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Filters and sequences

by

Sławomir S o l e c k i (Bloomington, IN)

Abstract. We consider two situations which relate properties of filters with properties
of the limit operators with respect to these filters. In the first one, we show that the space of
sequences having limits with respect to a Π0

3 filter is itself Π0
3 and therefore, by a result

of Dobrowolski and Marciszewski, such spaces are topologically indistinguishable. This
answers a question of Dobrowolski and Marciszewski. In the second one, we characterize
universally measurable filters which fulfill Fatou’s lemma.

A family F of subsets of ω is a filter if x∩ y ∈ F for x, y ∈ F and x ∈ F ,
x ⊆ y implies y ∈ F . We assume that ∅ 6∈ F and ω \ {n} ∈ F for n ∈ ω.
A family I of subsets of ω is an ideal if x, y ∈ I implies x ∪ y ∈ I and
x ⊆ y ∈ I implies x ∈ I. We always assume that ω 6∈ I and that {n} ∈ I
for any n ∈ ω. For an ideal I we denote by I∗ the dual filter of I, that is,
I∗ = {ω \ x : x ∈ I}. Similarly if F is a filter, F ∗ denotes its dual ideal.

Terminology and notation concerning Polish spaces and Borel sets fol-
low [K].

1. Separating ideals from their dual filters. In this section, we
investigate the space of all real sequences which have limits with respect
to a filter. For a filter F on ω, define CF to be the space of all functions
f : ω → R which have limit with respect to F , that is,

CF = {f ∈ Rω : ∃r ∈ R ∀ε > 0 {n : |f(n)− r| < ε} ∈ F}.
These and similar function spaces have been studied intensively in recent
years from descriptive set theoretic and topological points of view (see, for
example, the references in [DM]). It was proved in [DM, Propositions 3.4
and 3.3] that if F is Π0

α, then CF is the difference of two Π0
α sets, and that if

F is Π0
α-hard, then CF is Π0

α-hard, for α < ω1. The authors asked if F ∈ Π0
α

2000 Mathematics Subject Classification: 03E15, 46E10, 54C35, 28A20.
Key words and phrases: filters, separation property, Fatou’s lemma.
Research supported by NSF grant DMS-9803676.

[215]



216 S. Solecki

implies CF ∈ Π0
α [DM, Question 3.5]. For α = 3 an affirmative answer to

this descriptive set theoretic question is of topological importance since it
was showed in [DM, Theorem 5.10] that all CF with CF ∈ Π0

3 are homeo-
morphic to each other and to σω where σ = {x ∈ Rω : ∃n ∀m > n xm = 0},
that is, the Borel complexity of CF determines it up to homeomorphism in
this case. We answer the Dobrowolski–Marciszewski question affirmatively
for this case α = 3. (I would like to point out a certain peculiarity of the situ-
ation here. Normally in estimating Borel complexity of sets it is establishing
the lower bounds that causes most problems. This is reversed in the case of
CF : the lower bound (CF Π0

3 -hard for F Π0
3 -hard) is relatively simple to

establish, see [DM, Proposition 3.3], while the upper bound (CF ∈ Π0
3 for

F ∈ Π0
3 ) is much trickier.)

Theorem 1.1. For a Π0
3 filter F , CF is Π0

3 .

Theorem 1.1 is an immediate consequence of Corollary 1.5 and Lemma
1.3 which will be proved later. Corollary 1.2 below follows from Theorem
1.1 and the already mentioned result of Dobrowolski and Marciszewski [DM,
Theorem 5.10].

Corollary 1.2. For a Π0
3 filter F , CF is homeomorphic to σω where

σ = {x ∈ Rω : ∃n ∀m > n xm = 0}.
Now, we prove a result which reveals that the descriptive set theoretic

complexity of CF depends on the possibility of separating the ideal dual to F
from F by a set which is simpler than it might be expected. For A,B ⊆ 2ω,
we say that A is separated from B by C if A ⊆ C and C ∩B = ∅. It is well
known that if A and B are disjoint and both are Π0

α, α < ω1, then A can be
separated from B by a ∆0

α (= Σ0
α ∩Π0

α) set [K, 22.16]. If F is a Π0
α filter,

then F ∗ is Π0
α as well, and F and F ∗ are disjoint, so they can be separated

by a ∆0
α set. Lemma 1.3 shows that if for this particular pair of disjoint Π0

α

sets one can improve the general result and separate F ∗ from F by a Σ0
β set

for some β < α, then the complexity of CF can be sharply determined.

Lemma 1.3. Let F be a Π0
α filter. If the dual ideal of F can be separated

from F by a Σ0
β set for some β < α, then CF ∈ Π0

α.

P r o o f. Let G be a Σ0
β set, for some β < α, separating F ∗ from F . Pick

perfect, closed, zero-dimensional sets Cn ⊆ [0, 1] and continuous surjections
hn : Cn → [0, 1] so that

• Cn ⊆ Cn+1;
• ⋃n Cn dense in [0, 1];
• Q ∩⋃n Cn = {0, 1};
• h−1

n (0) = {0}, h−1
n (1) = {1};
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• hn increasing;
• hn+1|Cn = Id|Cn.

This can be easily accomplished. Define H :
∏
n Cn → [0, 1]ω by letting

H(f) = (hn(f(n)))n. Then H is clearly a continuous surjection. By the
properties of the Cn’s and the hn’s listed above, we get{
f ∈

∏
n

Cn : ∀n f(n) ∈ (0, 1) and lim
F
f exists and belongs to (0, 1)

}

= H−1({f ∈ [0, 1]ω : ∀n f(n) ∈ (0, 1) and

lim
F
f exists and belongs to (0, 1)}).

Note that the set inside H−1(·) on the right hand side of the above equation
is homeomorphic to CF , so, by Saint Raymond’s theorem [K, 24.20], it is
enough to show that the set on the left hand side is Π0

α. But elements of
this last set are precisely those f ∈ ∏n Cn which fulfill all the conditions
listed below:

(i) ∀n 0 < f(n) < 1;
(ii) ∀m ∃k ≤ m+ 1 {n : |f(n)− k/(m+ 1)| < 1/(m+ 1)} ∈ F ;

(iii) ∃m {n : |f(n)− 0| < 1/(m+ 1)} ∈ G;
(iv) ∃m {n : |f(n)− 1| < 1/(m+ 1)} ∈ G.

Indeed, for any f ∈ [0, 1]ω, condition (ii) is equivalent to the existence of
limF f . For any f for which limF f exists (that is, f fulfilling (ii)), (iii) and
(iv) are equivalent to saying that limF f 6= 0 and limF f 6= 1.

Condition (i) is obviously Π0
2 . Note that for any f ∈ ∏n Cn fulfilling

(i), the range of f is disjoint from Q. Thus, for any q, r ∈ Q the function
f 7→ {n : |f(n)− q| < r} is continuous on the set of all f ∈∏n Cn with (i).
Hence, on the Π0

2 set described by (i), condition (ii) is Π0
α and conditions

(iii) and (iv) are Σ0
β .

Remark. It should be pointed out that two particular instances of the
above lemma were proved, also using Saint Raymond’s theorem, in [DM]:
Proposition 3.4(a) (F ∈ Σ0

β implies CF ∈ Π0
β+1) and Corollary 3.7 (if Fn ∈

Σ0
β(n), n ∈ ω, β(n) < α, then CF ∈ Π0

α for the filter F =
∏
n Fn on ω × ω).

Now, passing to duals for convenience, we address the question of the
possibility of separating an ideal I from I∗, I ∈ Π0

α, by a Σ0
β set for β < α.

This question seems to be of independent interest. We answer it for α = 3.
The following theorem gives a bit more than we actually need in applications.

Theorem 1.4. Let I be an ideal. Assume I cannot be separated from I∗

by a Σ0
2 set. Then for any Π0

3 sets A ⊇ I, B ⊇ I∗ there is a partition of ω,
{xn : n ∈ ω}, into elements of I such that

⋃
n∈a xn ∈ A∩B for any infinite

and coinfinite a ⊆ ω.
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P r o o f. It will be enough to show that for any Π0
3 set A ⊇ I there exists

a partition {xn : n ∈ ω} ⊆ I of ω such that
⋃
n∈a xn ∈ A for any a ⊆ ω

infinite and coinfinite. Indeed, granting this, if A ⊇ I, B ⊇ I∗ are Π0
3 , let

A′ = A ∩ {ω \ x : x ∈ B}. Now find a partition {xn : n ∈ ω} for A′. Then if
a ⊆ ω is infinite and coinfinite, so is ω \ a. Thus,

⋃
n∈a xn,

⋃
n∈ω\a xn ∈ A′.

Now it follows immediately that
⋃
n∈a xn ∈ A ∩B.

Let Fn be Σ0
2 and such that A =

⋂
n Fn. We can assume that Fn+1 ⊆ Fn.

Claim. Let y0 ⊆ x0 ∈ I and let n ∈ ω. Then for some finite k0 with
k0 ∩ x0 = ∅ and some z0 ∈ I∗ with z0 ∩ (k0 ∪ x0) = ∅ we have

∀z ⊆ z0 y0 ∪ k0 ∪ z ∈ Fn.
P r o o f. Let

F ′n = {x ∈ Fn : x ∩ x0 = y0 and {z : z ⊆ x, z ∩ x0 = y0} ∩ Fn
is not meager in {z : z ⊆ x, z ∩ x0 = y0}}.

Note the following three facts: F ′n ⊆ Fn, {x ∈ I : x ∩ x0 = y0} ⊆ F ′n, and
F ′n ∈ Σ0

2 . I check this last assertion more carefully. It is clearly enough to
show that, for any Σ0

2 set F ⊆ 2ω,

F ′ = {x : {z ⊆ x : z ∈ F} is not meager in {z : z ⊆ x}}
is Σ0

2 . To see this define f : 2ω × 2ω → 2ω by

n ∈ f(x, y)⇔ n is the kth element of x and k − 1 ∈ y.
Since f is continuous, f−1(F ) ∈ Σ0

2 . By a straightforward argument we
check that

F ′ = {x : {y : (x, y) ∈ f−1(F )} is not meager}
so F ′ is Σ0

2 by [K, 22.22]. (Here is another, perhaps more direct, way of
seeing that F ′ is Σ0

2 suggested by the referee. Let F =
⋃
nKn with Kn

closed. Then
x ∈ F ′ ⇔ ∃n ∃k0 ⊆ k1 ⊆ ω finite

(k1 ⊆ x and {z ⊆ x : z ∩ k1 = k0} ⊆ Kn)

⇔ ∃n ∃k0 ⊆ k1 finite ∀z finite

(k1 ⊆ x and ((z ∩ k1 = k0 and z ⊆ x)⇒ z ∈ Kn)).

Since the condition following the quantifiers in the last line is closed, F ′ is
Σ0

2 .)
We now show that the supposition that F ′n ∩ I∗ = ∅ leads to the con-

clusion that I can be separated from I∗ by a Σ0
2 set, which contradicts our

assumption. Note that the mapping x 7→ x \ x0 is a homeomorphism on F ′n;
thus, {x \ x0 : x ∈ F ′n} ∈ Σ0

2 whence

F ′′n = {z ∪ (x \ x0) : z ⊆ x0 and x ∈ F ′n} ∈ Σ0
2 .
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We check that F ′′n separates I from I∗. If x ∈ I, then (x \x0)∪ y0 ∈ I ⊆ F ′n,
whence

x = (x ∩ x0) ∪ (((x \ x0) ∪ y0) \ x0) ∈ F ′′n ,
so I ⊆ F ′′n . Assume towards a contradiction that F ′′n ∩ I∗ 6= ∅, and let
y ∈ F ′′n ∩ I∗. Let z ⊆ x0, x ∈ F ′n be such that y = z ∪ (x \ x0). Then clearly
x ∈ I∗, so F ′n ∩ I∗ 6= ∅, contradiction.

Suppose therefore that F ′n ∩ I∗ 6= ∅. Let z1 ∈ F ′n ∩ I∗. Since {z : z ⊆ z1,
z ∩ x0 = y0, z ∈ Fn} is nonmeager in {z : z ⊆ z1 and z ∩ x0 = y0} and is
Σ0

2 , it must have nonempty interior in {z : z ⊆ z1 and z∩x0 = y0}. So there
exist finite sets k0, k1 such that k1∩x0 = ∅, k0 ⊆ k1∩z1, and for any z with
z ⊆ z1, z∩x0 = y0, and z∩k1 = k0, we have z ∈ Fn. Let z0 = z1 \ (x0 ∪k1).
Now z0 and k0 are as required, which proves the claim.

Now, we recursively construct, for each n ∈ ω, yn ∈ I and finite sets kn

such that for each n,

(o) kn ∩⋃i≤n yi = ∅;
(i) yn ∩⋃i<n yi = ∅;

(ii) n ∈ ⋃i≤n yi;
(iii) kn−1 ⊆ yn for n ≥ 1;
(iv) ∀x ⊆ ω if yn ∩ x = ∅, kn ⊆ x, and ∀i < n yi ⊆ x or yi ∩ x = ∅, then

x ∈ Fn.

Assume the construction has been carried out. Let a ⊆ ω be infinite and
coinfinite. We show that x =

⋃
n∈a y

n is in A. Let ni, i ∈ ω, be such that
ni 6∈ a, ni+ 1 ∈ a, ni < ni+1. Note that by (i) and (iii), kn ⊆ yn+1 \⋃i≤n yi
for each n. Thus, kni ⊆ x. Since all other assumptions from (iv) are clearly
fulfilled for n = ni, we get x ∈ Fni . Since this happens for each ni, x ∈⋂
n Fn = A. Note also that (i) and (ii) guarantee that {yn : n ∈ ω} is a

partition of ω.
Now, it remains to construct the yn’s and the kn’s. To find y0 and k0

apply the claim to y0 = ∅, x0 = {0}. We get k0 and z0. Let y0 = (ω \z0)\k0

and k0 = k0. Assume yi, i < n, and kn−1 have been constructed. Let sj ,
j < 2n, enumerate all subsets of n = {0, 1, . . . , n − 1}. We now produce
zj ∈ I∗, k0

j ⊆ ω finite, for j < 2n, as follows: applying the claim to

x0 =
⋃

i<n

yi ∪ kn−1 ∪
⋃

i<j

k0
i ∪ {n} ∪

⋃

i<j

ω \ zi

and

y0 =
⋃

i∈sj
yi ∪

⋃

i<j

k0
i ,
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we get zj ∈ I∗ and k0
j = k0. Now let

yn =
((
ω \

⋃

i<n

yi
)
\
⋂

j<2n
zj

)
\
⋃

j<2n
k0
j

and kn =
⋃
j<2n k

0
j .

This choice does the job. Conditions (o)–(iii) for n are evident and only
the validity of (iv) may pose any doubt. So, let x ⊆ ω be such that yn∩x = ∅,
kn ⊆ x, and x ∩ yi = ∅ or yi ⊆ x for i < n. Let s = {i < n : yi ⊆ x}. Then
s = sj0 for some j0 < 2n in our enumeration of 2n. By definition of yn and
kn, for some z ⊆ ⋂j<2n zj ,

x =
⋃

i∈sj0
yi ∪

⋃

j<2n
k0
j ∪ z =

( ⋃

i∈sj0
yi ∪

⋃

j<j0

k0
j

)
∪ k0

j0 ∪
( ⋃

j0<j<2n
k0
j ∪ z

)
.

Since
⋃
j0<j<2n k

0
j ∪ z ⊆ zj0 , it follows that x ∈ Fn.

The following corollary is an immediate consequence of Theorem 1.4 and,
in conjunction with Lemma 1.3, it implies Theorem 1.1. The second sentence
of the corollary follows from the first one since two disjoint Π0

3 sets can be
separated by a ∆0

3 set (see [K, 22.16]).

Corollary 1.5. If I can be separated from I∗ by a ∆0
3 set , then it can

be separated from I∗ by a Σ0
2 set. In particular , if I is Π0

3 , then it can be
separated from I∗ by a Σ0

2 set.

The above corollary may shed some light on a question of Mazur from
[M]: is each Π0

3 ideal I included in a hereditary Σ0
2 set F such that {x∪ y :

x, y ∈ F} is meager? As is easy to see, this is equivalent to looking for a
Σ0

2 hereditary set F such that no set x ∪ y with x, y ∈ F is cofinite. (By a
hereditary set we mean a set of subsets of ω which is closed under taking
subsets.) Proposition 1.6 below shows that separation of an ideal from its
dual filter by a Σ0

2 set implies something in this direction. Given a Π0
3 ideal

I, by letting L in this proposition be equal to the family of all subsets of ω
whose complement has no more than n elements, we obtain a Σ0

2 hereditary
set Fn containing I such that {x ∪ y : x, y ∈ Fn} does not contain sets
whose complement has ≤ n elements. Note that this is a strengthening of
separation: one easily checks that any set F containing I and such that
x ∪ y 6= ω, for x, y ∈ F , is disjoint from I∗.

Proposition 1.6. Assume an ideal I can be separated from I∗ by a Σ0
2

set. (So, by Corollary 1.5, I ∈ Π0
3 is sufficient.) Let L ⊆ I∗ be compact. Then

there is a Σ0
2 hereditary set F such that I ⊆ F and {x∪y : x, y ∈ F}∩L = ∅.
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P r o o f. Let F ′ be a Σ0
2 set separating I from I∗. Then F ′ =

⋃
n Ln

with Ln compact. Note that the set consisting of all subsets of elements
of Ln is also compact, contains Ln and is disjoint from I∗. Thus, from the
start we can assume that each Ln is hereditary. Without loss of general-
ity we can also suppose that Ln ⊆ Ln+1 for each n. We can also assume
that L is upwards closed. Note that for any n, {(ω \ x) ∩ z : x ∈ Ln, z
∈ L} is compact being the image of Ln × L by a continuous function. Let

Kn = Ln \ {(ω \ x) ∩ z : x ∈ Ln, z ∈ L}.
Each Kn is a hereditary Σ0

2 set. Moreover, it follows from L ⊆ I∗ that
Kn ∩ I = Ln ∩ I. Thus, I ⊆ ⋃nKn. Put F =

⋃
nKn. It remains to check

that if x, y ∈ F , then x ∪ y 6∈ L. Assume otherwise and fix x0, y0 ∈ F with
x0 ∪ y0 = z0 ∈ L. Let n0 be the smallest natural number with x0 ∈ Ln0 or
y0 ∈ Ln0 . Say x0 ∈ Ln0 . Since Ln0 is hereditary and L is upwards closed,
by making x0 smaller and z0 bigger if necessary, we can suppose that

(1) y0 = (ω \ x0) ∩ z0 for some z0 ∈ L.
By definition of n0, y0 6∈ Ln for n < n0, so y0 6∈ Kn with n < n0. Also
x0 ∈ Ln for all n ≥ n0 whence, by (1), y0 ∈ {(ω \ x) ∩ z : x ∈ Ln, z ∈ L}
for n ≥ n0. Therefore, y0 6∈ Kn for n ≥ n0. It follows that y 6∈ ⋃nKn = F ,
contradiction.

Example 1.7. It is not true that any Borel ideal can be separated from
its dual filter by a Σ0

2 set. Let I = {x ⊆ ω × ω : ∃n ∀m ≥ n ∃k {i :
(m, i) ∈ x} ⊆ k}. I is a Borel (actually Σ0

4) ideal. It is generated by vertical
“lines” in ω × ω and the subgraphs of functions from ω to ω. Assume a
Σ0

2 set F separates I from I∗. By the Baire category theorem, there exists
s ∈ ωm0 , for some m0 ∈ ω, such that {f̃ : s ⊆ f ∈ ωω} is included in
a closed subset of F , where f̃ = {(i, j) ∈ ω × ω : j ≤ f(i)} is the sub-
graph of f . Thus, s ∪ (ω \m0) × ω ∈ F but clearly s ∪ (ω \m0) × ω ∈ I∗,
contradiction.

2. Filters fulfilling Fatou’s lemma. Investigating certain Borel equiv-
alence relations, Kechris defined a class of filters which led to considering
the interesting family of filters fulfilling Fatou’s lemma. The question of
whether a concrete filter has this property arose already in a much earlier
paper by Louveau [L]. Below we give a characterization of such universally
measurable filters and show that this class of filters is determined by one
filter. Namely, there exists a filter F0 with the property that a universally
measurable filter fulfills Fatou’s lemma precisely when it does not “locally
contain” F0.

We denote by λ the product measure on 2ω = {0, 1}ω obtained from
measures assigning equal weight 1/2 to both 0 and 1 on each coordinate.
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λ is sometimes called Lebesgue measure on 2ω. A subset A of a Polish space
X is universally measurable if it is measurable with respect to any proba-
bility Borel measure on X. Note that if A ⊆ X is universally measurable,
then for any Borel f : 2ω → X, f−1(A) is λ-measurable. (This holds since
λ-measurability of f−1(A) is equivalent to µ-measurability of A where µ is
the measure obtained by transferring λ to X via f .)

Let Ω consist of all clopen subsets U of 2ω with λ(U) = 1/2. Let I0 be
the ideal of subsets of Ω generated by all x ⊆ Ω with

⋂
x 6= ∅. One easily

checks that I0 is a proper ideal. Let F0 be the filter dual to I0. That is, as is
easy to see, F0 is the family of all x ⊆ Ω such that for some finite f ⊆ 2ω,
{U ∈ Ω : f ∩ U = ∅} ⊆ x. (I0 and F0 are not literally families of sets of
natural numbers, but since Ω is countable, we may identify it with ω and
then transfer I0 and F0 to ω.)

Recall that for a sequence (an) of real numbers and a filter G on ω,
lim infG an = sup{r ∈ R : {n ∈ ω : an < r} ∈ G∗} with the understanding
that sup ∅ = −∞.

Let (X,µ) be a σ-finite measure space with µ defined on some σ-algebra
of subsets of X. Let fn : X → [0,∞) be µ-measurable and let G be a filter.
We say that Fatou’s lemma holds on this sequence with respect to G if\

lim inf
G

fn dµ ≤ lim inf
G

\
fn dµ.

(By
T

we understand the lower integral, so
T
g dµ, for g ≥ 0, stands for

sup{T f dµ : f ≤ g and f µ-measurable}.) Given a filter G on ω, we say that
Fatou’s lemma holds for G if it holds with respect to G for any sequence
(fn) on any σ-finite measure space as above.

Note that many filters fulfill Fatou’s lemma. For instance, the Fréchet
filter consisting of all cofinite sets (this is simply the classical Fatou’s lemma)
or the density filter consisting of all subsets of ω with density 1. A most
interesting example of such a filter was found by Louveau in [L]. He defines
there a coanalytic filter which is in a sense the ultimate extension of the
Fréchet filter: it has the property that each Borel function on a Polish space
can be obtained as a limit of a sequence of continuous functions with respect
to this filter and, on the other hand, only Borel functions are obtainable as
such limits. By [L, Lemme 4], this filter fulfills Fatou’s lemma. (Actually,
what is proved there is that it fulfills Fatou’s lemma on sequences of bounded
functions defined on a compact metric space and with respect to a Borel
probability measure. However, it follows from the arguments below that this
is enough: by the statement of Theorem 2.1 and the first part of its proof,
if a filter fails to fulfill Fatou’s lemma, it fails to fulfill it with respect to a
bounded sequence of continuous functions on 2ω with respect to Lebesgue
measure.)
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Let F and G be filters on ω. Define

F � G if {φ−1(x) : x ∈ F} ⊆ G for some φ : ω → ω.

Define also

F v G if {φ−1(x) : x ∈ F} ⊆ G for some bijection φ : ω → ω.

For A ⊆ ω, let G|A stand for the filter {y ∩ A : y ∈ G} on A. We write
F �loc G if F � G|A for some A 6∈ G∗, and F vloc G if F v G|A for some
A 6∈ G∗. Obviously, F v G implies F � G and so F vloc G implies F �loc G.

Recall also for later discussion that for two filters F,G, F is below G in
the Rudin–Keisler order , F ≤RK G, if for some φ : ω → ω, x ∈ F if and
only if φ−1(x) ∈ G. So � above is, in a sense, one half of ≤RK.

Theorem 2.1. Let G be a universally measurable filter. Then the follow-
ing are equivalent :

(i) G fails to fulfill Fatou’s lemma;
(ii) F0 �loc G;

(iii) F0 vloc G.

P r o o f. Since obviously (iii)⇒(ii), only (ii)⇒(i) and (i)⇒(iii) need prov-
ing. Assume first that F0 �loc G. We need to see that Fatou’s lemma fails
for G.

Claim. If for some (X,µ) and some sequence fn : X → [0,∞), n ∈ ω, of
µ-measurable functions on a σ-finite measure space we have

T
lim infF fn dµ

> lim supF
T
fn dµ, and F �loc G, then G does not fulfill Fatou’s lemma.

P r o o f. Fix A 6∈ G∗ and φ : A → ω witnessing F �loc G. Define f ′n to
be the constant function equal to n if n 6∈ A and fφ(n) if n ∈ A. Then one
checks that

lim inf
G

f ′n ≥ lim inf
F

fn and lim sup
F

\
fn dµ ≥ lim inf

G

\
f ′n dµ,

which implies
T

lim infG f ′n dµ > lim infG
T
f ′n dµ, proving the claim.

It now suffices to show that F0 satisfies the assumption of the claim for
(2ω, λ). For U ∈ Ω let fU = χ2ω\U . Then, since λ(U) = 1/2 for each relevant
U , lim supF0

T
fU dλ = 1/2. On the other hand, lim infF0 fU = 1 since for

any x ∈ 2ω ,

{U ∈ Ω : fU (x) = 1} = {U ∈ Ω : x 6∈ U} ∈ F0.

Thus,
T

lim infF0 fU dλ = 1.
Now, we show that if G violates Fatou’s lemma, then F0 vloc G. So

assume that for some sequence (fn) of µ-measurable functions with fn ≥ 0
on a σ-finite measure space (X,µ), we have\

lim inf
G

fn dµ > lim inf
G

\
fn dµ.
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Let f be a µ-measurable function with f ≥ 0, f ≤ lim infG fn, and

∞ >
\
f dµ > lim inf

G

\
fn dµ.

Consider the set

{(x, t) : 0 ≤ t < f(x)} ⊆ X × [0,∞)

with the measure ν which is the restriction to this set of the product of µ
and Lebesgue measure on [0,∞). Let Bn = {(x, t) : fn(x) ≤ t ≤ f(x)}. By
Fubini’s theorem,

lim sup
G

ν(Bn) ≥
\
f dµ− lim inf

G

\
fn dµ = δ > 0.

Moreover, since lim infG fn ≥ f , we see that lim supG χBn = 0. Note that
ν is atomless and finite. Now combining the theorems of Carathéodory and
Sikorski (see [R, p. 399, Theorem 4, and p. 397, Proposition 3]), and taking
into account that 2ω with λ is isomorphic to [0, 1] with Lebesgue measure
(see e.g. [R, p. 409, Theorem 16]), we get the following fact: Let (Z, ν)
be a probability atomless measure space and let An ⊆ Z, n ∈ ω, be ν-
measurable. Then there exists φ : Z → 2ω ν-measurable and such that
for any B ⊆ 2ω Borel, ν(φ−1(B)) = λ(B) and for some A′n ⊆ 2ω Borel,
ν(φ−1(A′n)4 An) = 0. (A4B stands for the symmetric difference (A \B)
∪ (B \ A).) Applying this fact to our sets Bn and the measure ν, we can
assume that we have Borel sets Bn ⊆ 2ω with lim supG λ(Bn) ≥ δ′ > 0
and λ∗({x ∈ 2ω : lim supG χBn(x) = 0}) = 1. (λ∗ is the outer Lebesgue
measure.) Since G is universally measurable and the mapping f : 2ω → 2ω

defined by f(x) = χ{n:x6∈Bn} is Borel, we see that

{x ∈ 2ω : lim sup
G

χBn(x) = 0} = f−1(G)

is λ-measurable, so actually lim supG χBn = 0 λ-almost everywhere.
Now pick k ∈ ω with (1 − δ′)k < 1/2. Consider (2ω)k with the measure

λk and Borel sets

B′n =
k⋃

i=1

2ω × . . .×Bn × . . .× 2ω

with Bn standing at the ith place in the product. Then λk(B′n) = 1− (1−
λ(Bn))k whence

(1) lim sup
G

λk(B′n) ≥ 1− (1− δ′)k > 1/2.

Note also that if x ∈ (2ω)k, x = (xi)ki=1, is such that lim supG χB′n(x) 6= 0,
then {n : x ∈ B′n} 6∈ G∗. Since {n : x ∈ B′n} =

⋃k
i=1{n : xi ∈ Bn}, we find
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that for some i, {n : xi ∈ Bn} 6∈ G∗, so lim supG χBn(xi) 6= 0. It follows that

{x ∈ (2ω)k : lim sup
G

χB′n(x) 6= 0}

⊆
k⋃

i=1

2ω × . . .× {x ∈ 2ω : lim sup
G

χBn(x) 6= 0} × . . .× 2ω

where {x ∈ 2ω : lim supG χBn(x) 6= 0} is the ith term in the product. Now
from Fubini’s theorem we get

(2) λk({x ∈ (2ω)k : lim sup
G

χB′n(x) 6= 0}) = 0.

Note, however, that the measure spaces (2ω, λ) and ((2ω)k, λk) are isomor-
phic via a homeomorphism between 2ω and (2ω)k, so we can assume by (1)
and (2) that we have a sequence of Borel sets Bn ⊆ 2ω such that

lim sup
G

λ(Bn) >
1
2

and lim sup
G

χBn = 0 λ-almost everywhere.

The same will hold for a sequence of clopen sets Vn ⊆ 2ω, n ∈ ω, if we only
make sure that λ(Bn4Vn) < 2−n, which can be done easily. This allows us
to find clopen sets Wn ⊆ 2ω with Wn ⊆Wn+1 and

λ(Wn) <
1
2

(
lim sup

G
λ(Vn)− 1

2

)
and {x : lim sup

G
χVn(x) 6= 0} ⊆

⋃
n

Wn.

Letting Zn = Vn \Wn, we get

lim sup
G

λ(Zn) >
1
2

and lim sup
G

χZn(x) = 0 for each x.

Now, let A = {n : λ(Zn) > 1/2}. Note that A 6∈ G∗. For each n ∈ A,
Zn contains infinitely many distinct clopen sets U with λ(U) = 1/2, that
is, infinitely many distinct members of Ω. This allows us to pick Un ⊆ Zn
clopen with Un ∈ Ω and Un 6= Um for n 6= m. Define φ : A→ Ω by putting
φ(n) = Un. This φ is 1-to-1 and witnesses that F0 �loc G. We only need
to show that if x ⊆ Ω and

⋂
x 6= ∅, then φ−1(x) ∈ G∗. To see this, pick

α ∈ ⋂x. Then lim supG χUn(α) = 0 whence G∗ 3 {n : α ∈ Un} ⊇ φ−1(x)
and we are done.

To make the function φ onto, note first that each infinite subset of Ω
contains an infinite subset from F ∗0 . Indeed, if x = {Vn : n ∈ ω} ⊆ Ω is
infinite, say Vn 6= Vm if n 6= m, then

λ
(⋂
m

⋃
n>m

Vn

)
= lim

m
λ
( ⋃
n>m

Vn

)
≥ 1

2
.

In particular, for some α0, {V ∈ x : α0 ∈ V } is infinite, and obviously
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{V ∈ x : α0 ∈ V } ∈ F ∗0 . Pick x ⊂ φ[A] infinite and in F ∗0 . Then y = φ−1(x)
is infinite and in G∗. Let φ′ be equal to φ on A\y and let it map y bijectively
onto x∪ (Ω \φ[ω]). This φ′ still witnesses F0 �loc G and is 1-to-1 and onto,
so F0 vloc G.

Remark. One easily checks that � and v are transitive. It turns out,
however, that the relations �loc and vloc are not. In particular, it does not
follow from Theorem 2.1 that if F does not fulfill Fatou’s lemma and F vloc

G, then neither does G. In fact, it is false. (However, by Theorem 2.1, this
is true for F = F0. The reason is that F0 fulfills a stronger condition stated
in the claim in the proof of Theorem 2.1. See also (iv)–(vi) in the second
part of this remark.) The example below illustrates the above statements.

Take two copies of ω and let F restricted to one of them be F0 and F
restricted to the other one be the Fréchet filter of all cofinite sets. Let G
contain all subsets of the first copy of ω and only cofinite subsets of the
second copy. Now note the following points.

(i) F |A, for some A 6∈ F ∗, is isomorphic to F0. In particular, F0 vloc F .
(ii) F ⊆ G. Thus, F vloc G.

(iii) F0 6�loc G.

Points (i) and (ii) being obvious, only (iii) needs justification. Assume
towards a contradiction that φ : A→ Ω, A 6∈ G∗, witnesses F0 �loc G. Note
that there exists B ⊆ A with A \B ∈ G∗ such that G|B consists of cofinite
subsets of B. Then φ[B] is infinite since otherwise A would be in G∗. By the
last paragraph of the proof of Theorem 2.1, there exists x ⊆ φ[B] infinite
with x ∈ F ∗0 . Then φ−1(x) is in G∗ and has infinite intersection with B,
contradiction.

It follows from (i)–(iii) above that neither vloc nor �loc are transitive.
Also, using Theorem 2.1, we deduce that G fulfills Fatou’s lemma by (iii)
while F fails it by (i) even though F vloc G by (ii).

Points (iv)–(vi) in the statement below complement the above example
by showing that �loc has weak forms of transitivity and that if F ≤RK G|A
for some A 6∈ G∗, then G fails Fatou’s lemma if F does.

Let F , G, and H be filters.

(iv) If F �loc G, G ≤RK H|A for some A 6∈ H∗, then F �loc H.
(v) If F � G and G �loc H, then F �loc H.

(vi) If F fails Fatou’s lemma and F ≤RK G|A for some A 6∈ G∗, then G
does not fulfill Fatou’s lemma either.

We leave verifying (iv) and (v) to the reader. Point (vi) follows imme-
diately from (iv) and Theorem 2.1 if we notice that in the proof of the
implication (ii)⇒(i) of Theorem 2.1 we did not use the assumption that G
is universally measurable.
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Example 2.3. The following is a simple and interesting example of a
filter not fulfilling Fatou’s lemma. Consider the full graph on a countable
infinite set. (“Full” means that each pair of vertices is joined by an edge.)
The set underlying the filter is the set of all edges. A subset of edges x is
in the ideal dual to our filter if the graph spanned by x can be colored by
finitely many colors. (This means that each vertex can be assigned a color
out of finitely many possible colors in such a way that two vertices joined
by an edge are assigned different colors.) For a set x, let [x]2 be the set of
all two-element subsets of x. The above filter is isomorphic to the filter F
on [ω]2 generated by the family {[x]2 ∪ [ω \ x]2 : x ⊆ ω}. (This follows from
two facts which are not difficult to verify. First, if the graph spanned by a
set y of edges can be colored by ≤ 2n colors, then y is the union of ≤ n sets
each of which spans a graph that can be colored with 2 colors. Second, if we
interpret [ω]2 as the set of all edges, then subsets of [ω]2 spanning graphs
which are 2-colorable are precisely those which can be covered by sets of the
form [ω]2 \ ([x]2 ∪ [ω \ x]2) for some x ⊆ ω.) To see that F does not fulfill
Fatou’s lemma, let φ : [ω]2 → Ω be defined by

φ({n,m}) = {α ∈ 2ω : α(n) 6= α(m)}.
This φ witnesses that F0 �loc F . Indeed, if x ⊆ Ω and

⋂
x 6= ∅, pick

α0 ∈
⋂
x. Then

φ−1(x) ⊆ {{n,m} : α0(n) 6= α0(m)}
= [ω]2 \ ([{n : α0(n) = 0}]2 ∪ [{n : α0(n) = 1}]2) ∈ F ∗.

The following question is open. Let F be the filter from the above ex-
ample. Is it true that G fails Fatou’s lemma iff F �loc G, for a universally
measurable G? (The implication from right to left is true since F fulfills the
assumption of the claim stated at the beginning of the proof of Theorem
2.1.)
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