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Spectral isomorphisms of Morse flows

by

T. Downarowicz (Wrocław), J. Kwiatkowski (Toruń)
and Y. Lacroix (Brest)

Abstract. A combinatorial description of spectral isomorphisms between Morse flows
is provided. We introduce the notion of a regular spectral isomorphism and we study some
invariants of such isomorphisms. In the case of Morse cocycles taking values in G = Zp,
where p is a prime, each spectral isomorphism is regular. The same holds true for arbitrary
finite abelian groups under an additional combinatorial condition of asymmetry in the
defining Morse sequence, and for Morse flows of rank one. Rank one is shown to be a
spectral invariant in the class of Morse flows.

Introduction. Let (X,T, ν) be an ergodic measure preserving transfor-
mation of a standard probability space. Let G be a compact abelian group
with Haar measure λ. By a group extension over T we shall mean the skew
product (X×G,Tφ, ν×λ), where Tφ(x, g) = (T (x), gφ(x)) with φ : X → G.
The system (X,T, ν) is called a base and φ is a cocycle.

It is well known that the space L2(ν×λ) decomposes into the product of
Tφ-invariant subspaces L2

γ = {f⊗γ : f ∈ L2(ν)} where γ ranges over Ĝ. We
will investigate spectral isomorphisms between pairs of group extensions by
the same group G over the same base (X,T, ν). We expect an isomorphism
which leaves the subspaces L2

γ invariant to exhibit some “nice” properties.
An isomorphism which sends each L2

γ to L2
v̂(γ), where v̂ is a group isomor-

phism of Ĝ, will have similar properties, because it can be easily reduced
to one which leaves the spaces L2

v̂(γ) invariant (by applying to one of the
cocycles the group automorphism v of G dual to v̂).
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Definition. We will say that a spectral isomorphism is regular if it
sends each L2

γ to L2
v̂(γ), where v̂ is a group automorphism of Ĝ.

It has been proved in [N] and [J-L-M] that every spectral isomorphism
induced by a metric isomorphism is regular (under the assumption that the
base is a canonical factor of the group extensions).

The precise meaning of “nice” properties will become clear in the case of
Morse flows, and it is discussed at the beginning of the section devoted to
regular spectral isomorphisms. Roughly speaking, such isomorphisms pro-
vide a correspondence between certain G-valued functions, to which we no
longer need to apply the characters, leading to purely combinatorial invari-
ants and techniques.

Our main interest is in determining when two ergodic group extensions
Tφ and Tφ′ over the same base are spectrally isomorphic and what kind of
similarities this fact imposes on these flows. Thus, we feel free to choose from
among all relevant spectral isomorphisms one which suits us best (for in-
stance a regular one, if such exists) and treat all the remaining isomorphisms
as “equivalent”. We will do so in the following situation: suppose that the
spectral types and multiplicities of L2

γ1
and L2

γ2
(with respect to the group

extension Tφ) coincide for some γ1 6= γ2 ∈ Ĝ. Then, by the spectral theo-
rem, there exists a spectral isomorphism U of L2 leaving the subspaces L2

γ

invariant, except that it permutes L2
γ1

with L2
γ2

. In such a case we can try
to improve the regularity of the spectral isomorphism between Tφ and Tφ′

by composing it with the above isomorphism U .
In certain cases (e.g., for Morse cocycles, as we soon explain) we know

that every spectral isomorphism sends each L2
γ to L2

π̂(γ), where π̂ is some
permutation of the characters, a priori not necessarily a group automor-
phism. So far we know of no example of a pair of group extensions spec-
trally isomorphic via a permutation π̂ not equivalent to a group automor-
phism.

A better understanding of this phenomenon may be crucial in the inves-
tigations of certain spectral invariants for group extensions. A well known
open problem is whether rank is a spectral invariant. One of the motivations
for the present discussion is the discovery that rank one is preserved by spec-
tral isomorphisms between Morse flows, mostly due to their regularity.

In this note we first characterize spectral isomorphism between Morse
flows in terms of combinatorial properties of words obtained from the defin-
ing blocks via characters (Corollary 1 and Theorem 4). Next we introduce
certain combinatorial characteristics (abstract autocorrelations) which then
turn out to be invariant under regular spectral isomorphisms. Further, we
describe three cases where every spectral isomorphism is regular (or equiv-
alent to a regular one):
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(1) G = Zp is the cyclic group of prime order,
(2)G is an arbitrary finite group and one of the cocycles has an additional

property AS,
(3) one of the Morse flows is of rank one.

In the first two cases we assume that the cocycles have “bounded
lengths”. Before handling the last case we provide a characterization of
rank one within the class of Morse flows in terms of the formerly established
regular invariants. Using this, in (3) we show that the other Morse flow is
also of rank one.

The restrictions we had to make on Morse flows in (1) and (2) result from
our computational techniques and we conjecture that they can be omitted.
We also conjecture that all values of rank are preserved by regular spectral
isomorphisms.

Due to the nature of the methods applied, we will concentrate mainly on
the symbolic representation of Morse flows, rather than work in the cocycle
setup.

Basics. Let us now introduce the basic definitions and facts: as usual,
Z denotes the set of all integers, while N stands for {1, 2, 3, . . .}. T denotes
the unit circle on the complex plane, and z is the conjugate of z.

Let G be a finite abelian group denoted multiplicatively, with unit 1. As
usual, we denote by Ĝ the dual group of G, its elements (characters on G)
are denoted by the letters γ, γ′, etc., and γ0 is the trivial character (i.e., the
unit of Ĝ).

By a block B of length n ∈ N over G we mean a finite sequence B =
(b0, b1, . . . , bn−1) ∈ Gn. A sequence over G has the form B = (b0, b1, . . .)
∈ GN. Sometimes, instead of bi, we also write B(i). We say that the block
B is symmetric if bi = bn−1−i for each 0 ≤ i < n.

Definition 1. Let B be a block of length n over G. For 0 ≤ k ≤ n− 1
and g ∈ G we define

frB(k, g) =
1
n

#{i : 0 ≤ i ≤ n− k − 1, (bi)−1bi+k = g}.
Clearly, frB(0, g) = 1 if g = 1 and 0 for other elements g.

Definition 2. Let B = (b0, b1, . . . , bn−1) ∈ Tn (such a B will be
called a word). The aperiodic autocorrelation function of B is defined on
{0, 1, . . . , n− 1} by

ΦB(k) =
1
n

n−k−1∑

i=0

bibi+k =
∑

z∈T
zfrB(k, z).

Clearly, ΦB(0) = 1.
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If A denotes a sequence over G (or T) then we define frA(k, g) (and
ΦA(k)) as the limit of frAn(k, g) (resp. ΦAn(k)), where An is the initial
block in A of length n. Of course, there is no guarantee that such limits
exist.

Let B = (b0, b1, . . . , bn−1) and A = (a0, a1, . . . , am−1) be two blocks
over G. We define their product as the block B × A = (c0, c1, . . . , cmn−1),
where

cs+nt = bsat, 0 ≤ s < n, 0 ≤ t < m.

The above definition can also be applied to the case where A represents a
sequence over G.

The following lemma appears in many variants in the literature (see
e.g. [D-L]) and it says that the autocorrelation function of a product of
words depends only on the autocorrelations of the component words.

Lemma 1. Let B = (b0, b1, . . . , bn−1) and A = (a0, a1, . . . , am−1) be two
words (i.e. blocks over T). For each 0 ≤ s < n and 0 ≤ t < m we have

ΦB×A(s+ nt) = ΦB(s)ΦA(t) + ΦB(n− s)ΦA(t+ 1)

(with the convention that ΦB(n) = 0).

Remark 1. The same holds true if A represents a sequence over T for
which the autocorrelation function exists.

Definition 3. Let (B1, B2, . . .) be a sequence of blocks over a finite
group G such that, for each q ∈ N,

1) the length nq of Bq is at least 2, and
2) Bq(0) = 1.

The (one-sided, generalized) Morse sequence A determined by the sequence
(Bq) of blocks is defined as the coordinatewise limit of the words Aq =
B1 × . . . × Bq (convergence is granted by the condition Bq(0) = 1). We
exclude periodic sequences from the class of Morse sequences.

We denote by Aq the infinite product Bq+1×Bq+2× . . . Note that Aq is
also a Morse sequence, and that A = Aq × Aq. The length of Aq (equal to
n1 . . . nq) is denoted by mq.

We remark that the sequence of blocks (Bq) leading to A is not unique.
For instance, we can apply “grouping” and define B′1 = B1 × . . . × Bq1 ,
B′2 = Bq1+1 × . . .×Bq2 , etc., to obtain A = B′1 ×B′2 × . . .

Let A be a Morse sequence over G. We define XA ⊂ GZ as the set
of all bi-infinite sequences x such that every block appearing in x appears
infinitely many times in A. It is clear that XA is closed and σ-invariant
where σ is the left shift transformation

(σx)n = xn+1 (x ∈ GZ).
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The subshift (XA, σ) will be called the Morse flow generated by A (or by
the sequence (B1, B2, . . .) of blocks).

In the language of cocycles, the above flow can be described as follows:
the base (X,T, ν) is the rotation of the group of (mq)-adic integers (odome-
ter). We write T (x) = x+ 1. Then, for each q, X decomposes as the disjoint
union

X = Xq ∪ (Xq + 1) ∪ (Xq + 2) ∪ . . . ∪ (Xq +mq − 1),

where Xq = mqX is a closed and open subgroup. The cocycle associated
with the Morse sequence A is defined inductively on X as follows:

φ(x) = Aq(i+ 1)(Aq(i))−1

for each x ∈ Xq + i, i = 0, 1, . . . ,mq − 2. It is elementary to see that the
above definition is consistent (i.e., if φ(x) is defined using q then it will not
change for q′ > q), and that eventually φ is defined as a continuous function
at all points except at −1. Moreover, it can be proved that a cocycle φ
defined on an odometer and taking values in a finite abelian group G yields
a group extension isomorphic to a Morse flow if and only if φ has exactly
one discontinuity point.

Morse flows have been extensively studied for their dynamical and spec-
tral properties. We refer the reader to [G], [J], [K1], [K2], [Kw], [K-S], [M].
For us it is important to know the following five facts:

Fact 1 (see [I-L] or [M] for similar statements). A sufficient condition
for a Morse flow generated by a sequence of blocks (B1, B2, . . .) to be strictly
ergodic is that there exist q0 ≥ 1 and εA > 0 such that for each q ≥ q0,

frAq (1, g) > εA

for all g ∈ G, where Aq denotes the Morse sequence defined by the “trun-
cated” sequence of blocks (Bq+1, Bq+2, . . .).

From now on we assume that our Morse sequence A satisfies the condi-
tion of Fact 1. This implies in particular that for every nontrivial character
γ ∈ Ĝ,

lim sup
q
|Φγ(Aq)(1)| < 1− ξA for some ξA > 0.

Remark 2. The above is a natural requirement and in most papers on
Morse flows this or similar assumptions are made to ensure ergodicity of the
flow and continuity of the interesting part of the spectrum. Our condition
also ensures that the flow does not reduce to a Morse flow over a subgroup
of G.
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For a spectral description of the Morse flow we need to consider the
Hilbert space L2 = L2(νA), where νA is the unique invariant measure on XA.

Fact 2 (see [K-S], [M]). We have the decomposition

L2 =
⊕

γ∈Ĝ
L2
γ ,

where L2
γ is the σ-invariant subspace of L2 defined by

L2
γ = {f ∈ L2 : f(gx) = γ(g)f(x) for each g ∈ G and x ∈ XA}

(gx is obtained by multiplying all entries of x by g). Moreover , the spectrum
of σ on each L2

γ is:

• simple,
• discrete if γ = γ0,
• continuous for nontrivial characters.

The spectral type of σ on L2
γ with γ 6= γ0 is the same as that of the spectral

measure µ(A,fγ) (µ(A,γ) for short) of the function fγ defined by

fγ(x) = γ(x0).

Recall that the Fourier coefficients of the spectral measure µ(A,f) of a
function f ∈ L2 are

µ̂(A,f)(k) =
\
zk dµ(A,f) =

\
f(f ◦ σk) dνA.

If f = fγ (γ nontrivial) then, by continuity of fγ and unique ergodicity,
we can evaluate the integrals by taking averages along the trajectory of an
element whose right hand side coincides with A. In this manner we obtain
the following equalities:

Fact 3. The Fourier coefficients of the spectral measures µ(A,γ) coincide
with the autocorrelations of the sequence obtained from A by applying the
character γ:

µ̂(A,γ)(k) = lim
n→∞

1
n

n−1∑

i=0

γ(A(i)) γ(A(i+ k)) = Φγ(A)(k)

for each k ∈ N (and the autocorrelation functions exist for each γ ∈ Ĝ).

Fact 4 (see [K2] and [C-N] for similar statements). Let A be a Morse
sequence defined by a sequence (B1, B2, . . .) of blocks satisfying the assump-
tion of Fact 1. Then, for each nontrivial character γ ∈ Ĝ and each q ∈ N,
the measures µ(A,γ) and µ(Aq,γ) are equivalent.

In our study of spectral isomorphisms we will compare the behavior of the
Morse flows defined by two Morse sequences, which we denote by A and A′.
In our notation we will use the convention that all letters with a “ ′ ” refer
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to the objects related to the Morse flow defined by A′, and corresponding
to the objects denoted for A by the same letters without a “ ′ ”.

Our first remark concerns the discrete spectrum factor:

Fact 5. Let A and A′ be two Morse sequences over G defined by two
sequences of blocks (Bq) and (B′q), respectively. Let φ : X → G and φ′ :
X ′ → G be the corresponding cocycles. If the group extensions are spectrally
isomorphic then by appropriate grouping of the blocks (Bq) and (B′q) we
can obtain new sequences of blocks (Cq) and (C ′q) of common lengths nq
and leading to the same Morse sequences A and A′, respectively.

P r o o f. This is a classical fact in the theory of Morse cocycles. Since
the flows are spectrally isomorphic, they have the same discrete part of
spectrum, i.e., that in L2

γ0
. This implies that they are extensions over the

same odometer X. Further, both cocycles have a unique discontinuity at −1.
Thus the cocycle intoG×G defined as (φ, φ′) is again a Morse cocycle leading
to certain blocks (Dq) of length nq. We now let Cq and C ′q be the projections
of Dq to the first and second coordinate, respectively.

In view of the above fact, when considering spectrally isomorphic Morse
flows, we will always assume that the defining blocks have a common struc-
ture of lengths, i.e., nq = n′q for each q.

The following fact can be found in [K2]. Sufficiency of the last condition
is an immediate consequence of the fact that the variation distance between
orthogonal measures equals 2.

Fact 6 ([K2]). Let A and A′ be two Morse sequences with the same
structure of lengths. Let γ, γ′ ∈ Ĝ. Then the spectral measures µ(A,γ) and
µ(A′,γ′) are either equivalent or orthogonal. They are equivalent if and only if

‖µ(Aq,γ) − µ(A′q,γ′)‖ → 0,

where ‖ · ‖ denotes the variation norm of measures.

As an immediate consequence of Facts 2 and 6 we obtain the following

Theorem 1. The Morse flows defined by A and A′ are spectrally isomor-
phic if and only if there exists a permutation π̂ of Ĝ such that π̂(γ0) = γ0,
and , for each γ ∈ Ĝ, µ(A,γ) and µ(A′,π̂(γ)) are equivalent , i.e.,

‖µ(Aq,γ) − µ(A′q,π̂(γ))‖ → 0.

Spectral isomorphism and autocorrelations. In this section we will
show that spectral equivalence between µ(A,γ) and µ(A′,γ′) mentioned in The-
orem 1 can be tested by checking the autocorrelations of the defining blocks
Bq and B′q. The common lengths condition is our standing assumption.
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Theorem 2. With the assumptions of Fact 1 suppose, for some γ and γ′,
that µ(A,γ) and µ(A′,γ′) are equivalent. Then

sup
k∈N
|Φγ(Aq)(k)− Φγ′(A′q)(k)| → 0

and

max
0≤s<nq

|Φγ(Bq)(s)− Φγ′(B′q)(s)| → 0

as q tends to infinity.

P r o o f. The statement holds trivially for γ = γ′ = γ0. Assume γ 6= γ0

(then also γ′ 6= γ0). Set εq = supk∈N |Φγ(Aq)(k)−Φγ′(A′q)(k)|. By Fact 3, we
have

εq = sup
k∈N
|µ̂(Aq,γ)(k)− µ̂(A′q,γ′)(k)| = sup

k∈N

∣∣∣
\
zk d(µ(Aq,γ) − µ(A′q,γ′))

∣∣∣

≤ ‖µ(Aq,γ) − µ(A′q,γ′)‖.
By the second statement of Fact 6, we obtain εq → 0, which proves the first
convergence. Furthermore, using Remark 1 (after Lemma 1) for B = γ(Bq)
and A = γ(Aq) (then B × A = γ(Aq−1)) and t = 0, we have, for every
0 ≤ s < nq,

Φγ(Aq−1)(s) = Φγ(Bq)(s) + Φγ(Bq)(nq − s)Φγ(Aq)(1),

Φγ(Aq−1)(nq − s) = Φγ(Bq)(nq − s) + Φγ(Bq)(s)Φγ(Aq)(1),

from which we obtain

Φγ(Bq)(s) =
Φγ(Aq−1)(s)− Φγ(Aq)(1)Φγ(Aq−1)(nq − s)

1− |Φγ(Aq)(1)|2
(by the observation following the statement of Fact 1, for large q the de-
nominator is bounded away from zero). An analogous formula holds for γ′,
B′q, A

′q−1 and A′q. Then

|Φγ(Bq)(s)− Φγ′(B′q)(s)| ≤ ηq,
where ηq is a function of εq−1, εq, ξA and ξ′A (not depending on s) converging
to zero. This ends the proof.

Corollary 1. If the Morse flows defined by A and A′ are spectrally
isomorphic and π̂ is the permutation as in Theorem 1 then

sup
k∈N
|Φγ(Aq)(k)− Φπ̂(γ)(A′q)(k)| → 0,

max
0≤s<nq

|Φγ(Bq)(s)− Φπ̂(γ)(B′q)(s)| → 0.

We remark that we have made no effort to reverse our Theorem 2. It is
known that even in the case of uniform convergence of Fourier coefficients
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a limit measure may be orthogonal to all measures in the sequence. How-
ever, with an additional constraint we have the following result (in fact a
strengthening of Theorem 2 in [Kw]):

Theorem 3. Suppose, with the assumptions of Fact 1, that the lengths
nq are bounded. Then µ(A,γ) and µ(A′,γ′) are equivalent for some γ and γ′

if and only if there exists q0 ∈ N such that

Φγ(Bq) ≡ Φγ′(B′q)
(i.e., Φγ(Bq)(s) = Φγ′(B′q)(s) for each 0 ≤ s < nq) whenever q ≥ q0. For
such q we have

µ(Aq,γ) = µ(A′q,γ′).

P r o o f. Sufficiency follows from Facts 3 and 4. Necessity is an immediate
consequence of Theorem 2 and the observation that now there are only
finitely many words to choose from. The last statement then follows from
Lemma 1 and Fact 3.

Combining Theorem 1 with Theorem 3 we obtain the following char-
acterization of spectral isomorphisms between Morse flows with bounded
lengths of defining blocks:

Theorem 4. Let A and A′ be two Morse sequences over G defined by
two sequences of blocks (Bq) and (B′q), respectively , with bounded lengths.
Then the Morse flows defined by A and A′ are spectrally isomorphic if and
only if there exists q0 ∈ N and a permutation π̂ of Ĝ such that π̂(γ0) = γ0,
π̂(γ−1) = (π̂(γ))−1, and

Φγ(Bq) ≡ Φπ̂(γ)(B′q)

for each γ ∈ Ĝ and q ≥ q0 .

P r o o f. Only the property π̂(γ−1) = (π̂(γ))−1 needs a comment. Obvi-
ously, we have Φγ−1(Bq) =Φγ(Bq). Thus if γ and π̂(γ) satisfy the displayed
formula, then the same holds for γ−1 and (π̂(γ))−1. It is now not hard to
see that the permutation can be modified to one that satisfies the required
condition.

Remark 3. A question arises: what are the possible pairs of words start-
ing with 1 and having the same autocorrelation functions? Reconstructing
a signal from its autocorrelation function is a subject in the field of Infor-
mation Theory; unfortunately the “signal” has usually a slightly different
setup than our “word”. There are three natural cases where two words, say
B and B′, have the same autocorrelations:

(a) B = (b0, b1, . . . , bn−1) and B′ is the “flipped word”

B∗ = (b∗0, b
∗
1, . . . , b

∗
n−1), where b∗i = bn−1−ibn,
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(b) B = C ×D and B′ = C ×D∗ (or B′ = C∗ ×D = (C ×D∗)∗),
(c) B is a concatenation of products: B = (C1 ×D) . . . (Ck ×D), where

C1, . . . , Ck have the same length, and B′ = (C1 ×D∗) . . . (Ck ×D∗).
However, using a simple computer program, we have found pairs B,B′

not being flip of each other and whose length is prime (which eliminates any
product representation as in (b) or (c)). We classify such pairs as (d). The
shortest such examples are over Z3 and have length 13:

B = (1, 1, 1, 1, p, p, 1, 1, p, 1, p, p, 1),

B′ = (1, 1, 1, p, p, 1, p, p, p, p, p, p, 1),

and another pair:

C = (1, p, 1, 1, p, 1, p, 1, p, 1, 1, p, 1),

C ′ = (1, p, 1, p, p, p, p, p, p, p, 1, p, 1)

(p denotes the primary root of unity of degree 3). The second pair is more
interesting because it does not satisfy the condition AS (see Definition 5
below). There also exists an example over Z2 of length 17.

Regular spectral isomorphisms. Before we specify the advantage of a
regular spectral isomorphism between Morse flows, i.e., what kind of “nice”
properties we meant in the introduction, we explain how to extend the notion
of an autocorrelation to blocks over G without referring to characters. We
can temporarily skip the assumption that the group G is finite.

Each compact group G gives rise to a compact simplex K whose extreme
points are the elements of G and zero. Classically, the simplex can be ob-
tained as the set of all probability measures on G∪{0}, but for us it will be

more convenient first to identify G with ̂̂
G (from now on we will thus skip

the hat over g and write g(γ)) and then to let K be the closed convex hull
of G∪{0} in the pointwise convergence of functions on Ĝ. The characters γ
extend naturally, via γ(κ) = κ(γ) (κ ∈ K), to affine functions on K which
separate points. Thus, for subconvex combinations we have

κ =
∑

i

αigi ⇐⇒ ∀(γ ∈ Ĝ) γ(κ) =
∑

i

αiγ(gi)

(κ ∈ K, gi ∈ G, αi ≥ 0,
∑
i αi ≤ 1).

We can now define an (abstract) autocorrelation of a block B over G as a
subconvex combination of the elements of G with appropriate frequencies as
coefficients (subconvex because the coefficients add up to less than 1—this
is why we added an extreme point at zero):

ΦB(k) =
1
n

n−k−1∑

i=0

bibi+k =
∑

g∈G
g frB(k, g).
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The autocorrelations of sequences over G are defined analogously, as appro-
priate limits, and they too belong to K. By the affine property of characters,
we have

Φγ(B)(k) = γ(ΦB(k)),
where B denotes either a block or a sequence. Moreover, for two blocks (or
sequences) B, B′ we have

ΦB(k) = ΦB′(k) ⇐⇒ ∀(γ ∈ Ĝ) Φγ(B)(k) = Φγ(B′)(k).

Remark 4. K is a semigroup under multiplication and the extensions of
characters are multiplicative functions. This allows us to extend Lemma 1
to blocks (not only words).

We now return to finite groups and Morse flows. Using the above, we
immediately see that for regular spectral isomorphisms between Morse flows
Corollary 1 and Theorem 4 take on the following form:

Corollary 2. If two Morse flows are regularly spectrally isomorphic
then

sup
k∈N

dist(ΦAq (k), Φv(A′q)(k))→ 0

and
max

0≤s<nq
dist(ΦBq (s), Φv(B′q)(s))→ 0

as q →∞, where dist denotes the distance in K and v is a group automor-
phism of G.

Corollary 3. Two Morse flows with bounded lengths are regularly spec-
trally isomorphic if and only if there exists a group automorphism v of G
such that

ΦBq ≡ Φv(B′q) for q ≥ q0.
The practical meaning of the last statements is that such a spectral

isomorphism preserves the limit frequencies:

max
0≤s<nq

|frBq (s, g)− frv(B′q)(s, g)| →
q

0

for each g ∈ G, and for bounded lengths we have even more:

frBq (k, g) = frv(B′q)(k, g)

for each 0 ≤ k ≤ n − 1, g ∈ G, q ≥ q0. This invariant is of a purely
combinatorial nature.

In the remainder of this section we will show that within certain classes
of Morse flows every spectral isomorphism is equivalent to a regular one.

The case of a cyclic group of prime order. It will be more convenient to
denote the cyclic group additively. Consider the case where G is the cyclic
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group Zp. First observe that if p ≤ 4 then any permutation preserving zero
and negation is an automorphism, and hence every spectral isomorphism
between Morse flows over Zp is regular. But there are stronger reasons why
the same must also hold for larger prime numbers p.

Theorem 5. Let Zp be the (additive) cyclic group of order p where
p > 2 is prime. Consider two Morse sequences A,A′ over Zp defined by two
sequences of blocks (Bq) and (B′q), with bounded lengths. Then the corre-
sponding Morse flows are spectrally isomorphic if and only if they are reg-
ularly spectrally isomorphic (via a group automorphism v). Moreover , only
two cases are possible:

(A) there are infinitely many numbers q for which either Bq or B′q is not
symmetric; then both flows have simple spectrum and the automorphism v
is unique,

(B) all blocks Bq and B′q for q ≥ q0 are symmetric; then both flows
have spectral multiplicity 2 homogeneous on the continuous part. In this
case regularity is realized by exactly two group automorphisms, v and −v.

Remark 5. The fact that Morse flows over Zp have spectral multiplicity
either 1 or 2 generalizes a result of [K-S], where the same is obtained with
the assumption that the sequence (Bq) is constant.

P r o o f (of Theorem 5). Note that Ẑp = Zp, and each character γ on
Zp has the form γs(r) = εsr, where ε denotes the primary root of unity of
degree p, and r, s ∈ Zp. Theorem 4 says that

Φγs(Bq) ≡ Φγπ̂(s)(B′q) for q ≥ q0.

In this notation we have π̂(0) = 0 and π̂(−s) = −π̂(s). We can also assume
that π̂(1) = 1 (indeed, there exists a group automorphism w : Zp → Zp
sending 1 to π̂(1); the Morse flow generated by w(A′) is spectrally isomorphic
to that of A via the permutation π̂′(s) = w−1(π̂(s)), which clearly satisfies
π̂′(1) = 1).

Fix q ≥ q0 and let n = nq be the length of Bq. Applying the second part
of Definition 2, for each 1 ≤ k < n and s ∈ Zp we can write

Φγs(Bq)(k) =
∑

r∈Zp
εsrfrBq (k, r), Φγs(B′q)(k) =

∑

r∈Zp
εsrfrB′q (k, r).

We will prove that
frBq (k, r) = frB′q (k, r)

for every r ∈ Zp and every k. Consider the following polynomial of degree
p− 1 with rational coefficients:

W (z) =
∑

0≤r≤p−1

zr(frBq (k, r)− frB′q (k, r)).
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Since π̂(1) = 1, we see that ε is a zero of this polynomial. On the other
hand, W (z) has a rational zero at 1 (because the sum of frequencies in each
block is equal to (n − k)/n). This yields that either W (z) ≡ 0 or ε is an
algebraic number of degree p− 2. The latter possibility contradicts the well
known fact that ε is an algebraic number of degree p− 1.

Having derived equality of the corresponding frequencies in Bq and B′q,
we now see that Φγs(Bq)(k) = Φγs(B′q)(k) for every s, which implies that the
identity permutation π̂ = id (which obviously is a group automorphism)
establishes regularity of the given or an equivalent spectral isomorphism.

In order to prove the second part of the theorem, first assume that the
identity is a unique such permutation. Then we conclude that for infinitely
many indices q ≥ q0 both blocks Bq, B′q are asymmetric (if for each q ≥ q0 at
least one of Bq, B′q is symmetric then this block, sayB, has the same autocor-
relations as −B, hence the permutation − id provides a second possibility).
Moreover, both flows then have simple spectrum, because otherwise there
would again be more than one permutation. Thus we have the situation as
in assertion (A).

Suppose that another permutation π̂ is possible. Let

Bq = (εr0 , εr1 , . . . , εrn−1).

For each s we have Φγs(Bq) ≡ Φγπ̂(s)(B′q), but also, as proved before, Φγs(Bq) ≡
Φγs(B′q). Hence, we obtain

Φγs(Bq) ≡ Φγπ̂(s)(Bq).

Let k be the smallest index for which at least one of the exponents rk, rn−1−k
is different from 0. For simplicity of notation, we set a = rk, b = rn−1−k.
We have

Φγs(Bq)(n− 1− k) =
1
n

(εbs + ε−as),

Φγπ̂(s)(Bq)(n− 1− k) =
1
n

(εbπ̂(s) + ε−aπ̂(s)).

We use the following elementary fact concerning unimodular complex num-
bers: if z1 + z2 = z3 + z4 6= 0 then either (z1 = z3 and z2 = z4) or (z1 = z4

and z2 = z3). Since no two roots of unity of degree p add to zero, we must
have either

bs = bπ̂(s) and as = aπ̂(s), or

bs = −aπ̂(s) and as = −bπ̂(s).

Since either a or b is nonzero, and Zp is a field, we have π̂(s) = s in the
first case, and (π̂(s))2 = s2 in the second. The latter equation has in Zp two
solutions π̂(s) = ±s.
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Since π̂ 6= id, π̂(s) = −s is valid for some s 6= 0. Then

Φγs(Bq) ≡ Φγ−s(Bq).
We now prove that Bq is symmetric. Suppose the converse, and let k be the
smallest index for which a = rk 6= b = rn−1−k. We have

Φγs(Bq)(n− 1− k) =
1
n

(εbs +R+ ε−as),

Φγ−s(Bq)(n− 1− k) =
1
n

(ε−bs +R+ εas),

where R denotes the part of the formula involving the remaining (outer)
terms of the block. But, by symmetry of the outer part of Bq, R is a real
number, hence, as before, either

bs = −bs and as = −as, or

bs = as and −as = −bs.
In either case a = b, a contradiction.

The fact that in the symmetric case the spectral multiplicity is not larger
than 2 is now obvious: in the converse case there would exist a third per-
mutation. This completes the proof of (B).

Strongly asymmetric blocks. In the case of a general finite group G we
can prove that every spectral isomorphism between Morse flows is regular
under some additional assumptions on the structure of the defining blocks
(Bq) (we need them to be nonsymmetric in a stronger sense). First we make
the following observations:

Let π̂ be any permutation of Ĝ. Then π̂ can be viewed as a Haar mea-
sure preserving transformation on Ĝ. Thus it induces a unitary operator on
L2(Ĝ). The characters on Ĝ form an orthogonal base in L2(Ĝ) and they
have the form ĝ(γ) = γ(g) (g ∈ G). Developing their images ĝ ◦ π̂ in the
base we obtain

(∗) ĝ ◦ π̂ =
∑

h∈G
Π(h, g)ĥ,

where Π is some complex square matrix with rows and columns indexed by
the elements of G.

Lemma 2. Let π̂ be the permutation of Ĝ as in Theorem 4. The matrix
Π has the following properties:

(i) Π is unitary ,
(ii) Π(h, g1g2) =

∑
e∈GΠ(e, g1)Π(he−1, g2) for any h, g1, g2 ∈ G,

(iii) Π(1,1) = 1, Π(1, h) = Π(h,1) = 0 if h 6= 1,
(iv) Π(h, g−1) = Π(h−1, g) for any h, g ∈ G.
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P r o o f. The properties (i)–(ii) follow from the fact that π̂ represents a
unitary and multiplicative operator on L2(Ĝ). The statements (iii) and (iv)
can be easily derived from the conditions π̂(γ0) = γ0 and π̂(γ−1) = (π̂(γ))−1.
We omit the detailed calculations.

Lemma 3. Let A and A′ be as in Theorem 4 and suppose the corre-
sponding Morse flows are spectrally isomorphic. Then for every q ≥ q0,
0 ≤ k < nq and h ∈ G we have

frB′q (k, g) =
∑

h∈G
Π(h, g) frBq (k, h).

P r o o f. Write for short B = Bq, B′ = B′q and n = nq. By Theorem 4,
we have

Φγ(B) ≡ Φπ̂(γ)(B′),

i.e., for every fixed 0 ≤ k < n,
∑

h∈G
γ(h)frB(k, h) =

∑

g∈G
π̂(γ)(g)frB′(k, g).

The right hand side can be rewritten as
∑
g∈G(ĝ ◦ π̂)(γ)frB′(k, g). By the

formula (∗) we then obtain
∑

h∈G
γ(h)frB(k, h) =

∑

g∈G

∑

h∈G
Π(h, g)ĥ(γ)frB′(k, g)

=
∑

h∈G
γ(h)

∑

g∈G
Π(h, g)frB′(k, g)

(the equalities hold for each γ ∈ Ĝ). Viewing the above as a function of
the variable γ ∈ Ĝ and by uniqueness of the representation in the basis
{ĥ : h ∈ G} we obtain frB(k, h) =

∑
g∈GΠ(h, g)frB′(k, g) for each h. Since

Π is unitary, Π−1 = ΠT , and the desired equality holds.

Suppose that Π(h, g) = 1 for some h, g ∈ G. Then, by (i), Π(e, g) = 0 if
e 6= h and Π(h, e) = 0 if e 6= g.

Definition 4. We say that g ∈ G has the permutation property if
Π(h, g) = 1 for some h ∈ G. Then we denote by v(g) the element h so
determined.

Lemma 4. The set Gv of those g ∈ G which have the permutation prop-
erty is a subgroup, and v is a group isomorphism between Gv and its image
by v.

P r o o f. By (iii), 1 ∈ Gv, and by (iv), g ∈ Gv ⇒ g−1 ∈ Gv. It suffices
to check that g1, g2 ∈ Gv ⇒ g1g2 ∈ Gv and v(g1g2) = v(g1)v(g2). Indeed,
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by (ii),

Π(h, g1g2) =
∑

e∈G
Π(e, g1)Π(he−1, g2).

By the permutation property of g1 and g2, the only nonzero summand is
where e = v(g1) and simultaneously he−1 = v(g2). Since a nonzero sum-
mand exists for some h, we obtain h = v(g1)v(g2). By uniqueness of such h,
Π(h, g1g2) = 1, hence g1g2 ∈ Gv and v(g1g2) = v(g1)v(g2), as needed.

We will prove regularity of spectral isomorphism between Morse se-
quences whose defining blocks Bp satisfy a certain condition of asymmetry.
For a given block B = (b0, b1, . . . , bn−1) ∈ Gn and 0 ≤ k ≤ n/2 we denote
by GBk the subgroup of G generated by the elements b0, b1, . . . , bk−1, bk and
their symmetric counterparts bn−1, bn−2, . . . , bn−k, bn−k−1. If k > n/2 then
we put GBk = GBk−1.

Definition 5. We say that a sequence of blocks (Bq) has the property
AS if for each k ∈ N and q ∈ N at least one of the elements bk, bn−k−1 of Bq
belongs to the group Gk−1 generated by

⋃
q G

Bq
k−1.

Remark 6. The above class of sequences of blocks is quite large. For
example, in cyclic groups it suffices that the last term of at least one block
is a generator.

Theorem 6. Let A and A′ be a pair of spectrally isomorphic Morse
sequences over G, with bounded lengths. The number q0 is thus defined (see
Theorem 4). If (B′q)q≥q0 (or (Bq)q≥q0) has the property AS then π̂ is a
group automorphism.

P r o o f. Suppose (B′q)q≥q0 has the property AS. We will inductively prove
that G′k ⊂ Gv and that v(G′k) = Gk. Since

⋃
k∈NG

′
k = G, the automorphism

v will eventually extend to the whole group G.

Step 0. Fix q ≥ q0 and set B = Bq, B′ = B′q and n = nq. By Theorem 4,

for every γ ∈ Ĝ we have Φγ(B)(n− 1) = Φπ̂(γ)(B′)(n− 1). By the definition
of autocorrelations this simply means that

γ(bn−1) = π̂(γ)(b′n−1) for each γ,

i.e., that b̂′n−1 ◦ π̂ = b̂n−1. By the formula (∗) we obtain

Π(bn−1, b
′
n−1) = 1.

We have proved that b′n−1 has the permutation property, and v(b′n−1) =
bn−1. Recall that b′0 = b0 = 1, hence v(b′0) = b0. We do that for each q ≥ q0.
The application of Lemma 4 yields G′0 ⊂ Gv and v(G′0) = G0.
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Step k. Suppose the statement has been proved for k− 1. As before, fix
q ≥ q0 and define B = Bq, B′ = B′q and n = nq. For every γ ∈ Ĝ we have

Φγ(B)(n− k − 1) = Φπ̂(γ)(B′)(n− k − 1),

i.e., ∑

g∈G
γ(g)frB(n− k − 1, g) =

∑

g∈G
π̂(γ)(g)frB′(n− k − 1, g).

The above can be written as

L =
∑

g∈Gk−1

γ(g)frB(n− k − 1, g) +
∑

g 6∈Gk−1

γ(g)frB(n− k − 1, g)

=
∑

g∈G′k−1

π̂(γ)(g)frB′(n−k−1, g) +
∑

g 6∈G′k−1

π̂(γ)(g)frB′(n−k−1, g) = R.

Note that if g ∈ Gv then, by (∗), ĝ◦ π̂ = v̂(g), and, by Lemma 3, frB′(k, g) =
frB(k, v(g)). Thus the first sum of R becomes

∑

g∈G′k−1

γ(v(g))frB(n− k − 1, v(g)),

which, by the assumption that v(G′k−1) = Gk−1, equals the first sum of
L. By the property AS, the second sum of R consists of at most one sum-
mand: either n−1π̂(γ)(b′n−k−1) or n−1π̂(γ)(b′k

−1
b′n−1); this is best seen if R

is written as

1
n
π̂(γ)(b′n−k−1) +

1
n

k−1∑

i=1

π̂(γ)(b′i
−1
b′i+n−k−1) +

1
n
π̂(γ)(b′k

−1
b′n−1),

because all elements b′i
−1
b′i+n−k−1 in the central sum belong by definition to

G′k−1. If we let γ = γ0 in the expressions L and R, their first sums become
the sums of the corresponding frequencies over G′k−1 and Gk−1, so, by the
previous argument, their common value is either 1 or 1−1/n. It is now seen
that the second sum of L has as many summands as that of R, i.e., zero or
one. The case of zero summands is trivial. Suppose we have one summand
on each side, say n−1π̂(γ)(g) and n−1γ(h). Then π̂(γ)(g) = γ(h) for each γ.
As before, by the formula (∗) we obtain Π(h, g) = 1. We have proved that
g ∈ Gv, and v(g) = h. We do that for each q ≥ q0. So the elements gq
obtained exhaust all new elements generating G′k and Gk (“new” means not
in G′k−1), and the hq exhaust all new elements generating Gk. An application
of Lemma 4 yields G′k ⊂ Gv and v(G′k) = Gk.

Morse flows of rank one. Rank is a very important metric invariant
and its definition involving towers is commonly known. For symbolic flows
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there exists an equivalent definition in terms of blocks for which we will need
some additional notions.

Thed-distance between blocks B=(b0, b1, . . . , bn−1), C=(c0, c1, . . . , cn−1)
(of the same length) is defined by

d(B,C) =
1
n

#{0 ≤ i < n : bi 6= ci}.

LetA be a sequence overG. We say that a finite collection {C1, . . . , Cr} of
blocks (not necessarily of the same length) ε-covers A if A can be represented
as a concatenation H1A1H2A2 . . . such that:

a) ∀(j ≥ 1)∃(0 ≤ i ≤ r) d(Aj , Ci) ≤ ε, and
b) the blocks Hj occupy in A a portion of upper density at most ε (the

blocks Hj are referred to as gaps in the ε-covering; a gap is allowed to be
the null block).

Definition. If A generates a strictly ergodic subshift (XA, σ) then its
rank r(XA, σ) is defined as the smallest integer r such that for every δ > 0
there exists a collection {C(δ,1), . . . , C(δ,r)} of r blocks, of length at least
1/δ each, which δ-covers A. If no finite r satisfies the above then we set
r(XA, σ) =∞.

We remark that 0-1 Morse sequences with rank one were first noticed to
exist by Mariusz Lemańczyk ([L]).

Throughout this section we no longer assume the bounded lengths prop-
erty.

Theorem 7. Let A be a Morse sequence over a finite group G of order p.
Then the corresponding Morse flow , (XA, σ), is of rank one if and only if
for every g ∈ G there exists a sequence of integers kgn such that

µ̂(A,γ)(k
g
n) −−−→

n→∞
γ(g)

for every character γ on G, i.e., ΦA(kgn)→ g in the simplex K.

P r o o f. The last condition implies that frA(kgn, g) → 1. For fixed δ we
let kg be such that

frA(kg, g) > 1− δ.
Letting k = max{|kg| : g ∈ G} we now find q ≥ 0 for which the length mq

of Aq is larger than 2k/δ and

frAq (k
g, g) > 1− δ

for each g ∈ G. Directly from the definitions of the frequencies and of the
d-distance we obtain

d(Aq[k,mq − k), gAq[k − kg,mq − k − kg)) < δ.
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Since the Morse sequence A is a concatenation of blocks of the form gAq
(g ∈ G), and 2k/mq < δ, we have just shown how to δ-cover A using copies
of the single block Aq[k,mq − k).

The converse implication follows from J. King’s Weak Closure Theorem
([Ki]). Indeed, for fixed g ∈ G consider the transformation g̃ : XA → XA

given by g̃(x) = g−1x, which obviously belongs to the centralizer of the shift
transformation σ acting on (XA, νA). By the quoted theorem, there exists a
sequence of integers kn = kgn (n ∈ N) such that σkn → g̃ weakly. Replacing
g by g−1 if necessary, we can assume that kn →∞. By Lemma 1.3 of [Ki],
we have

d(σkn(x), g−1x)→ 0

for νA-almost every x. For each q ≥ 1 every x is a concatenation of the
blocks hAq (h ∈ G), hence there exists a sequence qn with

dn = d(Aqn [kn,mqn), g−1Aqn [0,mqn − kn))→ 0.

By the definitions of d and frB , we have dn = 1− frAqn (kn, g). Since qn can
be chosen much larger than kn, the convergence frA(kn, g)→ 1 follows easily.
This implies that for each character γ ∈ Ĝ, we have µ(A,γ)(kn) → γ(g),
which completes the proof.

The above theorem has many equivalent versions involving the blocks
and sequences Aq, Bq, and Aq. We shall need the following:

Theorem 8. The Morse flow (XA, σ) is of rank one if and only if for
every g ∈ G there exists a sequence of integers (kgq )q such that

ΦAq (kgq )→
q
g in K.

P r o o f. Recall that A = Aq × Aq, where the length of Aq is denoted
by mq. By Lemma 1 (and Remark 4) we obtain

ΦA(mqk
g
q ) = ΦAq (kgq )→ g,

which implies sufficiency.
By the definition of rank one it is not hard to see that if A generates a

flow of rank one then the same holds for each Aq. Thus appropriate sequences
(kgn) exist for each Aq, as in Theorem 7. The sequence (kgq ) is then chosen
diagonally.

We are in a position to state a result which concludes our investigations:

Theorem 9. If two Morse flows (XA, σ) and (XA′ , σ) are spectrally
isomorphic, and one of them is of rank one, then the corresponding spectral
isomorphism is regular and the other flow is also of rank one.
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P r o o f. Suppose that (XA, σ) is of rank one. By Theorem 8 we have

ΦAq (kgq )→ g,

and by Corollary 1,

|Φγ(Aq)(k
g
q )− Φπ̂(γ)(A′q)(k

g
q )| → 0.

Substituting π−1(γ) for γ we conclude that

ΦA′q (kgq )→ g ◦ π̂−1.

We have shown that g ◦ π̂−1 (a function on Ĝ) belongs to the compact
set K. It is elementary to see that, being unimodular, it is then a nonzero
extreme point in K. Thus, g ◦ π̂−1 = g′ ∈ G. Assigning v(g) = g′ we obtain
π−1(γ) = γ ◦ v for each γ. This v is clearly a group automorphism, hence
regularity is proved. We can now replace g by v−1(g) to obtain

ΦA′q (kv
−1(g)
q )→ g,

hence A′ satisfies the condition of Theorem 8 with k′gq = k
v−1(g)
q . It follows

that (XA′ , σ) is of rank one, as desired.
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