n ∈ TG with n |m and m > m(r, ε) we have

FG(m)/FG(n) > %ε(m)m/2.

P r o o f. Assume that m ≥ 5000, so that lnm ≥ 8.5. It is known (cf. [JL])
that

(∗) FG(m)/FG(n) >
%m/2 − 1

e9r(41.4+(r/2) ln %)(r lnm)2 .

Consider the inequality

(∗∗) %m/2 − 1
e9r(41.4+(r/2) ln %)(r lnm)2 > %ε(m)m/2.

It is obvious that for every fixed % > 1 it is satisfied for sufficiently large m.
We want to find m(r, ε) such that it is valid for all m > m(r, ε) independently
of the choice of % > 1.

Following the arguments of [JL] consider two cases. If % ≥ e82.8/r then

41.4 + (r/2) ln % ≤ r ln %,

so that (∗∗) holds provided

(∗∗∗) %m/2 > %ε(m)m/2+9r4(lnm)2
+ 1.

As % > e82.8/r we have % > 1 + 82.8/r and (∗∗∗) is valid if
m

2
(1− ε(m)) > 9r4(lnm)2 + 1.

Let m1(r, ε) be such that the last inequality is satisfied for all m > m1(r, ε).
Then (∗∗∗) and consequently (∗∗) are satisfied for all m > m1(r, ε).

The remaining case % < e82.8/r leads to a finite number of possible char-
acteristic polynomials χG(λ) of G as the coefficients of χA(λ) are elementary
symmetric polynomials in the eigenvalues and so can be estimated by %. We
then choose the smallest % of the corresponding characteristic polynomials,
say %0, and let m2(r, ε) be such that (∗∗) is satisfied for %0 and m > m2(r, ε).
Then (∗) holds for all m > m(r, ε) = max(5000,m1(r, ε),m2(r, ε)).
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3.9. Definition. A map f will be called essential provided:

(a) 1 is not its quotient eigenvalue,
(b) at least one quotient eigenvalue is neither zero nor a primitive root

of unity.

Kronecker Theorem (cf. [N]). Let % be the spectral radius of G ∈
Mr×r(Z). If % ≤ 1, then all non-zero eigenvalues of G are roots of unity.

3.10. Theorem. Let ε(m) be a sequence of positive numbers such that

lim sup
m→∞

ε(m) < 1.

Then there exists a natural number m(k, ε) such that for every essential
self-map f of a rational exterior space of rank k and all m,n ∈ TA with
n |m and m > m(k, ε) we have

|L(fm)|/|L(fn)| > %ε(m)m/2,

where % is the spectral radius of the matrix A ∈Mk×k(Z) of Ã(f).

P r o o f. Since f is essential, by Definition 3.9(b) and the Kronecker
Theorem the spectral radius % of A satisfies % > 1. We have FA(m) =
| det(I − Am)|, so due to Theorem 3.5, FA(m) = |L(fm)|, and finally by
Lemma 3.8 we complete the proof.

3.11. Remark. The structure of the sequence {L(fn)}∞n=1 for rational
exterior spaces has a description in terms of cyclotomic polynomials. Let
ψd(x) be the dth cyclotomic polynomial. Then by the identity xm − 1 =∏
d|m ψd(x) we see that

|L(fm)| = |det(1−Am)| =
∏

d|m
|detψd(A)| =

∏

d|m
Ψd,

where Ψd = |detψd(A)|.
The coefficients of ψd are integers and A is an integer matrix as well, so

Ψd is an integer for every d. As a consequence we obtain:

3.12. Theorem. Let f be a self-map of a rational exterior space and n |m,
n ∈ TA. Then L(fn) |L(fm).

Theorem 3.10 and Remark 3.11 make it possible to give a characteriza-
tion of essential maps on rational exterior spaces.

3.13. Proposition. A self-map f of a rational exterior space is essential
iff {L(fm)}∞m=1 is unbounded.

P r o o f. If f is essential then {L(fm)}∞m=1 is unbounded by Lemma 3.8.
If f is not essential then all its non-zero quotient eigenvalues λ1, . . . , λk are
roots of unity, each being a root of some cyclotomic polynomial ψni of degree
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di ≤ k = rankX. Let C = lcm{di : i = 1, . . . , k}. Obviously λCi = 1 and so
we have

L(fm+C) =
k∏

i=1

(1− λm+C
i ) =

k∏

i=1

(1− λmi ) = L(fm),

thus {L(fm)}∞m=1 is periodic and consequently bounded (cf. [JL]).

3.14. Remark. For rational exterior spaces there are some restrictions
on the integers which may appear in the sequence {L(fm)}∞m=1, besides
Dold’s relations. Namely there is M such that for all m > M the divisors
of L(fm) must be primitive. This means that for every m > M there is a
prime number p such that p |L(fm) but p -L(fn) for n < m. The number
M is usually very large (cf. [Sch]).

4. A formula for simple rational Hopf spaces. Theorem 3.5 does
not cover the cases when the generators of H∗(X;Q) are in even-dimensional
cohomology, so it does not embrace the case of S2n and other similar spaces.
However, it is possible to extend Haibao’s method to find a formula for the
Lefschetz number for a wider class of spaces.

4.1. Definition. A connected topological space X is called a simple
rational Hopf space if there are homogeneous elements xi ∈ Hodd(X;Q),
yj ∈ Heven(X;Q), i = 1, . . . , k, j = 1, . . . , l, such that the inclusions
xi ↪→ H∗(X;Q), yj ↪→ H∗(X;Q) give rise to an algebra isomorphism
HQ(x1, . . . , xk, y1, . . . , yl) = H∗(X;Q), where HQ is the free skew-commuta-
tive graded algebra with the additional relations ydj+1

j = 0, and the set
{zi}k+l

i=1 = {xi}ki=1 ∪{yj}li=1 can be ordered so that dim z1 < . . . < dim zk+l.

Let 1 ∈ H0(X;Q) be the unit cocycle. Then {xi}ki=1∪{yj}li=1 is a vector
space basis for A(X) and B = {1, xi1 ∪ . . . ∪ xin ∪ ypj1j1

∪ . . . ∪ ypjmjm : 1 ≤
i1 < . . . < in ≤ k, 1 ≤ j1 < . . . < jm ≤ l, 1 ≤ pjt ≤ djt} is a vector space
basis for H∗(X;Q). We will use the following notation: D = k +

∑l
j=1 dj ,

dimλi = p if A(f)(zi) = λizi and zi ∈ Ap(X). The following theorem is a
consequence of Haibao’s computation (cf. [H]).

4.2. Theorem. If f is a self-map of a simple rational Hopf space X
with the non-zero quotient eigenvalues λ1, . . . , λk having odd-dimensional
eigenvectors and λk+1, . . . , λk+l having even-dimensional eigenvectors, then

L(fm) = 1 + . . .+ (−1)
∑s
r=1 dimλgr (λg1 . . . λgs)

m + . . .

. . .+ (−1)D(λ1 . . . λkλ
dk+1
k+1 . . . λ

dk+l
k+l )

m
,

where the sum extends over all 1 ≤ g1, . . . , gs ≤ k + l such that if gt1 =
. . . = gtw then dimλtj is even and dtw ≤ w.
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Examples. (A) If X = S2p then L(fm) = 1 + dm, where d = deg f .
(B) Consider X = CPD. We have

Hn(CPD;Q) =
{
Q if n = 0, 2, 4, . . . , 2D,
0 otherwise,

H∗(CPD;Q) = span{1, y, y2, . . . , yD} where 0 6= y ∈ H2(CPD;Q). If d =
deg f , then

L(fm) = 1 + dm + d2m + . . .+ dDm.

(C) Let X = Sq × Sq, where q is even. Then

Hn(X;Q) =

{Q if n = 0, 2q,
Q×Q if n = q,
0 otherwise,

and

L(fm) = 1 + λm1 + λm2 + (λ1λ2)m,

where λ1, λ2 are the eigenvalues of f∗ on H2q(X;Q).

4.3. Definition. If f is a self-map of a simple rational Hopf space which
is not a rational exterior space then we will call f essential provided:

(a) 1 and −1 are not its quotient eigenvalues,
(b) at least one of its quotient eigenvalues is different from zero.

5. Algebraic periods. The existence of algebraic periods is an impor-
tant property of self-maps on rational exterior spaces and simple rational
Hopf spaces. For the rest of the paper let A denote the matrix of Ã(f). Let
TA = {m ∈ N : det(I −Am) 6= 0}.

5.1. Theorem. Let X be a rational exterior space (or a simple rational
Hopf space) of rank k. Then there exists a number mX which depends only
on the space X such that for every essential self-map f of X each m ∈ TA
with m > mX is an algebraic period of f .

P r o o f. Let |L(fs)| = max{|L(fm/l)| : l |m, l 6= m}. We have

|im(f)| =
∣∣∣
∑

l|m
µ(m/l)L(f l)

∣∣∣ ≥ |L(fm)| −
∣∣∣
∑

l|m, l 6=m
µ(m/l)L(f l)

∣∣∣

≥ |L(fm)| − 2
√
m |L(fs)|.

The last inequality results from the fact that the number of divisors of m is
not greater than 2

√
m (cf. [Ch]).

If X is a rational exterior space, then Theorem 3.10 with ε(m) =
(2/m) log%(2

√
m) yields

|L(fm)| > %ε(m)m/2|L(fs)| = 2
√
m |L(fs)|
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for m > mX = m(k, ε), so that |im(f)| > 0 for m > mX . This completes
the proof for rational exterior spaces.

If X is a simple rational Hopf space then all quotient eigenvalues are
integers. Let λ1, . . . , λD be all quotient eigenvalues of f (assume that they
are non-zero but not necessarily different), where D is as in Theorem 4.2,
and λ1 = minλi. By Theorem 4.2 we estimate L(fm) in the following way:

|L(fm)| ≥ |λ1 . . . λD|m − 2D|λ2 . . . λD|m ≥ (|λ1|m − 2D)|λ2 . . . λD|m.
Let now |L(fs)| = max{|L(f l)| : l |m, l 6= m}, m = sq. Then for m > D,

|im(f)| ≥ (|λ1|m − 2D)|λ2 . . . λD|m − 2
√
m 2D|λ1 . . . λD|s

≥ |λ2 . . . λD|s[(|λ1|m − 2D)|λ2 . . . λD|q − 2D+1√mλs1].

Obviously there exists mX such that |im(f)| 6= 0 for all m > mX , which
completes the proof.

5.2. Remark. Even if m 6∈ TA, m could be an algebraic period. For
example, if λ1, . . . , λr are quotient eigenvalues of an essential self-map of
a rational exterior space and each λi is a root of unity of degree mi (i =
1, . . . , r), and all mi are primes, then the number m = qm1 . . .mr, where
q ∈ TA and q > mX , is an algebraic period.

6. The existence of periodic points for transversal maps. We
are now in a position to apply the results of the previous sections to find
minimal periods for transversal maps.

6.1. Theorem. Let X be a rational exterior compact manifold (or a
simple rational Hopf space) of rank r. Then there exists a number mX which
depends only on X such that for every transversal essential self-map f of X
and for all m > mX , m ∈ TA we have: m is odd implies m ∈ Per(f); m is
even implies m ∈ Per(f) or m/2 ∈ Per(f).

P r o o f. According to Corollary 2.5 it suffices to show that m is an alge-
braic period, and this follows from Theorem 5.1.

The number of periodic points for transversal self-maps of rational ex-
terior spaces grows at exponential rate. Let Ortw(m) denote the number of
m-orbits which consist only of twisted m-periodic points.

6.2. Theorem. Let X be a rational exterior compact manifold of rank
r and f : X → X be an essential transversal map. Set Or(m) = Or(f,m).
Then for every fixed 0 < α < 1 there exists a number m(r, α) such that for
all m > m(r, α),

Or(m) ≥ 1
m

[(
1 +

1
30r2 ln 6r

)αm/2
− 2
√
m

]
for m odd ,
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Or(m) + Ortw(m/2) ≥ 1
m

[(
1 +

1
30r2 ln 6r

)αm/2
− 2
√
m

]
for m even.

P r o o f. First of all let us quote the following result from the theory of
algebraic numbers (cf. [BM]). Let %̃ be the greatest modulus of conjugate
algebraic numbers of degree n over Q. If %̃ 6= 0, 1 then

(∗) %̃ ≥ 1 +
1

30n2 ln 6n
.

Now we take ε(m) = α, where 0 < α < 1 is fixed. Then by Theo-
rem 3.10 we have |L(fm)|/|L(fs)| > %αm/2 for m > m(α), where |L(fs)| =
max{|L(f l)| : l |m, l 6= m}, and consequently, in the same way as in the
proof of Theorem 5.1, we obtain

(∗∗) |im(f)| > (%αm/2 − 2
√
m)|L(fs)|

for all m > m(α).
Due to Dold’s equalities (2.3), for m odd by (D′odd) we have

|Pm(f)| = |PE
m(f)|+ |PO

m(f)| ≥ ||PE
m(f)| − |PO

m(f)|| = |im(f)|,
and for m even by (D′even),

|Pm(f)|+ 2|P tw
m/2(f)| = |PE

m(f)|+ |PO
m(f)|+ 2(|PEO

m/2(f)|+ |POO
m/2(f)|)

≥ ||PE
m(f)| − |PO

m(f)| − 2(|PEO
m/2(f)| − |POO

m/2(f)|)|
= |im(f)|.

From the equality Or(f,m) = |Pm(f)|/m applying (∗) for %̃ = % (r = n)
and (∗∗) we finally get the needed estimate for m > m(α) independently of
the choice of f .

6.3. Remark. Jiang and Llibre gave an estimate that allows finding m0

such that FA(m)/FA(n) > 1 holds for all m,n ∈ TA with m > m0 and
n |m. For spaces with few non-zero cohomology groups it is however better
to examine it explicitly. Considering the case of the three-dimensional torus
T 3 they noticed that according to general theory m0 = 105, but straight-
forward calculations show that in fact the set L of m ∈ TA for which the
inequality FA(m)/FA(n) > 1 may not hold for some n ∈ TA with n |m is
L = {2, 3, 4, 5, 6, 8, 9, 10}.

Because Jiang and Llibre base only on the properties of the roots of the
characteristic polynomial of a map induced on the cohomology space, we
can apply the above result to a space X with rankX = 3 in order to obtain
some small natural numbers as minimal periods. Let mX be the constant
from Theorem 5.1.

6.4. Corollary. Let f be an essential transversal self-map of a rational
exterior compact manifold X of rank 3. Let m < mX , m ∈ TA, m 6∈ L, m =
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prqs, where p, q > 2 are different primes such that |L(fm)|/|L(fm/(pq))| 6= 6.
Then m ∈ Per(f).

P r o o f. It is enough to show that m is an algebraic period. We have

|im(f)| =
∣∣∣
∑

l|m
µ(m/l)L(f l)

∣∣∣

= |L(fp
r−1qs−1

)− L(fp
r−1qs)− L(fp

rqs−1
) + L(fp

rqs)|.
If l |m then L(f l) |L(fm) by Theorem 3.12, thus L(fp

r−1qs) =
aL(fp

r−1qs−1
), L(fp

rqs−1
) = bL(fp

r−1qs−1
), L(fp

rqs) = cL(fp
r−1qs−1

) and
|a|, |b|, |c| > 1 by Remark 6.3, because m 6∈ L.

Therefore |im(f)| = |L(fp
r−1qs−1

)||1− a− b+ c| where a | c, b | c and a, b
are proper factors of c.

Notice that if m ∈ TA, which is equivalent to L(fm) 6= 0, then by
Theorem 3.12, L(fs) 6= 0 for s |m, thus L(fp

r−1qs−1
) 6= 0. Let us now

consider two cases:

(1) |a| = |b| = |c|/2. Then |im(f)| = |L(fp
r−1qs−1

)| > 0.
(2) |a| 6= |b|. Then for m 6∈ L we obtain

|im(f)| ≥ |L(fp
r−1qs−1

)|(|c| − |1− a− b|) ≥ |c| − (1 + |a|+ |b|).
Set |c| = ka|a|, |c| = kb|b|, |a| > |b| > 1. Notice that |c| must be at least 6.
We want to know when |c| − (1 + |a| + |b|) > 0, or |a|(ka − 1) > |b| + 1
equivalently. This may not hold only for ka = 2. In this case |c|/2 > |c|/3+1
(which implies the needed inequality |c|/2 > |c|/kb + 1 because kb ≥ 3) is
satisfied for |c| > 6. This ends the proof, as the case |c| = 6 is excluded by
assumption.

It is easy to formulate different conditions forcing for m odd that the
number of m-orbits is even.

6.5. Theorem (cf. [M]). Let f : X → X be a transversal map, and X
be a rational exterior compact manifold. Let m ∈ TA be an odd number. If
either 2 |L(f) or 2 -L(fm), then

Or(f,m) ≡ 0 (mod 2).

P r o o f. By Proposition 2.6 we have

Or(f,m) ≡ im(f) (mod 2).

On the other hand,

im(f) =
∑

l|m
µ(m/l)L(f l) =

∑

τ⊂P (m)

(−1)|τ |L(fm:τ ),
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where P (m) is the set of all primes which divide m, the sum extends over all
subsets τ of P (m), |τ | stands for the cardinality of τ , andm : τ = m/

∏
p∈τ p

denotes m divided by all p ∈ τ .
For s |m we have L(fs) |L(fm) by Theorem 3.12; thus if 2 |L(f), then

2 |L(fs) for all s < m and obviously 2 | im(f).
If 2 -L(fm), then by Theorem 3.12, 2 -L(fs) for all s |m, so in the sum

im(f) =
∑

τ⊂P (m)

(−1)|τ |L(fm:τ )

there are 2P (m) summands. All of them are odd and non-zero because s |m,
m ∈ TA. Thus 2 | im(f).

6.6. Theorem. Let f : X → X be a transversal self-map of a simple
rational Hopf compact manifold. Let Z(m) = {s |m : L(fs) = 0} = ∅. Then
for every odd m,

Or(f,m) ≡ 0 (mod 2).
P r o o f. For integral quotient eigenvalues λ1, . . . , λr of f we have λ1 . . . λk

≡ (λ1 . . . λk)m (mod 2), and thus
∑

1≤k1≤...≤kp≤r
λk1 . . . λkp ≡

∑

1≤k1≤...≤kp≤r
(λk1 . . . λkp)m (mod 2).

As a consequence, by Theorem 4.2, we obtain

L(f) ≡ L(fm) (mod 2)

for all natural m, hence im(f) is the sum of 2P (m) non-zero integers which
are either all even or all odd. This gives the statement.

Example. Consider the D-dimensional complex projective space CPD.
For each odd m and essential transversal f we have Z(m) = ∅ (cf. Ex. (B)
after Theorem 4.2). Thus Or(f,m) ≡ 0 (mod 2).

7. Minimal periods for smooth maps. We can find some subsets of
Per(f) in the case of C1 self-maps of rational exterior spaces. First of all
let us recall a formula for im(f) for C1 self-maps of a compact manifold
from [MP].

Define O(x) ⊂ N for x ∈ Pm(f) as O(x) = Per(D(fm(x))). Recall that
σ− denotes the number of eigenvalues of Dfm(x) (counted with multiplicity)
smaller than −1.

7.1. Theorem. Let f : X → X be a C1 map of a compact manifold X.
Then for every l there are integers ck(x) such that

il(f) =
∑

mk=l

∑

x∈Pm(f)

ck(x) +
∑

2mk=l

∑

x∈Pm(f)

[(−1)σ−(x)k − 1]ck(x)

with the convention that ck(x) = 0 if k 6∈ O(x).
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7.2. Lemma. The structure of the set O(x) is the following (cf. [MP],
[CMPY]):

O(x) = {lcm(K) : K ⊂ σ(1)(D(fm(x)))} ∪ {1}
where σ(1)(D(fm(x))) is the set of degrees of primitive roots of unity con-
tained in σ(D(fm(x))).

Now we are in a position to formulate the theorem describing the pres-
ence of prime minimal periods. Let P denote the set of prime numbers.

7.3. Theorem. Let f : X → X be an essential C1 map of a rational
exterior compact manifold X. Then P \ Per(f) is finite.

P r o o f. Substituting l = p ∈ P in the formula of Theorem 7.1 we obtain

ip(f) =
∑

x∈P1(f)

cp(x) +
∑

x∈Pp(f)

c1(x).

First observe that the set P1(f) is finite since X is compact. Moreover the
set O(x) for x ∈ P1(f) is also finite as a consequence of Lemma 7.2, so by
elimination of a finite number of primes from O(x) for each x ∈ P1(f), for
the remaining primes p we obtain

ip(f) =
∑

x∈Pp(f)

c1(x).

By Theorem 3.10 the left hand side of the above formula is different from 0
for every sufficiently large p, which gives the desired conclusion.

Now we present an estimate of the number of periodic points for C1

self-maps of rational exterior manifolds.
Let O(x) denote the set of algebraic periods at a given point x:

O(x) =
{
s ∈ N : is(f, x) =

∑

d|s
µ(s/d)I(fd, x) 6= 0

}
,

and by G(f, l) the set of algebraic periods of f that are no greater than l:

G(f, l) = {s ≤ l : is(f) 6= 0}.

7.4. Theorem (cf. [BB]). For every rational exterior compact manifold
X of dimension n there exists a constant mX such that for all essential C1

self-maps f of X we have

O(f,≤l) ≥ l −mX

2[(n+1)/2] dimH∗(M ;Q)
,

where O(f,≤l) is the number of orbits of f with period at most l.
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P r o o f (cf. also [BB]). If x is an isolated fixed point of a C1 self-map of
Rn then (cf. [BB])

(∗) |O(x)| ≤ 2[(n+1)/2].

Let now mX be the number from Theorem 5.1 such that all l > mX ,
l ∈ TA are algebraic periods for every f . As f is essential, for l > mX at
least one number in the interval [l, l+ dimH∗(M ;Q)) belongs to TA and so
must be an algebraic period. Consequently, we obtain

(∗∗) |G(f, l)| ≥ l −mX

dimH∗(M ;Q)
.

On the other hand we have (cf. [BB])

is(f) =
∑

m|s

∑

x∈Pm(f)

is(f, x),

Thus
G(f, l) ⊂

⋃

m≤l

⋃

x∈Pm(f)

O(x).

On the right hand side of the above formula there are no more than
O(f,≤l) components, so by (∗) we obtain

|G(f, l)| ≤ O(f,≤l)2[(n+1)/2].

Finally by (∗∗),
l −mX

dimH∗(M ;Q)
≤ O(f,≤l)2[(n+1)/2],

which is the required assertion.

7.5. Remark. Babenko and Bogaty̆ı got the same estimate (cf. [BB]) for
a compact manifold, but their constant mX = mf depends on f .

7.6. Remark. For essential self-maps of a compact simple rational Hopf
space all natural numbers for l > mX are algebraic periods, thus

O(f,≤l) ≥ l −mX

2[(n+1)/2]
,

where mX is the number from Theorem 5.1.

Acknowledgments. I am very grateful to Professor Wacław Marzan-
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