Knots in $S^{2} \times S^{1}$ derived from $\operatorname{Sym}(2, \mathbb{R})$

by

Sang Youl Lee (Pusan), Yongdo Lim (Taegu) and Chan-Young Park (Taegu)

Abstract

We realize closed geodesics on the real conformal compactification of the space $V=\operatorname{Sym}(2, \mathbb{R})$ of all 2×2 real symmetric matrices as knots or 2 -component links in $S^{2} \times S^{1}$ and show that these knots or links have certain types of symmetry of period 2 .

1. Introduction. In [6], to complete a semisimple Jordan algebra V of classical type to a symmetric space, B. Makarevich used the notion of geodesics in V that originate at zero. In the case of the Euclidean (or formally real) Jordan algebra $V=\operatorname{Sym}(n, \mathbb{R})$ of all $n \times n$ real symmetric matrices, these geodesics are eventually of the form $\alpha(t, A):=\exp t X_{A} \cdot \mathbf{0}$, $A \in V$, where $X_{A}=\left(\begin{array}{cc}0 & A \\ -A & 0\end{array}\right) \in \mathfrak{s p}(2 n, \mathbb{R})$, the Lie algebra of the symplectic group $\operatorname{Sp}(2 n, \mathbb{R})$. In [5], the authors classified closed geodesics and symmetric geodesics of these types on the real conformal compactification \mathcal{M} of $V=\operatorname{Sym}(n, \mathbb{R})$. In Section 2 , for convenience we give a brief review of these results and show some elementary facts.

It is known [1] that the conformal compactification \mathcal{M} of $V=\operatorname{Sym}(n, \mathbb{R})$ is diffeomorphic to the Shilov boundary Σ_{n} of the symmetric tube domain $T_{\Omega}=V+i \Omega$, where Ω is the open convex cone of all positive definite $n \times n$ symmetric matrices. The main interest of this paper is to give a realization of these closed geodesics in the Shilov boundary Σ_{2} as knots in $S^{2} \times S^{1}$ and to characterize their symmetry properties.

Throughout this paper, all maps and spaces will be assumed to be in the piecewise-linear (PL) category. A $\operatorname{link} L$ of μ components in a connected 3 -manifold M is (the image of) an embedding of μ disjoint 1 -spheres into M. If $\mu=1$, then L is called a knot in M. Two links L and L^{\prime} are said to be equivalent if there exists an ambient isotopy $H: M \times[0,1] \rightarrow$

[^0]$M \times[0,1], H(x, t)=h_{t}(x)(t \in[0,1])$, such that h_{0} is the identity on M and $h_{1}(L)=L^{\prime}$.

A knot (or link) K in a connected 3-manifold M is said to have period n of type (X, Y) (or to be an n-periodic knot of type (X, Y)) if there is an n-periodic homeomorphism $h:(M, K) \rightarrow(M, K)$ such that the fixed point set, $\operatorname{Fix}(h)$, of h is homeomorphic to X and $\operatorname{Fix}(h) \cap K$ is homeomorphic to Y. If M is a homology 3 -sphere, then P. A. Smith [9] proved that the set of fixed points of a periodic homeomorphism of M is \emptyset, S^{0}, S^{1}, or S^{2}. By the positive solution of the Smith conjecture [7], the possible types of non-trivial knots in S^{3} are $(\emptyset, \emptyset),\left(S^{0}, \emptyset\right),\left(S^{0}, S^{0}\right),\left(S^{1}, \emptyset\right),\left(S^{1}, S^{0}\right)$, and $\left(S^{2}, S^{0}\right)$ (cf. [3]).

In Section 3, we show that the closed geodesics on the conformal compactification \mathcal{M} of $\operatorname{Sym}(2, \mathbb{R})$ are knots in the Shilov boundary Σ_{2} which have period 2 of type both (\emptyset, \emptyset) and $\left(S^{1} \cup S^{0}, S^{0}\right)$.

In [4], [10], and [11], it was shown that $S^{2} \times S^{1}$ admits exactly thirteen distinct involutions (up to conjugation) and the possible types of their fixed point sets are $\emptyset, S^{0} \dot{\cup} S^{0}, S^{1}, S^{1} \dot{\cup} S^{1}, S^{1} \times S^{1}$, Klein bottle, $S^{0} \dot{\cup} S^{2}$, or $S^{2} \dot{\cup} S^{2}$, where $X \dot{\cup} Y$ denotes the disjoint union of X and Y.

In Section 4, we give an explicit description of an orientable double cover $S^{2} \times S^{1}$ of the Shilov boundary Σ_{2} and show that the knots in Σ_{2} corresponding to the closed geodesics lift to knots or links of 2-components in $S^{2} \times S^{1}$; we show that these knots or links in $S^{2} \times S^{1}$ also have period 2 of types $\left(S^{1} \times S^{1}, T(m, n)\right),\left(S^{1} \times S^{1}, S^{0} \dot{\cup} \ldots \dot{U} S^{0}\right)$, or $\left(S^{1} \dot{\cup} S^{1}, \emptyset\right)$, where $T(m, n)$ denotes the torus knot of type (m, n) [8].
2. Geodesics on the conformal compactification of $\operatorname{Sym}(n, \mathbb{R})$. Let $M_{n}(\mathbb{R})$ denote the space of all $n \times n$ real matrices. A symmetric (respectively, skew-symmetric) matrix $A \in M_{n}(\mathbb{R})$ is one satisfying $A^{t}=A$ (respectively, $A^{t}=-A$), where A^{t} denotes the transpose of a matrix A. Let $\operatorname{Sym}(n, \mathbb{R})$ (respectively, $\operatorname{Skew}(n, \mathbb{R}))$ be the space of all symmetric (respectively, skew-symmetric) $n \times n$ matrices. Let $A \in \operatorname{Sym}(n, \mathbb{R})$ have the spectral decomposition $A=\sum_{k=1}^{n} \lambda_{k} C_{k}$, where $\left\{C_{k}\right\}$ is a complete system of orthogonal projections. Then the spectral norm $|A|$ of A is defined by $|A|=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}$.

Let $(\cdot \mid \cdot)$ be the skew-symmetric form on $\mathbb{R}^{2 n}$ defined by $(u \mid v)=\langle J u \mid v\rangle$ for $u, v \in \mathbb{R}^{2 n}$, where $J=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$. Here, I stands for the $n \times n$ identity matrix. The symplectic group $\operatorname{Sp}(2 n, \mathbb{R})$ on $\mathbb{R}^{2 n}$ is the Lie group of all invertible transformations $g=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ satisfying one of the following equivalent conditions:
(1) g preserves $(\cdot \mid \cdot)$.
(2) $g^{t} J g=J$.
(3) $A^{t} C, B^{t} D$ are symmetric and $A^{t} D-C^{t} B=I$.

The Lie algebra of $\operatorname{Sp}(2 n, \mathbb{R})$ is given by

$$
\mathfrak{s p}(2 n, \mathbb{R})=\left\{\left.\left(\begin{array}{cc}
X & Y \\
Z & -X^{t}
\end{array}\right) \right\rvert\, X \in M_{n}(\mathbb{R}), Y, Z \in \operatorname{Sym}(n, \mathbb{R})\right\}
$$

It has a Cartan decomposition $\mathfrak{s p}(2 n, \mathbb{R})=\mathfrak{p} \oplus \mathfrak{k}$, where

$$
\begin{aligned}
\mathfrak{p} & =\left\{\left.\left(\begin{array}{cc}
X & Y \\
Y & -X
\end{array}\right) \right\rvert\, X, Y \in \operatorname{Sym}(n, \mathbb{R})\right\}, \\
\mathfrak{k} & =\left\{\left.\left(\begin{array}{cc}
X & Y \\
-Y & X
\end{array}\right) \right\rvert\, X \in \operatorname{Skew}(n, \mathbb{R}), Y \in \operatorname{Sym}(n, \mathbb{R})\right\} .
\end{aligned}
$$

Let $\tau=\left(\begin{array}{cc}-I & 0 \\ 0 & I\end{array}\right) \in \mathrm{GL}(2 n, \mathbb{R})$ and let $\tau(g)=\tau \cdot g \cdot \tau$ for $g \in \mathrm{Sp}(2 n, \mathbb{R})$. Then τ is an involution on $\operatorname{Sp}(2 n, \mathbb{R})$. The differential $\mathrm{d} \tau$ of τ at the identity is given by

$$
\mathrm{d} \tau\left(\begin{array}{cc}
X & Y \\
Z & -X^{t}
\end{array}\right)=\left(\begin{array}{cc}
X & -Y \\
-Z & -X^{t}
\end{array}\right) .
$$

The Lie algebra $\mathfrak{s p}(2 n, \mathbb{R})$ can be decomposed into the (+1)-eigenspace \mathfrak{h} and the (-1)-eigenspace \mathfrak{q} of $\mathrm{d} \tau$:

$$
\mathfrak{s p}(2 n, \mathbb{R})=\mathfrak{h} \oplus \mathfrak{q}=\mathfrak{h} \oplus \mathfrak{n}^{+} \oplus \mathfrak{n}^{-}, \quad \mathfrak{q}=\mathfrak{n}^{+} \oplus \mathfrak{n}^{-},
$$

where

$$
\begin{aligned}
\mathfrak{n}^{+} & =\left\{\left.\left(\begin{array}{cc}
0 & Y \\
0 & 0
\end{array}\right) \right\rvert\, Y \in \operatorname{Sym}(n, \mathbb{R})\right\}, \\
\mathfrak{n}^{-} & =\left\{\left.\left(\begin{array}{cc}
0 & 0 \\
Z & 0
\end{array}\right) \right\rvert\, Z \in \operatorname{Sym}(n, \mathbb{R})\right\}, \\
\mathfrak{h} & =\left\{\left.\left(\begin{array}{cc}
X & 0 \\
0 & -X^{t}
\end{array}\right) \right\rvert\, X \in M_{n}(\mathbb{R})\right\} .
\end{aligned}
$$

Let $N^{ \pm}$be the Lie subgroups of $\operatorname{Sp}(2 n, \mathbb{R})$ corresponding to $\mathfrak{n}^{ \pm}$respectively. Then

$$
\begin{aligned}
& N^{+}=\left\{\left.\left(\begin{array}{cc}
I & A \\
0 & I
\end{array}\right) \right\rvert\, A \in \operatorname{Sym}(n, \mathbb{R})\right\}=\exp \mathfrak{n}^{+}, \\
& N^{-}=\left\{\left.\left(\begin{array}{cc}
I & 0 \\
A & I
\end{array}\right) \right\rvert\, A \in \operatorname{Sym}(n, \mathbb{R})\right\}=\exp \mathfrak{n}^{-} .
\end{aligned}
$$

Let $H=\{g \in \operatorname{Sp}(2 n, \mathbb{R}) \mid \tau(g)=g\}$. We observe that

$$
H=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & \left(A^{-1}\right)^{t}
\end{array}\right) \right\rvert\, A \in \mathrm{GL}(n, \mathbb{R})\right\} .
$$

Theorem 2.1 (see [1]). Let $P=H N^{-}$. Then P is a closed subgroup of $G:=\operatorname{Sp}(2 n, \mathbb{R})$ and the homogeneous space $\mathcal{M}:=G / P$ is a compact real manifold with $V:=\operatorname{Sym}(n, \mathbb{R})$ as an open dense subset. The embedding of
V into \mathcal{M} is given by

$$
X \in V \mapsto\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right) \cdot P \in \mathcal{M}
$$

Furthermore, for $g=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(2 n, \mathbb{R})$ and $X \in V$ with $g \cdot X \in V$, we have

$$
g \cdot X=(A X+B)(C X+D)^{-1}
$$

Let $A \in V=\operatorname{Sym}(n, \mathbb{R})$ and let $X_{A}:=\left(\begin{array}{cc}0 & A \\ -A & 0\end{array}\right) \in \mathfrak{k}$. Then it is known [6] that the geodesic in \mathcal{M} originating at the origin $\mathbf{0}$ with direction A is of the form

$$
\alpha(t, A):=\exp t X_{A} \cdot \mathbf{0}=\left(\begin{array}{cc}
\cos t A & \sin t A \\
-\sin t A & \cos t A
\end{array}\right) \cdot \mathbf{0}
$$

The period of a non-constant closed geodesic $\alpha(t, A)$ is the smallest positive number t_{0} satisfying $\alpha\left(t_{0}, A\right)=\mathbf{0}$.

Set $j=\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right) \in \operatorname{Sp}(2 n, \mathbb{R})$. Then j is an involution on \mathcal{M} and for an invertible element $A \in V$ we have $j \cdot A=-A^{-1}$. A closed geodesic $\alpha(t, A)$ is said to be symmetric if it is invariant under the involution j on \mathcal{M}.

Let

$$
\begin{aligned}
& E_{c}=\left\{r\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{n} \mid r \geq 0, p_{i} \text { integers }\right\} \\
& E_{s}=\left\{r\left(p_{1}, \ldots, p_{n}\right) \in E_{c} \mid r>0, p_{i} \text { odd integers }\right\}
\end{aligned}
$$

(in this setting, we always assume that the integers p_{i} have no common divisors), and let $A=\sum_{k=1}^{n} \lambda_{k} C_{k}$ be the spectral decomposition of A. Then $\alpha(t, A)$ is a closed geodesic if and only if $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in E_{c}$. If $A \neq 0$ and $\left(\lambda_{1}, \ldots, \lambda_{n}\right)=r\left(p_{1}, \ldots, p_{n}\right) \in E_{c}$, then π / r is the period of $\alpha(t, A)$ ([5], Theorem 4.2). Also, $\alpha(t, A)$ is a symmetric geodesic if and only if $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in E_{s}([5]$, Theorem 4.4).

Now let Ω be the symmetric cone of positive definite $n \times n$ symmetric real matrices. Then the tube domain $T_{\Omega}:=V+i \Omega$ can be realized as a bounded symmetric domain \mathcal{D} in the complex plane $V^{\mathbb{C}}:=V+i V$ as follows: Let

$$
\begin{aligned}
& D(p)=\left\{Z \in V^{\mathbb{C}} \mid Z+i I \in \operatorname{GL}(n, \mathbb{C})\right\} \\
& D(c)=\left\{W \in V^{\mathbb{C}} \mid I-W \in \operatorname{GL}(n, \mathbb{C})\right\}
\end{aligned}
$$

and define for all $Z \in D(p)$ and $W \in D(c)$,

$$
p(Z)=(Z-i I)(Z+i I)^{-1}, \quad c(W)=i(I+W)(I-W)^{-1}
$$

Then $p: D(p) \rightarrow D(c)$ is a holomorphic bijection from $D(p)$ onto $D(c)$, and $c: D(c) \rightarrow D(p)$, called the Cayley transform, is its inverse. The closure of T_{Ω} in $V^{\mathbb{C}}$ is contained in $D(p)$. The image $\mathcal{D}:=p\left(T_{\Omega}\right)$ of p is known as a bounded symmetric domain which is the open unit ball with respect to the spectral norm. We define Σ_{n} as the set of all invertible elements Z in $V^{\mathbb{C}}$
such that $Z^{-1}=\bar{Z}$. It is known that Σ_{n} is the Shilov boundary of \mathcal{D}, which is a compact connected $\frac{n(n+1)}{2}$-dimensional manifold, and is exactly equal to $\overline{p(V)}$ (for details, see [2]).

Let $\mathbf{c}=\left\{C_{k}\right\}_{k=1}^{n}$ be a complete system of orthogonal projections and let $V(\mathbf{c})$ be the subspace of V generated by C_{k} 's. Then for $A=\sum_{k=1}^{n} \lambda_{k} C_{k}$,

$$
\begin{equation*}
p(A)=\sum_{k=1}^{n} \frac{\lambda_{k}-i}{\lambda_{k}+i} C_{k} . \tag{2.1}
\end{equation*}
$$

Since $\left(\lambda_{k}-i\right) /\left(\lambda_{k}+i\right) \in S^{1}$ (the unit circle in \mathbb{C}) for $k=1, \ldots, n$, we conclude that $\overline{p(V(\mathbf{c}))}$ is diffeomorphic to the n-torus $T^{n}=S^{1} \times \ldots \times S^{1}$.

For a geodesic curve $\alpha(t, A)$ on \mathcal{M}, we let $\widehat{\alpha}(t, A):=p(\alpha(t, A))$ be the corresponding geodesic on Σ_{n}. From (2.1), we have the following

Proposition 2.2. Let $A=\sum_{k=1}^{n} \lambda_{k} C_{k}$ be the spectral decomposition of A. Then

$$
\widehat{\alpha}(t, A)=\sum_{k=1}^{n} e^{i\left(\pi+2 \lambda_{k} t\right)} C_{k} .
$$

Proof. For $t>0$ with $\alpha(t, A) \in V$,

$$
p(\alpha(t, A))=\sum_{k=1}^{n} \frac{\tan \lambda_{k} t-i}{\tan \lambda_{k} t+i} C_{k}
$$

and

$$
\frac{\tan \lambda_{k} t-i}{\tan \lambda_{k} t+i}=\sin ^{2} \lambda_{k} t \cos ^{2} \lambda_{k} t-2 i \sin \lambda_{k} t \cos \lambda_{k} t=e^{i\left(\pi+2 \lambda_{k} t\right)}
$$

The symmetry $\widehat{j}:=p \circ j \circ c$ on Σ_{n} corresponding to the symmetry j on \mathcal{M} is the symmetry about the origin, i.e., $\widehat{j}(Z)=-Z$. Let J be the involution on Σ_{n} defined by $J(Z)=-\bar{Z}$. Then since $\bar{Z}=Z^{-1}$ for any $Z \in \Sigma_{n}$, this involution is just $J(Z)=-Z^{-1}$ and $J=j$ on $V=\operatorname{Sym}(n, \mathbb{R})$. By Proposition 2.2, we have

Corollary 2.3. If $\alpha(t, A)$ is a symmetric geodesic on \mathcal{M} with $A=$ $\sum_{k=1}^{n} r p_{k} C_{k}$ then

$$
\begin{aligned}
& \widehat{j} \widehat{\alpha}(t, A)=\widehat{\alpha}\left(t+\frac{\pi}{2 r}, A\right), \\
& J \widehat{\alpha}(t, A)= \begin{cases}\widehat{\alpha}\left(\frac{\pi}{2 r}-t, A\right) & \text { if } 0 \leq t \leq \frac{\pi}{2 r} \\
\widehat{\alpha}\left(\frac{3}{2 r} \pi-t, A\right) & \text { if } \frac{\pi}{2 r} \leq t \leq \frac{\pi}{r}\end{cases}
\end{aligned}
$$

In particular, $\widehat{\alpha}(t, A)$ is invariant under both involutions \widehat{j} and J on Σ_{n}.

Let $\operatorname{Fix}(J)$ denote the set of all fixed points of the involution J on Σ_{n}. The following lemma will be useful in what follows.

Lemma 2.4. Let $P \in \operatorname{GL}(n, \mathbb{R})$ be an orthogonal transformation and let $A \in \operatorname{Sym}(n, \mathbb{R})$. Then:
(1) $\widehat{\alpha}\left(t, P A P^{t}\right)=P \widehat{\alpha}(t, A) P^{t}$.
(2) $P \operatorname{Fix}(J) P^{t}=\operatorname{Fix}(J)$.
(3) $\widehat{\alpha}\left(t, P A P^{t}\right) \cap \operatorname{Fix}(J)=P(\widehat{\alpha}(t, A) \cap \operatorname{Fix}(J)) P^{t}$.

Proof. Let $A=\sum_{k=1}^{n} \lambda_{k} C_{k}$ be the spectral decomposition of A and let P be an orthogonal transformation. Then $\left\{P C_{k} P^{t}\right\}_{k=1}^{n}$ is a complete system of orthogonal projections. Hence (1) follows from Proposition 2.2, (2) follows from the fact that for any $Z \in \Sigma_{n}, J\left(P Z P^{t}\right)=-\left(P Z P^{t}\right)^{-1}=P J(Z) P^{t}$, and (3) follows from (1) and (2).
3. Closed geodesics in the Shilov boundary Σ_{2}. From now on, we shall restrict our attention to the space $V=\operatorname{Sym}(2, \mathbb{R})$. Recall that the Shilov boundary Σ_{2} of V is given by

$$
\begin{aligned}
\Sigma_{2}=\{Z \in \operatorname{Sym}(2, \mathbb{C}) \mid Z= & \left(\begin{array}{ll}
z_{1} & z_{2} \\
z_{2} & z_{3}
\end{array}\right) \\
& \text { is an invertible matrix with } \left.\bar{Z}=Z^{-1}\right\}
\end{aligned}
$$

We identify $Z=\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{2} & z_{3}\end{array}\right) \in \operatorname{Sym}(2, \mathbb{C})$ with $\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}$. Under this identification, the Shilov boundary Σ_{2} of $\operatorname{Sym}(2, \mathbb{R})$ can be written as

$$
\Sigma_{2}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}\left|z_{1} \bar{z}_{2}+z_{2} \bar{z}_{3}=0,\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=1\right\}\right.
$$

Let $A(\neq 0) \in \operatorname{Sym}(2, \mathbb{R})$ and let $\alpha(t, A)$ be the closed geodesic in \mathcal{M} originating at the origin $\mathbf{0}$ with direction A. Let $A=\lambda_{1} C_{1}+\lambda_{2} C_{2}$ be the spectral decomposition of A. Then, from Theorem 4.2 of [5], we know that $\lambda_{1}=r p$ and $\lambda_{2}=r q$ for some real $r>0$ and coprime integers p and q. Set $E_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $E_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. Note that $\mathbf{e}=\left\{E_{1}, E_{2}\right\}$ is a complete system of orthogonal projections. It is well known that the orthogonal group $\mathrm{SO}(2)$ acts transitively on the set of complete systems of orthogonal projections. Thus there exists a unique orthogonal matrix

$$
P_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \in \mathrm{SO}(2) \quad(\theta \in[0, \pi])
$$

such that $C_{i}=P_{\theta} E_{i} P_{\theta}^{t}(i=1,2)$, i.e., $A=P_{\theta} A_{0} P_{\theta}^{t}$, where $A_{0}:=(r p) E_{1}+$ $(r q) E_{2}$. By Proposition 2.2 and Lemma 2.4, we obtain
$\widehat{\alpha}(t, A)$
$=\left(\begin{array}{cc}\cos ^{2} \theta e^{i(\pi+2 r p t)}+\sin ^{2} \theta e^{i(\pi+2 r q t)} & \sin \theta \cos \theta\left(e^{i(\pi+2 r q t)}-e^{i(\pi+2 r p t)}\right) \\ \sin \theta \cos \theta\left(e^{i(\pi+2 r q t)}-e^{i(\pi+2 r p t)}\right) & \sin ^{2} \theta e^{i(\pi+2 r p t)}+\cos ^{2} \theta e^{i(\pi+2 r q t)}\end{array}\right)$.

Definition 3.1. Let $A(\neq 0) \in \operatorname{Sym}(2, \mathbb{R})$ be a 2×2 symmetric matrix which has the spectral decomposition $A=(r p) C_{1}+(r q) C_{2}$, where $r>0$ is a real number and p and q are coprime integers, and let $\alpha(t, A)$ be the closed geodesic in the conformal compactification \mathcal{M} of $\operatorname{Sym}(2, \mathbb{R})$ originating at $\mathbf{0}$ with direction A.
(1) $\kappa\left(A_{0}\right)$ is the knot in Σ_{2} defined by $\kappa\left(A_{0}\right)=\left\{\widehat{\alpha}\left(t, A_{0}\right) \in \Sigma_{2} \mid 0 \leq t \leq\right.$ $\pi / r\}$, i.e., $\kappa\left(A_{0}\right)=\left\{\left(e^{i(\pi+2 p s)}, 0, e^{i(\pi+2 q s)}\right) \in \Sigma_{2} \mid 0 \leq s \leq \pi\right\}$.
(2) $\kappa(A)$ is the knot in Σ_{2} defined by $\kappa(A)=\left\{\widehat{\alpha}(t, A) \in \Sigma_{2} \mid 0 \leq t \leq\right.$ $\pi / r\}$, i.e., $\kappa(A)=\left\{\left(z_{1}(s), z_{2}(s), z_{3}(s)\right) \in \Sigma_{2} \mid 0 \leq s \leq \pi\right\}$, where

$$
\begin{aligned}
& z_{1}(s)=-\cos ^{2} \theta e^{i(2 p s)}-\sin ^{2} \theta e^{i(2 q s)} \\
& z_{2}(s)=\sin \theta \cos \theta\left(e^{i(2 p s)}-e^{i(2 q s)}\right) \\
& z_{3}(s)=-\sin ^{2} \theta e^{i(2 p s)}-\cos ^{2} \theta e^{i(2 q s)}
\end{aligned}
$$

and $\theta \in(0, \pi)$ satisfies $C_{i}=P_{\theta} E_{i} P_{\theta}^{t}(i=1,2)$.
Proposition 3.2. Let $A(\neq 0) \in \operatorname{Sym}(2, \mathbb{R})$. Then the knots $\kappa\left(A_{0}\right)$ and $\kappa(A)$ in Σ_{2} are equivalent.

Proof. Let $A=\lambda_{1} C_{1}+\lambda_{2} C_{2}$ be the spectral decomposition of A and let $\theta \in[0, \pi]$ be such that $C_{i}=P_{\theta} E_{i} P_{\theta}^{t}(i=1,2)$. If $\theta=0$, then the assertion is obvious. Suppose that $\theta \neq 0$. For $s \in[0, \theta]$, let $h_{s}: \Sigma_{2} \rightarrow \Sigma_{2}$ be a homeomorphism of Σ_{2} defined by $h_{s}(Z)=P_{s} Z P_{s}^{t}$ for $Z \in \Sigma_{2}$, with Σ_{2} viewed as a subspace of $\operatorname{Sym}(2, \mathbb{C})$. Then it is clear that h_{0} is the identity on Σ_{2} and, by Lemma 2.4, $h_{\theta}\left(\kappa\left(A_{0}\right)\right)=\kappa(A)$. Furthermore, the map H : $\Sigma_{2} \times[0, \theta] \rightarrow \Sigma_{2} \times[0, \theta]$ defined by $H(Z, s)=\left(h_{s}(Z), s\right)$ is obviously an ambient isotopy between $\kappa\left(A_{0}\right)$ and $\kappa(A)$. This completes the proof.

Theorem 3.3. Let $A \in \operatorname{Sym}(2, \mathbb{R})$ be a 2×2 symmetric matrix such that $\alpha(t, A)$ is a symmetric geodesic in \mathcal{M}. Then the corresponding knot $\kappa(A)$ in Σ_{2} has period 2 of type both (\emptyset, \emptyset) and $\left(S^{1} \cup S^{0}, S^{0}\right)$.

Proof. Let $\widehat{\alpha}(t, A)$ be the symmetric geodesic corresponding to $\alpha(t, A)$. By Corollary 2.3, it is invariant under both \widehat{j} and J. Since \widehat{j} has no fixed points, it is obvious that $\kappa(A)$ has period 2 of type (\emptyset, \emptyset) in Σ_{2}. Observe that the set of fixed points of the involution J on Σ_{2} is

$$
\operatorname{Fix}(J)=\{(i \cos \theta, i \sin \theta,-i \cos \theta) \mid \theta \in \mathbb{R}\} \cup\{ \pm(i, 0, i)\} \cong S^{1} \cup S^{0}
$$

where $S^{k}(k=0,1)$ denotes the k-sphere.
To prove that $\kappa(A)$ is of type ($S^{1} \cup S^{0}, S^{0}$) it suffices from Lemma 2.4 and Proposition 3.2 to show that $\kappa\left(A_{0}\right)$ meets $\operatorname{Fix}(J)$ in exactly two points. Let $A=\lambda_{1} C_{1}+\lambda_{2} C_{2}$ be the spectral decomposition. Then $A_{0}=$ $\lambda_{1} E_{1}+\lambda_{2} E_{2}$ and, by Theorem 4.4 of [5] and time reparametrization, we may assume that λ_{1} and λ_{2} are relatively prime odd integers. Then the possible points in $\kappa\left(A_{0}\right) \cap \operatorname{Fix}(J)$ are of the form $\pm(i, 0,-i), \pm(i, 0, i)$ since
$\kappa\left(A_{0}\right)=\left(e^{i\left(\pi+2 \lambda_{1} t\right)}, 0, e^{i\left(\pi+2 \lambda_{2} t\right)}\right)(0 \leq t \leq \pi)$. In several steps, we prove that $e^{i\left(\pi+2 \lambda_{1} t\right)}=e^{i\left(\pi+2 \lambda_{2} t\right)}=i$ for some $0<t<\pi$ if and only if $\left(\lambda_{1}, \lambda_{2}\right)=$ $(4 m-1,4 n-1)$ or $(4 m-3,4 n-3)$ for some $m, n \in \mathbb{Z}$.

Suppose that $e^{i\left(\pi+2 \lambda_{1} t\right)}=e^{i\left(\pi+2 \lambda_{2} t\right)}=i$ for some $0<t<\pi$. Then
STEP 1. $t=\frac{4 m-1}{4 \lambda_{1}} \pi=\frac{4 n-1}{4 \lambda_{2}} \pi$ for some $m, n \in \mathbb{Z}$.
STEP 2. $4 m-1=\lambda_{1} k, 4 n-1=\lambda_{2} k$ for some $k \in \mathbb{Z}$ because λ_{1} and λ_{2} are relatively prime.

Step 3. $k=1$ or $k=3$. Since $4 m-1$ and λ_{1} are odd integers, k must be an odd integer. Note that $t \in(0, \pi)$. By Step $1, k$ is 1 or 3 .

If $k=1$, then $\lambda_{1}=4 m-1$ and $\lambda_{2}=4 n-1$. If $k=3$, then $\lambda_{1}=$ $(4 m-1) / 3$ and $\lambda_{2}=(4 n-1) / 3$. In this case we may write $((4 m-1) / 3$, $(4 n-1) / 3)$ as $\left(4 m^{\prime}-3,4 n^{\prime}-3\right)$.

The converse argument is easily followed by taking $t=\pi / 4$ (respectively, $t=3 \pi / 4)$ for $\lambda_{1}=(4 m-1,4 n-1)$ (respectively, $\left.\lambda_{2}=(4 m-3,4 n-3)\right)$.

Similarly, we have $e^{i\left(\pi+2 \lambda_{1} t\right)}=i$ and $e^{i\left(\pi+2 \lambda_{2} t\right)}=-i$ for some $0<t<\pi$ if and only if $\left(\lambda_{1}, \lambda_{2}\right)=(4 m-1,4 n-3)$ or $(4 m-3,4 n-1)$ for some $m, n \in \mathbb{Z}$.

Furthermore, note that if $e^{i\left(\pi+2 \lambda_{1} t\right)}=e^{i\left(\pi+2 \lambda_{2} t\right)}=i$ for some $0<t<\pi$, then $e^{i\left(\pi+2 \lambda_{1} t^{\prime}\right)}=e^{i\left(\pi+2 \lambda_{2} t^{\prime}\right)}=-i$ for some $0<t^{\prime}<\pi$ (in this case, $t^{\prime}=\pi / 4$ or $\left.t^{\prime}=3 \pi / 4\right)$. Similarly, if $e^{i\left(\pi+2 \lambda_{1} t\right)}=i$ and $e^{i\left(\pi+2 \lambda_{2} t\right)}=-i$ for some $0<t<\pi$, then $e^{i\left(\pi+2 \lambda_{1} t^{\prime}\right)}=-i, e^{i\left(\pi+2 \lambda_{2} t^{\prime}\right)}=i$ for some $0<t^{\prime}<\pi$.

Finally, by observing that the sets

$$
\begin{aligned}
X:= & \left\{(4 m-1,4 n-1) \in E_{s} \mid m, n \in \mathbb{Z}\right\} \\
& \cup\left\{(4 m-3,4 n-3) \in E_{s} \mid m, n \in \mathbb{Z}\right\} \\
Y:= & \left\{(4 m-1,4 n-3) \in E_{s} \mid m, n \in \mathbb{Z}\right\} \\
& \cup\left\{(4 m-3,4 n-1) \in E_{s} \mid m, n \in \mathbb{Z}\right\}
\end{aligned}
$$

are disjoint and cover all pairs of coprime odd integers, we complete the proof.

REMARK 3.4. Each symmetric geodesic $\widehat{\alpha}(t, A)$ meets $\operatorname{Fix}(J)$ at $t=$ $\pi /(4 r)$ and $t=3 \pi /(4 r)$.
4. Covering links of the closed geodesics. Let $N=S^{1} \times[0,1]$ be an annulus in \mathbb{R}^{3} and let Φ be the map from $N \times S^{1}$ to Σ_{2} defined by

$$
\Phi\left(e^{i \phi}, r, e^{i \psi}\right)=\left(\sqrt{1-r^{2}} e^{i \phi}, r e^{i \psi},-\sqrt{1-r^{2}} e^{i(2 \psi-\phi)}\right)
$$

for $\left(e^{i \phi}, r, e^{i \psi}\right) \in S^{1} \times[0,1] \times S^{1}$. Note that $\Phi\left(e^{i \phi}, 0, e^{i \psi}\right)=\left(e^{i \phi}, 0,-e^{i(2 \psi-\phi)}\right)$ and $\Phi\left(e^{i \phi}, 1, e^{i \psi}\right)=\left(0, e^{i \psi}, 0\right)$. Now let $\left(z_{1}, z_{2}, z_{3}\right) \in \Sigma_{2}$ with $z_{1}=r e^{i \phi} \in \mathbb{C}$. Then $0 \leq r \leq 1$ and for some $\psi \in[0,2 \pi]$, we have the following.

$$
\begin{align*}
& \text { If } r=0 \text {, then }\left(z_{1}, z_{2}, z_{3}\right)=\left(0, e^{i \psi}, 0\right) \text { and } \tag{4-1}\\
& \qquad \Phi^{-1}\left(z_{1}, z_{2}, z_{3}\right)=\left\{\left(e^{i \phi}, 1, e^{i \psi}\right) \mid 0 \leq \phi \leq 2 \pi\right\}
\end{align*}
$$

$$
\begin{equation*}
\text { If } r=1 \text {, then }\left(z_{1}, z_{2}, z_{3}\right)=\left(e^{i \phi}, 0, e^{i \psi}\right) \text { and } \tag{4-2}
\end{equation*}
$$

$$
\begin{equation*}
\Phi^{-1}\left(z_{1}, z_{2}, z_{3}\right)=\left(e^{i \phi}, 0, \pm e^{i(\pi+\phi+\psi) / 2}\right) \tag{4-3}
\end{equation*}
$$

$\Phi^{-1}\left(z_{1}, z_{2}, z_{3}\right)=\left(\frac{1}{\left|z_{1}\right|} z_{1}, \sqrt{1-\left|z_{1}\right|^{2}}, \frac{1}{\sqrt{1-\left|z_{1}\right|^{2}}} z_{2}\right)=\left(e^{i \phi}, \sqrt{1-r^{2}}, e^{i \psi}\right)$.
This shows that Σ_{2} is an identification space of $N \times S^{1}=S^{1} \times[0,1] \times S^{1}$. In fact, this observation gives us the following

Theorem 4.1. The Shilov boundary Σ_{2} of $\operatorname{Sym}(2, \mathbb{R})$ is homeomorphic to the non-orientable closed 3-manifold obtained from the solid torus $D^{2} \times S^{1}$ by identifying (w, z) with $(w,-z)$ for each (w, z) in the boundary $\partial D^{2} \times S^{1}$ of the solid torus.

Now let $S^{2}=\left\{\left(\sqrt{1-r^{2}} e^{i \phi}, r\right) \in \mathbb{C} \times \mathbb{R} \mid 0 \leq \phi \leq 2 \pi,-1 \leq r \leq 1\right\}$ be the unit sphere in \mathbb{R}^{3} and let $\widehat{N}=S^{1} \times[-1,1]$ be an annulus in \mathbb{R}^{3}. Let $f: \widehat{N} \rightarrow S^{2}$ be the map defined by $f\left(e^{i \phi}, r\right)=\left(\sqrt{1-r^{2}} e^{i \phi}, r\right)$ for $\left(e^{i \phi}, r\right) \in \widehat{N}$ and let $g: \widehat{N} \rightarrow N$ be defined by $g\left(e^{i \phi}, r\right)=\left(e^{i \phi},|r|\right)$ for $\left(e^{i \phi}, r\right) \in \widehat{N}$. It is easy to see that S^{2} is an identification space of \widehat{N} and g is a 2 -fold branched covering projection with branch set $S^{1} \times\{0\} \subset N$. The preimage of this branch set by g is $S^{1} \times\{0\} \subset \widehat{N}$. Let $\Psi: S^{2} \times S^{1} \rightarrow \Sigma_{2}$ be the map defined by $\Psi=\Phi \circ\left(g \times \operatorname{Id}_{S^{1}}\right) \circ\left(f \times \operatorname{Id}_{S^{1}}\right)^{-1}$, where $\operatorname{Id}_{S^{1}}$ denotes the identity map of S^{1} :

We observe that for $\left(\sqrt{1-r^{2}} e^{i \phi}, r, e^{i \psi}\right) \in S^{2} \times S^{1}$,

$$
\Psi\left(\sqrt{1-r^{2}} e^{i \phi}, r, e^{i \psi}\right)=\left(\sqrt{1-r^{2}} e^{i \phi},|r| e^{i \psi},-\sqrt{1-r^{2}} e^{i(2 \psi-\phi)}\right)
$$

Then it is not difficult to see that the map Ψ is a 2 -fold covering projection and hence $S^{2} \times S^{1}$ is an orientable double cover of the Shilov boundary Σ_{2} of $\operatorname{Sym}(2, \mathbb{R})$.

Let $\widehat{\kappa}\left(A_{0}\right):=\Psi^{-1}\left(\kappa\left(A_{0}\right)\right)$ and $\widehat{\kappa}(A):=\Psi^{-1}(\kappa(A))$. From (4-1), (4-2), (4-3), and (4.1) we obtain a certain class of knots and links in $S^{2} \times S^{1}$ as follows.

Definition 4.2. Let $A(\neq 0) \in \operatorname{Sym}(2, \mathbb{R})$ be a 2×2 symmetric matrix which has the spectral decomposition $A=(r p) C_{1}+(r q) C_{2}$, where $r>0$ is a real number and p and q are coprime integers.
(1) $\widehat{\kappa}\left(A_{0}\right)=\left\{\left(e^{i(\pi+2 p s)}, 0, \pm e^{i(3 \pi / 2+(p+q) s)}\right) \in S^{2} \times S^{1} \mid 0 \leq s \leq \pi\right\}$.
(2) $\widehat{\kappa}(A)=\left\{a(s) \in S^{2} \times S^{1}\left|0 \leq\left|z_{1}(s)\right|<1,0 \leq s \leq \pi\right\} \cup\right.$
$\left\{\Psi^{-1}\left(z_{1}(s), 0, z_{3}(s)\right) \in S^{2} \times S^{1} \left\lvert\, s=\frac{k \pi}{p-q}\right.\right.$ for $k \in \mathbb{Z}$ with $\left.0 \leq \frac{k}{p-q} \leq 1\right\}$,
where

$$
a(s)=\left(z_{1}(s), \pm \sqrt{1-\left|z_{1}(s)\right|^{2}}, \frac{1}{\sqrt{1-\left|z_{1}(s)\right|^{2}}} z_{2}(s)\right)
$$

with

$$
\begin{aligned}
& z_{1}(s)=-\cos ^{2} \theta e^{i(2 p s)}-\sin ^{2} \theta e^{i(2 q s)}, \\
& z_{2}(s)=\sin \theta \cos \theta\left(e^{i(2 p s)}-e^{i(2 q s)}\right), \\
& z_{3}(s)=-\sin ^{2} \theta e^{i(2 p s)}-\cos ^{2} \theta e^{i(2 q s)},
\end{aligned}
$$

and $\theta \in(0, \pi)-\{\pi / 2\}$ satisfying $C_{i}=P_{\theta} E_{i} P_{\theta}^{t}(i=1,2)$.
Theorem 4.3. Let $A \in \operatorname{Sym}(2, \mathbb{R})$ be a 2×2 symmetric matrix which has the spectral decomposition $A=(r p) C_{1}+(r q) C_{2}$, where $r>0$ is a real number and p, q are coprime integers. Let $\theta \in[0, \pi]$ be such that $A=P_{\theta} A_{0} P_{\theta}^{t}$.
(1) If both p and q are odd integers, or equivalently, the geodesic $\alpha(t, A)$ in \mathcal{M} is symmetric, then $\widehat{\kappa}\left(A_{0}\right)$ is a link of 2 -components in $S^{2} \times S^{1}$ which has period 2 of type ($S^{1} \times S^{1}, T(|p|,|p+q| / 2) \dot{\cup} T(|p|,|p+q| / 2)$).
(2) If one of p and q is an even integer, or equivalently, the geodesic $\alpha(t, A)$ in \mathcal{M} is not symmetric, then $\widehat{\kappa}\left(A_{0}\right)$ is a knot in $S^{2} \times S^{1}$ which has period 2 of type $\left(S^{1} \times S^{1}, T(|p|,|p+q|)\right)$.
(3) If $\theta \neq 0, \pi / 2, \pi$, then $\widehat{\kappa}(A)$ is a link in $S^{2} \times S^{1}$ which has period 2 of type ($S^{1} \times S^{1}, 2|p-q|$ points).

Proof. Let $h: S^{2} \times S^{1} \rightarrow S^{2} \times S^{1}$ be an involution of $S^{2} \times S^{1}$ defined by $h\left(\sqrt{1-r^{2}} e^{i \phi}, r, e^{i \psi}\right)=\left(\sqrt{1-r^{2}} e^{i \phi},-r, e^{i \psi}\right)$. Then $\operatorname{Fix}(h)=\left\{\left(e^{i \phi}, 0, e^{i \psi}\right) \in\right.$ $\left.S^{2} \times S^{1} \mid 0 \leq \phi, \psi \leq 2 \pi\right\} \cong S^{1} \times S^{1}$. Now recall that

$$
\begin{aligned}
\widehat{\kappa}\left(A_{0}\right)= & \left\{\left(e^{i(\pi+2 p s)}, 0, e^{i(\pi / 2+(p+q) s}\right)\right. \\
& \left.\cup\left(e^{i(\pi+2 p s)}, 0, e^{i(\pi+\pi / 2+(p+q) s)}\right) \mid 0 \leq s \leq \pi\right\} .
\end{aligned}
$$

It is clear that $h\left(\widehat{\kappa}\left(A_{0}\right)\right)=\widehat{\kappa}\left(A_{0}\right)$ and $\operatorname{Fix}(h) \cap \widehat{\kappa}\left(A_{0}\right)=\widehat{\kappa}\left(A_{0}\right)$.
(1) If both p and q are odd integers, then $p+q$ must be an even integer. Hence

$$
\begin{aligned}
\widehat{\kappa}\left(A_{0}\right)= & \left\{\left(e^{i(\pi+p) t}, 0, e^{i(\pi / 2+(p+q) t / 2}\right)\right. \\
& \left.\dot{\cup}\left(e^{i(\pi+p) t}, 0, e^{i(\pi+\pi / 2+(p+q) t / 2)}\right) \mid 0 \leq t \leq 2 \pi\right\} .
\end{aligned}
$$

This implies that $\widehat{\kappa}\left(A_{0}\right)$ is the disjoint union of two torus knots of type $(|p|,|p+q| / 2)$.
(2) If one of p and q is an even integer, then $p+q$ must be an odd integer because $(p, q)=1$. So

$$
\begin{aligned}
\widehat{\kappa}\left(A_{0}\right)= & \left\{\left(e^{i(\pi+2 p s)}, 0, e^{i(\pi / 2+(p+q) s)}\right)\right. \\
& \left.\cup\left(e^{i(\pi+2 p s)}, 0, e^{i(\pi+\pi / 2+(p+q) s)}\right) \mid 0 \leq s \leq \pi\right\} \\
= & \left\{\left(e^{i(\pi+p) t}, 0, e^{i(\pi+\pi / 2+(p+q) t)}\right) \mid 0 \leq t \leq 2 \pi\right\} .
\end{aligned}
$$

Hence $\widehat{\kappa}\left(A_{0}\right)$ is the torus knot of type $(|p|,|p+q|)$.
(3) Obviously, $h(\widehat{\kappa}(A))=\widehat{\kappa}(A)$. Let $a(s):=\left(z_{1}(s), z_{2}(s), z_{3}(s)\right) \in \widehat{\kappa}(A)$. Then

$$
\begin{aligned}
a(s) \in \operatorname{Fix}(h) \cap \widehat{\kappa}(A) & \Leftrightarrow\left|z_{1}(s)\right|=1 \\
& \Leftrightarrow s=\frac{k \pi}{p-q} \text { for } k \in \mathbb{Z} \text { with } 0 \leq \frac{k}{p-q} \leq 1 .
\end{aligned}
$$

Hence the set $\operatorname{Fix}(h) \cap \widehat{\kappa}(A)$ consists of $2|p-q|$ points. This completes the proof.

Theorem 4.4. Let $A \in \operatorname{Sym}(2, \mathbb{R})$ be a 2×2 symmetric matrix which has the spectral decomposition $A=(r p) C_{1}+(r q) C_{2}$, where $r>0$ is a real number and both p and q are coprime odd integers. Then $\widehat{\kappa}\left(A_{0}\right)$ is a link in $S^{2} \times S^{1}$ which has period 2 of type ($\left.S^{1} \dot{\cup} S^{1}, \emptyset\right)$.

Proof. Let $h: S^{2} \times S^{1} \rightarrow S^{2} \times S^{1}$ be an involution of $S^{2} \times S^{1}$ defined by $h\left(\sqrt{1-r^{2}} e^{i \phi}, r, e^{i \psi}\right)=\left(-\sqrt{1-r^{2}} e^{i \phi}, r, e^{i \psi}\right)$ for any $\left(\sqrt{1-r^{2}} e^{i \phi}, r, e^{i \psi}\right)$ $\in S^{2} \times S^{1}$. Then $\operatorname{Fix}(h)=\left\{\left(0,1, e^{i \psi}\right),\left(0,-1, e^{i \psi}\right) \in S^{2} \times S^{1} \mid 0 \leq \psi \leq 2 \pi\right\}$ $\cong S^{1} \dot{\cup} S^{1}$ and $\operatorname{Fix}(h) \cap \widehat{\kappa}\left(A_{0}\right)=\emptyset$. Now let $b(s):=\left(e^{i(\pi+2 p s)}, 0, e^{i(\pi+2 q s)}\right)$ $\in \widehat{\kappa}\left(A_{0}\right)$. It is easy to check that

$$
h(b(s))= \begin{cases}b(\pi / 2+s) & \text { for } 0 \leq s \leq \pi / 2, \\ b(s-\pi / 2) & \text { for } \pi \leq s \leq \pi\end{cases}
$$

This completes the proof.

References

[1] W. Bertram, Un théorème de Liouville pour les algèbres de Jordan, Bull. Soc. Math. France 124 (1996), 299-327.
[2] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Univ. Press, Oxford, 1994.
[3] R. H. Fox, Knots and periodic transformations, in: Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Institute, 1961), Prentice-Hall, 1962, 177182.
[4] K. W. Kwun, Piecewise linear involutions of $S^{1} \times S^{2}$, Michigan Math. J. 16 (1969), 93-96.
[5] S. Y. Lee, Y. Lim and C.-Y. Park, Symmetric geodesics on conformal compactifications of Euclidean Jordan algebras, Bull. Austral. Math. Soc. 59 (1999), 187-201.
[6] B. Makarevich, Ideal points of semisimple Jordan algebras, Mat. Zametki 15 (1974), 295-305 (in Russian).
[7] J. W. Morgan and H. Bass, The Smith Conjecture, Academic Press, 1984.
[8] D. Rolfsen, Knots and Links, Publish or Perish, 1976.
[9] P. A. Smith, Transformations of finite period II, Ann. of Math. 40 (1939), 690-711.
[10] Y. Tao, On fixed point free involutions of $S^{1} \times S^{2}$, Osaka Math. J. 14 (1962), 145-152.
[11] J. L. Tollefson, Involutions on $S^{1} \times S^{2}$ and other 3-manifolds, Trans. Amer. Math. Soc. 183 (1973), 139-152.

Department of Mathematics
College of Natural Sciences
Pusan National University
Pusan 609-735, Republic of Korea
E-mail: sangyoul@hyowon.pusan.ac.kr ylim@kyungpook.ac.kr

Department of Mathematics
College of Natural Sciences Kyungpook National University Taegu 702-701, Republic of Korea E-mail: chnypark@kyungpook.ac.kr

[^0]: 2000 Mathematics Subject Classification: 32M15, 53C35, 57M25.
 Key words and phrases: geodesic, symmetric matrix, Shilov boundary, 2-periodic knot. This work was partially supported by TGRC-KOSEF.

