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Convexity ranks in higher dimensions

by

Menachem K o j m a n (Beer Sheva)

Abstract. A subset of a vector space is called countably convex if it is a countable
union of convex sets. Classification of countably convex subsets of topological vector spaces
is addressed in this paper.

An ordinal-valued rank function % is introduced to measure the complexity of local
nonconvexity points in subsets of topological vector spaces. Then % is used to give a
necessary and sufficient condition for countable convexity of closed sets.

Theorem. Suppose that S is a closed subset of a Polish linear space. Then S is
countably convex if and only if there exists α < ω1 so that %(x) < α for all x ∈ S.

Classification of countably convex closed subsets of Polish linear spaces follows then
easily. A similar classification (by a different rank function) was previously known for
closed subset of R2 [3].

As an application of % to Banach space geometry, it is proved that for every α < ω1,
the unit sphere of C(ωα) with the sup-norm has rank α. Furthermore, a countable compact
metric space K is determined by the rank of the unit sphere of C(K) with the natural
sup-norm:

Theorem. If K1,K1 are countable compact metric spaces and Si is the unit sphere
in C(Ki) with the sup-norm, i = 1, 2, then %(S1) = %(S2) if and only if K1 and K2 are
homeomorphic.

Uncountably convex closed sets are also studied in dimension n > 2 and are seen to
be drastically more complicated than uncountably convex closed subsets of R2.

1. Introduction. Suppose that S is a set in a linear space, and S is not
convex. How far is S from being convex?

The set A in Figure 1 is more convex than the set B, because A is a
union of two convex sets, whereas B is a union of three, but not two, convex
sets.
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A B

Fig. 1

Let the convexity number γ(S) of a set S be the least number γ so that
S is a union of γ convex sets.

There are two general problems concerning convexity numbers. One is
computing convexity numbers of given sets. The other is classifying all types
of sets with a fixed convexity number.

The standard approach to classification of sets with a given convexity
number has been by studying sizes of visually independent subsets of the
set. A subset V ⊆ S is visually independent in S if no two points in S see
each other through S. Let α(S) be the supremum of cardinalities of visually
independent subsets of S. It is always true that α(S) ≤ γ(S).

The pentagonal star above is an example of a set with α = 2 and γ = 3.
Thus there are two α-types of sets with γ = 3: α = 2 and α = 3.

Valentine [20] proved that if S ⊆ R2 is closed and α(S) = 2, then γ(S)
≤ 3. Therefore, there are exactly two α-types of closed planar sets with
γ = 4 (α = 3 and α = 4), as α = 2 is ruled out by Valentine’s Theorem.

A long line of results concerning the relation between α and γ in closed
planar sets followed Valentine’s result [6, 14, 2, 1, 3, 19, 17]. The most
recent advance in determining all types of closed planar sets with γ(S) = n
is the result by Matoušek and Valtr in [17]: if α = n then γ ≤ 18n3 and
examples are provided of sets with α = n and γ ≥ O(n2). The exact number
of different α-types of closed planar sets with γ(S) = n ranges between
n−O(n1/2) and n−O(n1/3).

Sets with infinite γ, which are the subject of the present paper, were first
studied in [13]. It turned out that although visually independent subsets fail
to capture uncountability of γ in closed planar sets, certain generalizations
of visually independent sets do: a subset of Q ⊆ S is called a 3-clique if
for every 3-element set X ⊆ Q, the convex hull of X is not contained in
S. Visually independent sets are, in this terminology, 2-cliques. A closed
planar set with γ(S) > ℵ0 need not contain an uncountable 2-clique, but
must contain a perfect, nonempty (hence uncountable) 3-clique.

Cardinalities of cliques do not distinguish between one set with γ = ℵ0

and another. Topological degrees of 3-cliques in a countably convex set, do,
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however, serve the purpose of classification of countable convexity. In [12] it
is proved that there is a uniform bound δ(S) over all Cantor–Bendixson de-
grees of 3-cliques in a given closed planar S with γ(S) = ℵ0. Classifying by
δ, one obtains ω1 different δ-types of closed, planar, countably convex sets.

It is of course desirable to extend classification of γ by clique properties
to sets outside the class of closed planar sets. But there are certain a priori
limitations: The convexity number of a set is always equal to the chromatic
number of the set’s convexity hypergraph (see 3 below), in which 2-, 3- and
n-cliques are combinatorial cliques. In general, the clique number of a hyper-
graph is poorly related to the hypergraph’s chromatic number. Convexity
hypergraphs of closed planar sets are well behaved in the sense that they
have a large chromatic number only when they have a large clique num-
ber. However, closed sets in R3 may have uncountable γ but only countable
cliques, and in R4 every graph can be realized as the convexity graph of
some set, so, for example, in [13] a subset of R4 is given with α(S) = 3 and
γ(S) = 2ℵ0 .

To avoid pathological hypergraphs, some limitations on the topological
complexity of the set and/or the dimension of the space have to be imposed.

In the present paper classification of countably convex sets is extended to
closed sets in Polish vector spaces. Classification is obtained by considering
a generalization of perfect n-cliques, called semi-cliques.

Classification of closed sets by semi-cliques is sharp in the sense that
semi-cliques fail to determine γ already for Fσ and Gδ subsets of R2.

An application of % to Banach space geometry is given in Section 17,
where it is proved that for every α < ω1 there exists some Banach space in
which the unit sphere S has rank %(S) = α, and that a countable metric
compact space K can be retrieved from the convexity degree of the unit
sphere in C(K), the space of all real continuous functions on K with the
sup norm.

Finally, some attention is given in Sections 5 and 6 to sets which are not
countably convex. Section 7 addresses open problems.

Acknowledgments. It is my pleasant duty to thank my colleague Prof-
essor V. Fonf for generously sharing with me his knowledge of Banach space
geometry in numerous discussions and for his suggestion to apply % to unit
spheres in Banach spaces.

Preliminaries and notation. Let S always denote a subset of some vector
space V over the field of real numbers.

Let conv(X) denote the convex hull of a set X ⊆ E. A finite subset X
of S is defected in S if X ⊆ S and conv(X) 6⊆ S. Call a subset Q ⊆ S with
the property that every n-element subset of Q is defected in S, an n-clique.
A 2-clique in S is also called a visually independent subset of S.
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Carathéodory’s theorem will be used freely:

Theorem 1. If S ⊆ Rn and x ∈ conv(X) then there is a subset Y ⊆ X
so that x ∈ conv(Y ) and |Y | ≤ n+ 1.

A topological vector space is a vector space equipped with a topology with
respect to which vector addition and scalar multiplication are continuous. A
topology τ on a space X is second countable if it has a countable basis, and
is Polish if (X, τ) is homeomorphic to a complete, separable, metric space.
A Polish linear space is a topological vector space in which the topology is
Polish.

A point x ∈ S where S is contained in a topological vector space is called
a point of local convexity if there is some open neighborhood u 3 x so that
conv(S ∩ u) ⊆ S. A point x ∈ S is a point of local nonconvexity or an lnc
point if it is not a point of local convexity. The set of all lnc points of a set
S is denoted by lnc(S).

Concatenation of sequences is denoted by .̂

2. The convexity number is a chromatic number. This section
is of a general nature. It is shown that the convexity number of a set is
determined by the combinatorics of its finite defected subsets.

Let S denote a subset of a linear space.

Definition 2. (i) Let H = H(S) = 〈S,E〉 be the hypergraph whose set
of vertices is S and whose set of hyperedges consists of all finite defected
subsets of S.

(ii) Let Hn(S) = 〈S,E ∩ [S]n〉, that is, the n-regular hypergraph with
set of vertices S and whose set of edges consists of all defected n-element
subsets of S.

(iii) A subset F ⊆ S is free in H(S) if no subset of F is a hyperedge. The
chromatic number of H(S), χ(H(S), is the least cardinality of a partition
of S into free sets.

Theorem 3. For every set S in a linear space V :

(i) γ(S) = χ(H(S)).
(ii) If dimV = n then γ(S) = χ(Hn+1(S)).

P r o o f. To prove (i) suppose S =
⋃
α<λ Cα where each Cα is convex.

Let Dα = Cα −
⋃
β<α Cα. Thus {Dα : α < λ and Dα 6= ∅} is a partition

of S. Since Dα ⊆ Cα and the latter is convex, Dα is a free subset of H(S)
for all α < λ.

Conversely, assume that χ(H(S)) = λ and fix a partition {Dα : α < λ}
of S so that each Dα is free. Let Cα = conv(Dα). Since no finite subset of
Dα is defected, Cα ⊆ S. Clearly, S =

⋃
α<λ Cα.
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If dimV = n then by Carathéodory’s theorem, a set F ⊆ S is free in
H(S) iff it is free in Hn+1(S). Hence (ii) holds.

Corollary 4 (Lawrence, Hare and Kenelly [14]). A set S in a linear
space is a union of n convex sets if and only if every finite subset of S is
contained in the union of n free sets in H(S).

P r o o f. The fact that the chromatic number of a hypergraph is ≤ n iff
the chromatic number of every finite subhypergraph is ≤ n is a well known
Erdős–de Bruijn result (or, alternatively, a straightforward exercise in ap-
plying propositional calculus compactness). The rest is by Theorem 3.

Remark. The original proof in [14] makes use of Tikhonov’s product
theorem, which is equivalent to the full axiom of choice. However, only
the axiom of choice for finite sets is needed for the theorem, since only
propositional calculus compactness is required in the proof above.

3. Countable convexity and the radical of a set. Let S be a subset
of a second countable topological vector space. The first observation to be
made on the way to determining whether γ(S) is countable or not, is that
a countable γ(S) is a local property.

Definition 5. A point x ∈ S is locally countably convex if there exists
some open neighborhood u 3 x so that γ(S ∩ u) ≤ ℵ0.

Fact 6. Let S be a subset of a second countable topological vector space.
Let A = A(S) be the set of all locally countably convex points of S and let
B = B(S) = S −A. Then:

(i) A is relatively open in S and γ(S) ≤ ℵ0.
(ii) B is relatively perfect in S (closed and without isolated points), and

furthermore, for every x ∈ B and open u 3 x, B ∩ u is uncountable.
(iii) If x ∈ B and u 3 x is open then there exist defected subsets of B∩u.
(iv) γ(S) ≤ ℵ0 if and only if B = ∅.
P r o o f. (i) is immediate from the definition of A and the fact that the

topology is second countable. The fact that B is closed follows from (i).
Suppose that x ∈ B. If there exists a neighborhood u 3 x so that |B∩u| ≤ ℵ0

then B ∩ u is coverable by countably many singleton sets—each of which is
trivially convex. Since γ(A) ≤ ℵ0, γ(u∩x) ≤ ℵ0, contrary to x ∈ B. Thus (ii)
follows. By similar reasoning, the points of B∩u are not contained in a single
convex subset of S for any u so that u ∩ B 6= ∅; therefore conv(B ∩ u) 6⊆ S
for such u, and (iii) follows.

For the last item, if B = ∅ then S = A and by (i), γ(S) ≤ ℵ0. Conversely,
if γ(S) ≤ ℵ0 then clearly B = ∅.
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The fact above is a convexity analog of Cantor’s structure theorem for
sets in second countable spaces. Every set S in a second countable linear
space is the union of a countably convex set A(S) and a relatively perfect
set B(S), where the latter is either null or not coverable by countably many
convex subsets of S. (One should be cautious to observe that a subset of
B(S) which is defected in B(S) need not necessarily be defected in S.)

What this fact does not give is a transfinite definition of B(S), or, equiv-
alently, a degree of countable convexity.

The next thing we seek is a degree function that relates to convexity
numbers in the same way that Cantor’s degree relates to cardinalities of sets:
namely, which characterizes uncountably convex sets as those of unbounded
degree and which classifies the countably convex ones.

The natural approach would be to define the rank as follows: Let S0 = S,
let Sα+1 = lnc(Sα), and for limit α let Sα =

⋂
β<α S

β , that is, the derivative
of a set is its subset of lnc points. This transfinite process must stabilize at
some countable stage, and the remaining set is “perfect” with respect to
local nonconvexity. However, it may be strictly bigger than B(S), as in the
following example.

Fig. 2

Draw in the plane the complete binary tree using straight line segments
so that the infinite branches of the tree converge to all points of a Cantor
set P which is contained in the closed line segment [0, 1]. Let S be the tree
together with [0, 1].

The set lnc(S) consists of all points of P together with all branch-points
of the tree. The set of lnc points of that set is P ; and now the derivation
process stabilizes, with a perfect set remaining. However, S is countably
convex, so B(S) = ∅.

Since γ(S) is equal to the chromatic number of H(S) it is reasonable
to look for a definition of a derived set which uses both topology and the
structure of H(S). This is done next. The transfinite process in the definition
below does indeed exhaust all points of A(S), leaving B(S) as the remaining
perfect set—when it is applied to closed sets.

Definition 7. Let S be a subset of a topological vector space. By in-
duction on ordinals α we define when %(x) ≥ α holds for x ∈ S.
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(i) %(x) ≥ 0 for all x ∈ S.
(ii) If α is a limit ordinal then %(x) ≥ α iff %(x) ≥ β for every β < α.

(iii) %(x) ≥ α+ 1 iff for every open u 3 x there exists a finite X ⊆ S ∩ u
so that %(y) ≥ α for all y ∈ X and X is defected in S.

Let

%(x) =
{

min{α : %(X) 6≥ α+ 1} if such an α exists,
∞ otherwise.

Put, formally, α <∞ iff α is an ordinal.

Definition 8. For every subset S of a topological vector space let %(S) =
sup{%(x) : x ∈ S}.

The following follows directly from the definition of %:

Fact 9. (i) If %(x) ≥ α then %(x) ≥ β for all β < α.
(ii) The set {%(x) ≥ θ} is closed in S for every θ ∈ On∪{∞}.
Let us also remark that in a normed space a point has rank ≥ α + 1 in

a set S if and only if it is a limit of a sequence (xn)n of points of rank ≥ α
with the property that for every n there is a finite set X ⊆ N−{0, 1, . . . , n}
so that {xm : m ∈ X} is defected in S.

In the set S in Figure 3, the points of rank 0 are the lc points, the points
of rank 1 are the branch-points in the tree and the points of rank 3 are all
points of P . There are no points of rank ≥ 4 since there is no finite defected
subset of P , as P is contained in a convex subset of S.

Lemma 10. Suppose that S is a subset of a second countable topological
vector space. Let α range over ordinal numbers.

(i) If %(x) = α then there is some open u 3 x so that if X ⊆ u is finite
and %(y) = α for all y ∈ X then conv(X) ⊆ S.

(ii) If %(x) = α then there is some open u 3 x so that conv{y ∈ u :
%(y) = α} ⊆ S.

(iii) If %(x) = α then there is an open u 3 x so that %(y) ≤ α for all
y ∈ u.

(iv) If %(x) = α then for every open u 3 x and β < α there is y ∈ u so
that %(y) = β.

(v) There exists some countable ordinal α (a “threshold” ordinal) so that
%(x) <∞⇒ %(x) < α.

(vi) All points x with %(x) < ∞ are covered by countably many convex
subsets of S.

(vii) The set K = {x : %(x) =∞} is closed in S and for every x ∈ K and
open u 3 x there is a finite defected X ⊆ u ∩K.

P r o o f. (i) If in every open u 3 x there is a defected X with %(y) = a
for all y ∈ X then %(x) ≥ α+ 1, contrary to %(x) = α.
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(ii) Follows from (i). Fix u 3 x so that every finite X ⊆ u∩{y : %(y) = α}
is nondefected, that is, conv(X) ⊆ S. Since conv{y ∈ u : %(y) = α} is the
union of the convex hulls of its finite subsets, (ii) follows.

(iii) A consequence of the fact that {x : %(x) ≥ α+ 1} is closed in S.
(iv) By induction on α. If α = 0 there is nothing to prove.
Suppose %(x) = α > 0 and (iv) holds for all γ < α. Let β < α and an

open u 3 x be given. By shrinking u it may be assumed that %(y) ≤ α for
all y ∈ u, by (ii), and that if X ⊆ u is defected then there is some y ∈ X so
that %(y) < α, by (i). Since %(x) ≥ β + 1 there is a finite defected X ⊆ u so
that %(y) ≥ β for all y ∈ X. Pick y ∈ X so that %(y) < α. If %(y) = β then
the proof is done. Otherwise, %(x) = γ where β < γ < α and the induction
hypothesis for γ is used to find y ∈ u so that %(y) = β.

(v) Suppose (v) fails. Then for every α < ω1 there exists x ∈ S with
α < %(x) < ∞. Therefore, by (iv), for every α < ω1 some xα ∈ S can be
fixed with %(xα) = α. Let B be a countable base for the topology. For every
α < ω1 there exists some u ∈ B that separates xα from {xβ : α < β < ω1}
by (ii), which is impossible, as B is countable.

(vi) Fix a countable base B for the topology. Let α < ω1 be the threshold
ordinal from (v). For every β < α and open u ∈ B let cβ,u := conv{y ∈ u :
%(y) = β}. The set {x : %(x) = β} is covered by {cu,β : u ∈ B and cu,β ⊆ S}
by (iii).

(vii) Fix some x with %(x) =∞ and let α be the threshold ordinal from
(v). Let u 3 x be an arbitrary open neighborhood. Since %(x) ≥ α+ 1 there
exists a finite defected X ⊆ u so that %(y) ≥ α for all y ∈ u. But %(y) ≥ α
implies that %(y) =∞, hence %(y) =∞ for all y ∈ X.

Remark. The lemma holds for topological vector spaces which are not
second countable, with obvious modifications. If the weight of the space is
κ, then the threshold ordinal is below κ+, the successor cardinal of κ, and
all points of %-degree below κ+ are coverable by κ convex subsets of S.

Definition 11. For every set S in a topological vector space let the
convexity radical of S, K(S), be defined by

(1) K(S) = {x ∈ S : %(x) =∞}.
The radical K(S) has a direct, equivalent definition.

Definition 12. (i) A semi-clique in S is a subset Q ⊆ S so that for
every x ∈ Q and open u 3 x there exists a finite subset of Q ∩ u which is
defected in S.

(ii) The union of all semi-cliques in S is a closed, maximal semi-clique
in S, which is denoted by C(S).

Fact 13. For every subset S of a topological vector space, C(S) = K(S).



Convexity ranks in higher dimensions 151

P r o o f. For every set S, K(S) is a semi-clique by Lemma 10(vii) and
therefore K(S) ⊆ C(S).

Conversely, by induction on α it is seen that %(x) ≥ α for all x ∈ C(S).
If α is limit then %(x) ≥ α for x ∈ S by the induction hypothesis and if
%(x) ≥ α for all x ∈ C(S) then %(x) ≥ α + 1 for all x ∈ C(S) by the
definition of semi-clique. Therefore C(S) ⊆ K(S).

Fact 14. If S is a subset of a second countable topological vector space
then B(S) ⊆ K(S).

P r o o f. By Fact 6(iii), B(S) is a semi-clique in S, and therefore B(S) ⊆
C(S) = K(S).

By this fact, for every S in a second countable topological vector space,
{x ∈ S : %(x) < ω1} ⊆ A(S). The proof of Lemma 10(vi) gives an “effective”
inductive procedure for covering the former set by countably many convex
subsets of S. If B(S) = K(S) then this procedure actually exhausts A(S),
the countably convex part of S. Unfortunately, it can happen that B(S)  
K(S):

Example 15. Let

Lr = {(r, y) : y ∈ R}, S =
⋃

r∈Q
Lr.

The set S is countably convex, so B(S)=∅, but C(S)=K(S)=S. In other
words, the set K(S) may be strictly bigger than B, even in descriptively
simple Borel sets—the set in the example is Fσ.

An example of a countably convex Gδ set in R2 with nonempty convexity
radical will be presented in [7], which is devoted to Gδ sets. Open sets in
Polish spaces are of course countably convex, so the only class of sets in the
Borel hierarchy for which there is still hope that the radical always equals
B is the class of closed sets.

Theorem 16. If S is a closed subset of a Polish vector space, then
B(S) = K(S).

P r o o f. Suppose that x ∈ K and that u 3 x is open. If K∩u ⊆ ⋃i∈NDi,
where Di ⊆ S for all i, then, since K is a closed subset of S, which is closed
in a Polish space, there exists i, say i = 0, so that Di ∩ K ∩ v is dense in
v ∩ K for some open v ⊆ u. If D0 is a convex subset of S, then so is its
closure. But then C∩v ⊆ clD0 and contains defected sets—a contradiction.
Therefore D0 is not convex and consequently γ(S ∩ u) > ℵ0.

Corollary 17. A closed set in a Polish linear space is a countable union
of convex sets if and only if %(S) < ω1.
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P r o o f. If %(S) < ω1 then K(S) = ∅ = B(S) and therefore γ(S) ≤ ℵ0.
Conversely, if K(S) = B(S) 6= ∅ then γ(S) > ℵ0 by Fact 6(iv).

Corollary 17 and Theorem 16 divide closed countable unions of convex
sets in Polish linear spaces into ℵ1 different types by their % rank.

The definition of % makes it clear that x ∈ lncS if and only if %(S) ≥ 1.
The function % ranks, then, the complexity of local nonconvexity points,
and highlights a qualitative difference between points whose rank is count-
able and points in the convexity radical, whose complexity is “unbounded”.
The theorems in this section can be understood as stating the equivalence
of countable convexity with the absence of “unboundedly complicated” lnc
points.

A closed, connected subset of a topological vector space which has no
lnc points is convex by a theorem of Tietze (see [8]), so Theorem 16 can be
regarded as a countable generalization of Tietze’s theorem.

4. Unit spheres in separable Banach spaces. Let X be a separable
Banach space, and let S be the unit sphere of X. By the previous section,
S is countably convex if and only if %(S) < ω1. Can a sphere in a separable
Banach space be countably convex? In Rn with the usual Euclidean norm,
the only convex subsets of the unit sphere are the singletons, so %(S) =∞,
but under the maximum norm the unit sphere in Rn is a polytope, and
%(S) = n+ 1.

Consider now the class of separable Banach spaces C(K), K a compact
metric space, with the natural sup-norm and with other, equivalent, norms.

Suppose K is an uncountable compact metric space. For every x ∈ K
there is a continuous function fx on K with f(x) = 1 and |f(y)| < 1 for all
x 6= y ∈ K. Since the convex hull of {fx, fy} is not contained in the unit
sphere for any two distinct x, y ∈ K, the set {fx : x ∈ K} is an uncountable
visually independent subset of the unit sphere of C(K) with the natural
norm—which forces that the sphere is not countably convex.

Moreover, the unit sphere in C(K) for uncountable K is not countably
convex with respect to any norm which is equivalent to the natural one.
There are two ways to see this: the space C(∆) of all continuous functions
on the Cantor set with the natural norm is isometrically universal for sepa-
rable Banach spaces by the Banach–Mazur theorem, and therefore contains
isometrically some reflexive Banach space. Milyutin’s theorem [18] asserts
that C(K) and C(∆) are isomorphic, so C(K) with any equivalent norm
contains an isomorphic copy of a reflexive Banach space, which is itself re-
flexive. By [16], the unit sphere of a reflexive Banach space is never countably
convex, so neither is the unit sphere of C(K).

Alternatively, C(∆) is isometrically embedded in C(K) with the natural
norm by [15], hence contains an isometric copy of a reflexive Banach space.
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If we change the natural norm on C(K) to an equivalent one, then this copy
remains reflexive, and hence the unit sphere in C(K) cannot be countably
convex.

LetK be a countable compact metric space. There exists a strictly convex
norm which is equivalent to the sup-norm in C(K) (see [5]), of which the
sphere has no convex subsets except singletons. But the sphere of C(K) with
the sup-norm is indeed countably convex, and its rank will be calculated
next.

4.1. The rank of the unit sphere of C(K) for countable compact K.
A formula for the convexity rank of the sphere in C(K) for countable metric
compact K will now be given in terms of the Cantor–Bendixson degree of K.

Let K be a countable compact Hausdorff space. For every subset A ⊆ K
the derived set A′ of A is the set of all accumulation points of K. The αth
derived set of A, A(α), is defined by induction on ordinals α by A(α+1) =
(A(α))′ and A(α) =

⋂
βα
A(β) for limit α. Since every closed set in a countable

compact Hausdorff space contains isolated points, A′  A for every closed
A ⊆ K and therefore there is some ordinal α < ω1 so that K(α) = ∅. The
first α = α(K) for which K(α) is finite is the Cantor–Bendixson degree of K.
Define |K(α)| = n(K) < ω. By compactness, n(K) > 0.

Countable successor ordinals γ with the order topology constitute all
examples, up to homeomorphism, of countable compact metric spaces. An
ordinal γ is compact with the order topology if and only if it is a successor
ordinal.

Recall that ordinal multiplication is defined by α0 = 0, α(β + 1) =
αβ + α and αβ = limγ<β αγ for limit β; ordinal exponentiation is defined
analogously. For every ordinal γ there is a unique way to write γ in base ω,
that is, as γ =

∑
i<l ω

αini where αi > αi+1. In particular, γ can be written
uniquely as ωαn+ δ where δ < ωα.

A countable compact Hausdorff K with α(K) = α and n(K) = n
is homeomorphic to ωαn + 1 with the order topology, and thus the pair
(α(K), n(K)) is a complete homeomorphism invariant of countable metric
compact K. In particular, γ, β < ω1 are homeomorphic as compact metric
spaces iff α1 = α2 whenever γ = ωα1 + δ1, β = ωα2 + δ2 with δi < ωαi ,
i = 1, 2.

Every countable compact K is homeomorphic to a well ordered subset
of the rationals with the induced metric. It is convenient to identify such a
K with a well ordered subset of Q.

Theorem 18. Suppose K is a countable compact metric space. Let
α(K) = α, n(K) = n, and let S be the unit sphere of C(K) with the
sup-norm. Then

(2) %(S) = ωα+ n− 1.
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P r o o f. For every f ∈ S let M(f) = {x ∈ K : |f(x)| = 1}. Then M(f) is
closed and nonempty for each f ∈ S. Let α(f) be the maximal α for which
M(f)∩K(α) is nonempty. Then M(f)∩K(α(f)) is necessarily finite. Define
n(f) = |M(f) ∩ α(f)|. Let tp(f) = (α(f), n(f)). If f ∈ S is constant, then
(α(f), n(f)) = (α(K), n(K)).

The theorem follows by applying the following lemma to one of the two
constant functions in S.

Lemma 19. For every countable compact Hausdorff space K, and f in
the unit sphere of C(K) with the natural norm,

(3) %S(f) = ωα(f) + n(f)− 1.

Let K be a well ordered subset of Q.
First, it is proved by induction on α(f)ω + n(f) that

(4) %(f) ≥ ωα(f) + n(f)− 1.

First case: n = 1. Suppose that f ∈ S and tp(f) = (α, 1). If α = 0
then (4) states that %(f) ≥ 0, which is trivially true. Suppose, then, that
α > 0 and let q be the unique point in K(α) for which |f(q)| = 1. To prove
(4) it suffices to show that for every given ε > 0, β < α and m ∈ N there
exists a function g ∈ S with tp(g) = (β,m) and ‖g − f‖ < ε.

Suppose 1 > ε > 0 is given. Let r < q be such that (r, q) ∩ K(α) = ∅
and |f(x) − f(q)| < ε for all x ∈ (r, q]. Let t1, . . . , tm ∈ (r, q) be points
in K(β) and let ri < ti be so chosen that ri is irrational, (ri, ti] ⊆ (r, q)
and (ri, ti) ∩K(β) = ∅. Since each interval ui = (ri, ti] is clopen in K, the
following function g is continuous:

g(x) =
{
f(q) if x ∈ ⋃ni=1(ri, ti],
(1− ε)f(x) otherwise.

Also, ‖g− f‖ ≤ ε and g ∈ S. Finally, tp(g) = (β,m) since t1, . . . , tm are the
only points from K(β) at which |g| = 1, and |g(x)| < 1 for all x ∈ K(α).

Second case: n > 1. Let q0, . . . , qn−1 be all points of M(f)∩K(α). Let
1 > ε > 0 be given.

Find, for each i < n, an irrational ri < qi so that |f(x) − f(qi)| < ε for
each x ∈ (ri, qi) and (ri, qi) ∩K(α) = ∅. Define gi by

gi(x) =
{
f(x) if x ∈ ⋃j 6=i(rj , qj ],
(1− ε)f(x) otherwise.

Since for each i < n, K ∩ (ri, qi] is clopen in K, gi is continuous. Since
n > 1, gi ∈ S. Also, ‖gi − f‖ ≤ ε. Finally, n−1∑

i<n gi 6∈ S. Since tp(gi) =
(α, n − 1), the induction hypothesis gives %(gi) ≥ αω + n − 2, and this
establishes that %(f) ≥ ωα+ n− 1.
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Now we prove

(5) %(f) ≤ ωα(f) + n(f)− 1.

Suppose to the contrary that tp(f) = (α, n) and %(f) ≥ ωα + n. Let
{q0, . . . , qn−1} = M(f) ∩ K(α) and ε = min{1 − |f(x)| : x ∈ K(α) −
{q0, . . . , qn−1}}. Since K(α) is compact and each qi is isolated in K(α), it
follows that ε > 0. Since %(f) ≥ ωα + n, there exists a set {gj : j < l}
⊆ S ∩ B(f, ε) so that %(gj) ≥ αω + n − 1 for each j < l, and a convex
combination

∑
j<l ajgj is not in S. By the induction hypothesis tp(gj) ≥

(α, n) for each j < l. Since |M(gj) ∩ K(α)| ≥ n, but |gj(x)| < 1 for each
x ∈ K(α) − {q0, . . . , qn−1}, necessarily gj(qi) = f(qi) for all i < n. But then
also

∑
j<l ajgj(qi) = f(qi) for each i < n, contrary to

∑
j<l ajgj 6∈ S.

Corollary 20. For every countable ordinal β there exists a unique com-
pact metric space K so that %(SK) = β.

P r o o f. Given β < ω1, β can be written uniquely as ωα+n for some α <
ω1 and natural n ≥ 0. The unique compact metric K with (α(K), n(K)) =
(α, n) satisfies %(SK) = β by formula (3).

Thus, the convexity type (α, n) of the unit sphere in C(K) with the
natural norm is another complete homeomorphism invariant of countable
compact metric spaces.

For every countable compact ordinal γ + 1 with the order topology,

(6) α(γ + 1) ≤ %(γ + 1) ≤ γ.
For example, for K = ω + 1, C(K) is c, the space of all convergent real

sequences, α(K) = 1, %(K) = ω; for K = ω2 + 1, α(K) = 2 and %(K) = ω2.
Still, for uncountably many countable ordinals γ—all those γ which sat-

isfy γ = ωγ—we have α(γ + 1) = %(g + 1) = γ + 1.

5. Uncountable convexity. Remove from the plane a countable dense
subset. The remaining set S is a Gδ which satisfies K(S) = S and γ(S) >
ℵ0. Now consider all the circles with center at the origin. Since there are
uncountably many disjoint circles like that, there exists one such circle which
is entirely contained in S. The circle is a perfect subset of S with the property
that all of its 3-element subsets are defected in S—that is, the circle is a
perfect 3-clique in S.

Once a set contains a 3-clique of cardinality 2ℵ0 , its convexity number
has to be continuum, since any convex subset of the set can contain at most
two elements from the clique. Therefore, it is impossible to find a Gδ set in
R2 whose convexity number consistently violates the continuum hypothesis.

There is a crucial difference between the behavior of uncountably convex
sets in R2 to their behavior in higher dimensions. In higher dimensions a
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closed set can fail to be countably convex without containing uncountable
cliques. Such a set is constructed next.

The difference between R2 and R3 runs, however, even deeper than that,
since the convexity number of the closed set constructed here consistently
violates the continuum hypothesis.

Theorem 21. There exists a compact , simply connected S ⊆ R3 so that
%(S) =∞ and all cliques in S are countable; in fact , the set of accumulation
points of each clique in S is finite.

P r o o f. Let D be the closed unit ball in R3. A closed, simply connected
S ⊆ D is constructed by removing from D infinitely many pairwise disjoint
open pyramidal indentations. The removal is performed by induction on
n, and the indentations are indexed by finite sequences over the symbols
{0, 1, 2}. Each indentation Tη for a sequence η is contained in the convex
hull of a closed spherical cap cη. Let 3n denote the collection of all sequences
of length n over {0, 1, 2}. Denote by 3≤n all sequences over {0, 1, 2} of length
at most n and similarly for 3<n. The empty sequence is denoted by 〈〉.

Let c〈〉 be some hemisphere in D.
Suppose that cη is defined for all η ∈ 3n and that Tν is defined for all

ν ∈ 3<n. Here is how Tη and cη̂i for i = 0, 1, 2 are defined.
Call a set {a, b, c} ⊆ R3 almost equilateral if the ratio between any two

distances in the set does not exceed 1.1.
Let a′0, a

′
1, a
′
2 belong to the relative boundary of cη and form the vertices

of an equilateral triangle. Let o′ denote the center of cη. Let ai be the
middle point of the geodesic (a′i, o

′). Let Pi be the plane through (a′i, aj , ak)
(where {i, j, k} = {0, 1, 2}) and let P i be the open half-space supported by
Pi which does not contain the origin. Now define Tη = D ∩⋂i=0,1,2 P i. The
intersection P i ∩ D is contained in the convex hull of cη, and therefore Pi
separates Tη from D − conv(cη), and in particular,

(7) Tη ⊆ conv(cη).

To define cη̂i for i < 3, let di be on the geodesic (ai, a′i) at distance
δ from ai. The distance δ should be so small that the plane spanned by
(d0, d1, d2) meets Tη. Let cη̂i be a closed spherical cap with center di and
radius r. The radius is chosen to be sufficiently small so that each cη̂i, for
i < 3, avoids ai and for every choice of xi ∈ cη̂i,

{x0, x1, x2} is almost equilateral,(8)

conv(x0, x1, x2) meets Tη.(9)

If {i, j, k} = {0, 1, 2} then Pi separates both cη̂j and cη̂k from Tη.
Therefore, since Pi also separates D − conv(cη) from Tη, the following is
true:
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Fact 22. If {i, j} ⊆ {0, 1, 2} then for every subset Y ⊆ D − conv(cη)
we have conv(cη̂i ∪ cη̂j ∪ Y ) ∩ Tη = 0.
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In particular, conv(cη̂i) ∩ Tη = ∅ for all i < 3. Also, Pi separates
conv(Tη̂i) and therefore also Tη̂i from each of cη̂j , cη̂k, which contain,
respectively, Tη̂j and Tη̂k. Therefore for any two finite sequences η, ν,

(10) η 6= ν ⇒ Tη ∩ Tν = ∅.
Let Sn = D − ⋃η∈3≤n Tη. Let S =

⋂
n Sn. The set S is compact and

simply connected.
Let K =

⋂
n

⋃
η∈3n cη. More specifically, for an infinite sequence η over

0, 1, 2 let xη =
⋂
n cη¹n. The correspondence between η and xη is a 1-1

correspondence between elements of K and infinite sequences over {0, 1, 2}.
Lemma 23. A 3-element subset of K is defected in S if and only if it is

almost equilateral.

P r o o f. Let x, y, z be three distinct elements of K. If there exists a finite
sequence η over {0, 1, 2} so that {x, y, z} meets each cη̂i for i < 3, then
{x, y, z} is both almost equilateral and defected in S by (8) and (9) above.

Otherwise, for every η, {x, y, z} meets at most two of cη̂i for i < 3. Let
n be the largest so that there exists some η ∈ 3n with {x, y, z} ⊆ cη. On the
one hand, {x, y, z} ⊆ ⋃i<3 cη̂i, and on the other hand, there must be some
i < 3, say i = 0, so that {x, y, z} ∩ cη̂i = ∅. Since not all of {x, y, z} belong
to neither cη̂1 nor cη̂2 by the choice of η, necessarily two of the points are
in, say, cη̂2 and the third is in cη̂1. Hence {x, y, z} is not almost equilateral.

To see that {x, y, z} is not defected consider an arbitrary sequence η.
Since {x, y, z} meets at most two of cη̂i, assume {x, y, z} ∩ cη̂2 = ∅. Then
{x, y, z} ⊆ cη̂0 ∪ cη̂1 ∪ D − conv(cη) and therefore conv(x, y, z) ∩ Tη
= ∅ by Fact 22.

Since η is arbitrary, conv(x, y, z) does not meet any Tη and thus
conv(x, y, z) ⊆ S.

Lemma 24. K is a semi-clique in S.

P r o o f. Let x = xη be an arbitrary member of K and let u 3 xη be open.
Let n be so large that cη¹n ⊆ u. Let ν0, ν1, ν2 be three infinite sequences
with νi¹(n + 1) = (η¹n)̂ i. The corresponding points xνi belong to K and
their convex hull meets Tη¹n (since xνi ∈ c(η¹n)̂i). Therefore {xν0 , xν1 , xν2}
is a finite defected subset of P ∩ u.

Corollary 25. γ(S) > ℵ0.

Lemma 26. Every x ∈ S−K satisfies %(x) ≤ 1; hence K is the convexity
radical of S.

P r o o f. If x belongs to the interior of S then %(x) = 0, so assume that
x ∈ bdS. If x does not belong to bdD then it necessarily belongs to the
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boundary of some Tη, in which case it has either rank 1 if it belongs to a
side of Tη or else has rank 0.

Assume then that x ∈ bdS ∩ bdD. Since x 6∈ K there is some n so that
x 6∈ ⋃η∈3n cη. Fix an open u 3 x so that u ∩ ⋃η∈3n conv(cη) = ∅. Since
S ∩ u = Sn ∩ u it follows that %(x) = 0.

Lemma 27. If Q ⊆ S is a clique then the set of accumulation points of
Q is finite.

P r o o f. First observe that if x ∈ A is an accumulation point of some
clique Q ⊆ S then necessarily x ∈ K, because for every point x ∈ S − K
there exists an open u 3 x so that S ∩ u is the union of at most 3 free sets
in H(S).

Suppose to the contrary that Q ⊆ S is a clique and Q0 ⊆ Q is an infinite
set of accumulation points of Q. By the previous observation, Q0 ⊆ K. As S
is compact, there exists x ∈ S which is an accumulation point of Q0. Define
by induction a sequence (xn) ⊆ Q0. Let x0 6= x be chosen in Q0. Suppose xn
is defined. Let xn+1 6= x be chosen in B(x, ε) ∩Q0 where ε ≤ d(xn, x)/10.

In {xn} there is no almost equilateral triangle. Since {xn} ⊆ K, by Fact
23, {xn} contains no defected triples. Since S is simply connected, {xn}
contains no defected subsets at all—contrary to {xn} ⊆ Q.

Remark. For every n, S contains cliques with n accumulation points.
To see this choose n points from K(S) and find for each point a visually
independent sequence which converges to the point. The union of those
sequences is an n+ 1-clique.

Corollary 28. Every clique in S is countable.

P r o o f. Since every uncountable subset of R3 contains uncountably many
limits of itself, every clique in S is countable by Lemma 27.

This completes the proof of Theorem 21.

6. Independence of γ(S). Suppose S is a subset of a linear space. Let
I be the σ-ideal generated by all convex subsets of S. This ideal is proper
if and only if γ(S) > ℵ0, and when it is proper, there are several standard
set-theoretic questions to be settled about it.

Probably the most important one is to determine which cardinals can
appear as the covering number of this ideal. In R2 the covering number of
I on a closed (or Gδ) set behaves like the cardinality of the set: if it is
uncountable then it is equal to the continuum. It is perhaps surprising that
the behavior of γ on closed sets in higher dimensions resembles the behavior
of the meager ideal. The convexity number of the R3 set which is constructed
in Theorem 21 can be made any prescribed uncountable cardinal κ ≤ 2ℵ0

in a ccc forcing extension.
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In this section we provide a complete proof that γ(S) for a closed S ⊆ R3

is not decided by ZFC.
The proof of this theorem was sketched in [13] in an, apparently, very

unsatisfactory way. The main part that is missing from the sketch in [13]
is the proof of the countable chain condition. Several people have asked for
the details of this proof, therefore the proof is provided here (1) so that it
may be available for future reference.

Theorem 29 (Kojman, Perles, Shelah). Let S be the subset of R3 which
is constructed in the proof of Theorem 21. If ZFC is consistent then it is
also consistent that 2ℵ0 = ℵ2 and γ(S) = ℵ1.

P r o o f. Let Q be the following partially ordered set. An element p of
Q is a finite partial function from K(S) to N so that no almost equilateral
triple in the domain of p is mapped to a single value. The order relation is
inclusion.

Lemma 30. For every x ∈ K the set Qx = {p ∈ Q : x ∈ dom p} is dense
in Q.

P r o o f. Let x ∈ K be given and let p ∈ Q be arbitrary. If x 6∈ dom p, let
n ∈ N− ran p. Define p′ = p ∪ {〈x, n〉}. Since {x} = p′−1(n) and p′−1(m) =
p−1(m) for all m 6= n, there is no almost equilateral triple in p′−1(l) for all
l ∈ N and therefore p′ ∈ Qx.

Lemma 31. If G ⊆ Q is directed and meets every dense set , then f :=⋃
G is a function from K to N so that conv(f−1(n)) ⊆ S for every n ∈ N.

P r o o f. Since G is directed, f is indeed a function. Also, since G∩Qx 6= ∅
for each x ∈ K, the domain of f is K. No almost equilateral triple exists in
f−1(n) for all n ∈ N by the definition of Q. Since S is simply connected, the
convex hull of any subset of S is contained in S if and only if the convex
hull of every 3-tuple from the subset is. Since a 3-tuple from K is defected
in S iff it is almost equilateral, the proof is complete.

Lemma 32. Q satisfies the countable chain condition.

P r o o f. Suppose to the contrary that A = {pα : α < ω1} is an anti-chain,
that is, for no two members of A is there a common extension in Q. For every
α < ω1 define a finite function rα as follows. Let xα0 , . . . , x

α
n−1 enumerate

dom pα and choose an open rational ball uαi 3 xαi for each i < n so that
xαi ∈ uαi , {uαi : i < n} are pairwise disjoint and the radius of each uαi is
smaller than min{d(xαi , x

α
j ) : i < j < n}/100 and is, in addition, so small

that for all i0 < i1 < i2 < n either for every choice of yj ∈ uαij the triple
{yi0 , yi1 , yi2} is almost equilateral or for every such choice {yi0 , yi1 , yi2} is

(1) By courtesy of the editor.
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not almost equilateral. Now let rα : {ui : i < nα} → N be the finite function
defined by rα(uαi ) = pα(xi).

Since there are uncountably many elements in A and only countably
many finite functions from rational neighborhoods to N, by shrinking A it
may be assumed that rα = r for some fixed r for all α < ω1.

Let α < β < ω1 be fixed and a contradiction will be reached once it is
seen that pα ∪ pβ ∈ Q. If x ∈ dom pα ∪ dom pβ then pα(x) = r(u) = pβ(x),
where u ∈ dom r satisfies x ∈ u Thus pα ∪ pβ is a function.

Let {x0, x1, x2} ⊆ dom(pα ∪ pα) be almost equilateral. Since at least
two of the points from {x0, x1, x2} belong to the domain of either pα or pβ ,
assume without loss of generality that x0, x1 ∈ dom pα. Therefore, x0 and
x1 belong to different members of dom r, say to u0, u1 respectively. Since
{x0, x1, x2} is almost equilateral, x2 6∈ u0∪u1, and therefore x2 ∈ u2 for some
u2 ∈ dom r − {u0, u1}. Let x′2 be the member of dom pα in u2, so pα(x′2) =
r(u2) = (pα ∪ pβ)(x2). Since {x0, x1, x

′
2} ⊆ dom pα is almost equilateral,

r(u0), r(u1), r(u2) are not equal to each other. Therefore, {x0, x1, x2} are
not mapped by pα ∪ pβ to a single value.

Let V be a universe of set theory which satisfies 2ℵ0 = ℵ2. By the lemmas
above, forcing with Q over V produces a cardinal preserving forcing exten-
sion V Q of V in which KV is covered by countably many convex subsets of
S. Since the rank % is absolute between transitive models of ZFC, the points
of S preserve their V rank in the extension V P . However, new members of
K may exist in V P .

Let R = 〈Rα, Qα : α < ω1〉 be the finite support iteration of length ω1

in which Qα is the partially ordered set Q defined above, in V Rα . Since
a finite support iteration of ccc forcing is ccc, V R is a cardinal preserving
forcing extension of V and hence satisfies 2α0 = α2. For every α < ω1, the
set KV Rα is covered by countably many convex subsets of S in V Rα+1 . Since
KR =

⋃
α<ω1

PV
Rα , it follows that KV R is the union of ω1 convex subsets

of S. All other points of S have rank at most 1 and are covered by countably
many convex subsets of S. Thus γ(S) = α1 in V R. This completes the proof
of Theorem 29.

7. Concluding remarks and problems. The coarse classification of
sets by their convexity number has several different refinements, obtained
by ranking special subsets: In R2, closed, finitely convex sets are ranked
by sizes of their visually independent subsets, and closed, countably convex
sets by the Cantor degree of their 3-cliques. In a separable Banach space of
dimension > 2, closed sets are ranked by % which uses semi-cliques. There
are other feasible means of classification one can apply: the dimension of a
set can be defined as the least n so that the chromatic number of Hn(S)
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is γ(S). This is always defined for subsets of a finite-dimensional space,
and is defined for some sets in infinite-dimensional spaces, but it is easy
to construct sets in an infinite-dimensional space, in the spirit of the set
in Section 5, which are uncountably convex yet with countable chromatic
number of Hn(S) for each n.

The main problem which remains open is the classification of countably
convex Borel sets. At the moment, this problem looks difficult. Perhaps the
class of hypergraphs which are realized as convexity hypergraphs of Borel
set is too broad and contains pathological examples. If this is so, then no
classification of Borel sets will be possible. But it is not clear whether this
is the case.

Another related problem is the complexity of the collection of all count-
ably convex subsets of a given compact set in a Euclidean space. One can
regard the collection of all closed subsets of, say, the unit sphere in R3 as a
Polish space when endowed with the Hausdorff metric. It is not clear what
the complexity of the collection of all countably convex closed subsets may
be. The source of difficulty is, of course, the fact that countably convex
subsets do not form an ideal, so the methods used in [10] and [9], Chapter
VI (2), do not apply to this problem.

A particularly intriguing open problem concerning closed sets is the fol-
lowing:

Problem 33. Do closed subsets of R3 for which it is not consistent that
their convexity number is smaller than the continuum coincide with those
sets which contain a perfect clique? (The convexity number of a closed set
which contains a perfect clique is always equal , of course, to the continuum.)

At any rate, the study of countable convexity leads to some interesting
problems in descriptive set theory and perhaps will also be useful for Banach
space geometry.
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