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Gaussian automorphisms
whose ergodic self-joinings are Gaussian

by

M. L e m a ńc z y k (Toruń), F. P a r r e a u (Paris)
and J.-P. T h o u v e n o t (Paris)

Abstract. We study ergodic properties of the class of Gaussian automorphisms whose
ergodic self-joinings remain Gaussian. For such automorphisms we describe the structure
of their factors and of their centralizer. We show that Gaussian automorphisms with simple
spectrum belong to this class.

We prove a new sufficient condition for non-disjointness of automorphisms giving rise
to a better understanding of Furstenberg’s problem relating disjointness to the lack of
common factors. This and an elaborate study of isomorphisms between classical factors of
Gaussian automorphisms allow us to give a complete solution of the disjointness problem
between a Gaussian automorphism whose ergodic self-joinings remain Gaussian and an
arbitrary Gaussian automorphism.

INTRODUCTION

Although the theory of Gaussian dynamical systems is a classical part
of modern ergodic theory, little is known about factors of Gaussian systems.
Since each Gaussian system with positive entropy is a direct product of a zero
entropy Gaussian automorphism and a Bernoulli automorphism with infinite
entropy (see e.g. [26]), it follows from [31] that the factor problem is only
the problem for zero entropy Gaussian systems, or equivalently, for those
automorphisms whose underlying stationary process has singular spectral
measure (see [26]).

It was already noticed by the third author in [32] that the Gaussian–
Kronecker automorphisms have only those factors which are directly inher-
ited from the Gaussian structure, and which we call here classical factors.
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In this paper we point out that this remains true for all Gaussian automor-
phisms whose ergodic self-joinings remain Gaussian, in the sense that the
Gaussian spaces of the marginal factors span a Gaussian space. We will call
such Gaussian automorphisms GAG (∗). The GAG property reduces the set
of self-joinings to a minimum and therefore the GAG’s have many strong
ergodic properties.

Recall that any continuous symmetric finite measure σ on T determines a
stationary centered Gaussian process (Xn) whose spectral measure is σ. The
corresponding measure-preserving automorphism Tσ will be called a stan-
dard Gaussian automorphism. Here we have to consider generalized Gaus-
sian automorphisms, where the Gaussian space is not necessarily the space
of a process, but it turns out that the GAG property depends only on the
spectral type of the associated unitary operator restricted to the Gaussian
space. Thus a continuous symmetric measure σ on T will be called a GAG
measure if Tσ is GAG.

We show that the class of GAG measures is stable for some basic opera-
tions, in particular translations. Moreover, a GAG measure is singular with
respect to each of its translates.

The set of self-joinings of a given measure-preserving automorphism has
a natural structure of a semigroup (see [29] or Section 1.3 below). We show
that in the case of standard Gaussian automorphisms the GAG property is
characterized by the fact that the semigroup of self-joinings is Abelian. In
particular, it follows that all Gaussian automorphisms with simple spectrum
are GAG.

We describe the structure of factors of a GAG. These are only classical
factors. The only possible isomorphisms between two factors of a GAG are
restrictions of Gaussian isomorphisms. By some elementary facts from the
representation theory of compact groups, this will allow us to give new
examples of non-disjoint automorphisms which have no common non-trivial
factors, generalizing an earlier unpublished joint result of del Junco and the
third author. We show that the only factors of a GAG which are Gaussian are
those determined by subspaces of the Gaussian space, and it follows that the
only possible isomorphisms between a GAG and a Gaussian automorphism
are also Gaussian. In the standard case we show that all factors of a GAG
automorphism are semisimple (in the sense of [14]).

We prove that if two ergodic automorphisms T, S are not disjoint then
an ergodic infinite self-joining of T has a common non-trivial factor with S.
Building on that we completely solve the problem of disjointness between
a GAG and an arbitrary Gaussian automorphism. It turns out that if they
are not disjoint then they have a common factor, and even much more, the

(∗) GAG comes from the French abbreviation of gaussiens à autocouplages gaussiens.
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spectral types of the GAG and of the other Gaussian on their Gaussian
spaces must have some translations which are not mutually singular. This is
an essential improvement of the main disjointness result of Tσ and Tτ in the
case of σ and τ concentrated on sets without rational relations from [17].

For other recent results on Gaussian automorphisms see [12], [13], [18],
[26], [27], [28].

1. BASIC DEFINITIONS, NOTATION AND INTRODUCTORY RESULTS

1.1. Basic facts from spectral theory of unitary operators. Let
H be a Hilbert space. We denote by L(H) the algebra of all bounded linear
operators on H and by U(H) the Polish group of all unitary operators on
H equipped with the strong operator topology.

Given U ∈ U(H) and h ∈ H the spectral measure of h under U is denoted
by σh (or σh,U if needed). It is the positive finite Borel measure on T (we
shall simply say measure on T; throughout, T is taken as the circle group)
given by

σ̂h(n) =
\
T
zn dσh(z) = (Unh |h), n ∈ Z.

Define Z(h) = span{Unh : n ∈ Z}, the cyclic subspace generated by h.
The restriction of U to Z(h) is unitarily equivalent, by the correspondence
Unh 7→ zn, to the operator V of multiplication by the identity function z
on L2(T, σh).

The operator U has simple spectrum if there exists h ∈ H such that
H = Z(h). Then the spectral representation of U as V yields an isomorphism
between the von Neumann algebra W ∗(U) generated by U (i.e. the smallest
weakly closed subalgebra of L(H) containing {Un : n ∈ Z}) and L∞(T, σh).
Moreover, as any bounded operator on L2(T, σh) which commutes with V
is the multiplication operator by a bounded Borel function, any operator in
L(H) which commutes with U belongs to W ∗(U).

In the general case, up to unitary isomorphism, U is determined by its
maximal spectral type σU (which is, up to equivalence of measures, some σh0

with the property that σh � σh0 for each h ∈ H), and its multiplicity func-
tion MU : T → {1, . . . ,∞} defined σU -a.e. Then W ∗(U) is still isomorphic
to L∞(T, σU ) in such a way that U corresponds to the identity function z.
The spectral projector corresponding to the indicator function χA of a Borel
subset of T will be denoted by πA and the spectral subspace πAH by HA.
Since πA ∈ W ∗(U), HA is invariant under any operator W ∈ L(H) which
commutes with U . When the multiplicity function takes a constant value n
on A, the restriction of U to HA is unitarily isomorphic to the multiplication
by z on L2(A, σU |A,H ′), where H ′ is an n-dimensional Hilbert space.

We refer to [24] or [23] for other definitions and results in spectral theory.
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1.2. Joinings of automorphisms of standard Borel spaces. Let
(X,B, µ) be a standard Borel probability space. To any automorphism T :
(X,B, µ)→ (X,B, µ), i.e. T ∈ Aut(X,B, µ), corresponds the unitary opera-
tor UT on L2(X,B, µ) given by

UT (f) = f ◦ T.
The spectral analysis of T is meant as the spectral analysis of UT , but it
is often restricted to the subspace L2

0(X,B, µ) of functions with zero mean.
Since UT preserves the subspace of real functions, σU must be the type of
a symmetric measure (σ is said to be symmetric if σ(A) = σ(A) for any
Borel subset A ⊂ T). Given a positive Borel measure σ on T we define σ̃ by
σ̃(A) := σ(A). For spectral measures of UT we then have σf = σ̃f .

The mapping T 7→ UT allows us to embed Aut(X,B, µ) as a closed
subgroup of U(L2(X,B, µ)). The strong topology restricted to Aut(X,B, µ)
is then the usual weak topology on Aut(X,B, µ).

The centralizer C(T ) of T is the closed subgroup {S ∈ Aut(X,B, µ) :
ST = TS} of Aut(X,B, µ). By a factor of T we mean any T -invariant sub-
σ-algebra A of B (more precisely, the corresponding factor is the quotient
action of T on (X/A,A, µ)). If there is no ambiguity on T , we shall also say
that B has A as its factor or that B is an extension of A, which we denote
by B → A.

Given F ⊂ L2(X,B, µ), let B(F ) denote the smallest sub-σ-algebra of B
which makes all the elements of F measurable (all σ-algebras are considered
modulo null sets). It is a factor of T if F is T -invariant. Any compact
subgroup K of C(T ) determines the compact factor

B/K = {B ∈ B : SB = B for every S ∈ K}.
If T is weakly mixing then B/K cannot be trivial (cf. e.g. [3]). Moreover, we
have the saturation condition (see [15]):

K = {S ∈ C(T ) : SA = A for each A ∈ B/K}.
Let Ti : (Xi,Bi, µi) → (Xi,Bi, µi), i = 1, 2, . . . , be a finite or infinite

sequence of automorphisms. We denote by J(T1, T2, . . .) the set of all joinings
of them, identified with the set of all T1 × T2 × . . .-invariant probability
measures λ on (X1×X2× . . . ,B1⊗B2⊗ . . .) whose marginals are equal to µi
(more precisely, the joining is the corresponding automorphism T1×T2× . . .
on (X1×X2× . . . ,B1⊗B2⊗ . . . , λ), which we also denote (T1×T2× . . . , λ)).
The subset Je(T1, T2, . . .) of ergodic joinings consists of those λ for which
this action of T1×T2× . . . is ergodic. If each Ti is ergodic then Je(T1, T2, . . .)
is the set of extremal points of J(T1, T2, . . .) and the ergodic decomposition
of each joining consists of joinings.

In the case of T1 = T2 = . . . = T we speak about self-joinings and use
the notation Jn(T ), Je

n(T ) in the case of n copies of T , and J∞(T ), Je
∞(T )

in the case of infinitely many copies.
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If T : (X,B, µ)→ (X,B, µ) is an automorphism, then with each S∈C(T )
we associate the graph self-joining λS given by

(1) λS(A×B) = µ(A ∩ S−1B).

If T is ergodic then λS is ergodic. If A is a factor of T then the relative
product over A is the self-joining µ⊗A µ in J2(T ) given by

(2) µ⊗A µ(A×B) =
\

X/A
E(A | A)E(B | A) dµ.

Assume now that T is ergodic. If A = B/K for a compact subgroup
K ⊂ C(T ) then the ergodic decomposition of the relative product T × T
over A is given by

µ⊗A µ =
\
K
λS dS,

where dS stands for the normalized Haar measure on K. A converse also
holds—Veech in [36] shows that a factor A is of the form B/K whenever its
ergodic decomposition contains solely graph joinings.

In the case of two automorphisms Ti : (Xi,Bi, µi), i = 1, 2, easy exten-
sions of formulas (1) and (2) allow us to define joinings between T1 and
T2 when an isomorphism S : (X1,B1, µ1, T1) → (X2,B2, µ2, T2) is given, or
when there is an isomorphism between a non-trivial factor of T1 and a factor
of T2 (in the latter case we say that T1 and T2 have a common factor).

An automorphism T is said to be relatively weakly mixing over A, or we
say that B → A is relatively weakly mixing , if µ ⊗A µ ∈ Je

2(T ). A notion
complementary to weak mixing is distality (see [39] for the definition). If
K ⊂ C(T ) is a compact subgroup then B → B/K is an example of a distal
extension. Moreover, if A ⊂ A′ ⊂ B are factors and B → A is distal then
so is A′ → A. Given a factor A there exists exactly one factor Â such that
A ⊂ Â ⊂ B, B → Â is relatively weakly mixing and Â → A is distal
(see [4], Th. 6.17 and the final remark on page 139). The decomposition
B → Â → A is called the Furstenberg decomposition of B → A. It follows
that, given a factor A, there exists a smallest factor Â ⊃ A such that T is
relatively weakly mixing over Â. In particular, if K ⊂ C(T ) is a compact
subgroup then B̂/K = B, that is, there is no proper factor A ⊃ B/K with
B → A relatively weakly mixing. If T is weakly mixing then the only factor
independent of B/K is the trivial (one-point) factor.

Two automorphisms Ti : (Xi,Bi, µi) → (Xi,Bi, µi), i = 1, 2, are said to
be disjoint if J(T1, T2) = {µ1 ⊗ µ2} (cf. [3]). We will then write T1 ⊥ T2.
If T1 and T2 are disjoint then they cannot have a common factor, but the
converse does not hold. On the other hand, a sufficient but not necessary
condition for T1 ⊥ T2 is that their maximal spectral types on the spaces of
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functions of zero mean be mutually singular (see [7]); one then says that T1

and T2 are spectrally disjoint .

1.3. Intertwining Markov operators. We now discuss basic prop-
erties of operators associated with joinings of two automorphisms. These
operators were introduced by Vershik. For more details, we refer to [29].

Let (Xi,Bi, µi) be probability spaces, i = 1, 2. To each probability mea-
sure λ on B1⊗B2 whose marginals are µi (i = 1, 2) corresponds the operator
Φλ : L2(X1,B1, µ1)→ L2(X2,B2, µ2), given by

(3) (Φλf | g) =
\

X1×X2

f(x1)g(x2) dλ(x1, x2)

for every f ∈ L2(X1,B1, µ1), g ∈ L2(X2,B2, µ2). It may be considered as the
conditional expectation operator with respect to the σ-algebra X1×B2 (the
σ-algebra generated by the second coordinate), restricted to L2(B1×X2, λ)
(more precisely, E(f ⊗ 1 |X × B2) = 1⊗ Φλf).

Assume now that Ti : (Xi,Bi, µi) → (Xi,Bi, µi) are automorphisms,
i = 1, 2. Since (Φλ(f ◦ T1) | g ◦ T2) = (ΦλUT1f |UT2g) = (U−1

T2
ΦλUT1f | g),

λ is T1 × T2-invariant iff U−1
T2
ΦλUT1 = Φλ and thus

λ ∈ J(T1, T2) iff ΦλUT1 = UT2Φλ.

Such operators Φ = Φλ have the Markov properties:

(4) Φf ≥ 0 if f ≥ 0, Φ1 = 1, Φ∗1 = 1.

Conversely, each operator Φ : L2(X1,B1, µ1)→ L2(X2,B2, µ2) satisfying (4)
defines a measure λ on B1 ⊗ B2 with marginals µi (i = 1, 2) and such that
Φ = Φλ, by

λ(A×B) =
\
B

Φ(χA) dµ2, A ∈ B1, B ∈ B2.

Therefore, we have a one-to-one correspondence between J(T1, T2) and the
set of all Markov operators Φ : L2(X1,B1, µ1) → L2(X2,B2, µ2) satisfying
(4) and the intertwining relation ΦUT1 = UT2Φ.

Note that if λ = µ1 ⊗ µ2 then Φλ is the projector onto the subspace
of constant functions. If λ = λS is the graph joining corresponding to an
isomorphism S between T1 and T2, then Φλ = US . Finally, if λ is the rel-
ative product over a factor A of (X,B, µ, T ), then Φλ is the conditional
expectation projector πA = πL2(A) = E(· | A).

It is also clear that the class of Markov intertwining operators is closed
under composition. If Ti : (Xi,Bi, µi) → (Xi,Bi, µi), i = 1, 2, 3, are auto-
morphisms, λ ∈ J(T1, T2) and λ′ ∈ J(T2, T3), then Φλ′Φλ corresponds to a
joining % ∈ J(T1, T3) which we call the composition of λ and λ′. It can be
described as the factor B1 ⊗ B3 in the relative product λ ⊗B2 λ

′ of λ and
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λ′ over B2 (after obvious identifications of X1 × B2, B2 × X3 with B2 and
B1 ×X2 × B3 with B1 ⊗ B3).

If λ ∈ J(T1, T2) then Φ∗λ is the Markov operator corresponding to the
joining λ∗ ∈ J(T2, T1) obtained from λ by the exchange of coordinates. Since
it is clear that Φλ|L2

0(X1,µ1) = 0 iff λ = µ1 ⊗ µ2, we have

(5) λ = µ1 ⊗ µ2 iff Φ∗λ ◦ Φλ|L2
0(X1,µ1) = 0.

So, for any automorphism T , J2(T ) has a semigroup structure. By a slight
abuse of notation, we let J2(T ) mean also the corresponding operator semi-
group; it contains every US for S ∈ C(T ) and every πA for A a factor
of T .

If we assume that T (i.e. UT ) has simple spectrum then J2(T ) ⊂W ∗(UT )
since every bounded operator which commutes with UT belongs to W ∗(UT ).
Therefore in this case J2(T ) is commutative. More generally, we shall say
that T has commuting self-joinings if J2(T ) is Abelian.

Directly from this discussion, we have the following:

Proposition 1. Let T be an automorphism of (X,B, µ) and S ∈ C(T ).
If T has commuting self-joinings or if US ∈W ∗(UT ) then

J2(T ) ⊂ J2(S), C(T ) ⊂ C(S),

and any T -invariant σ-algebra A ⊂ B is also S-invariant.

Corollary 1. Let S and T be two commuting ergodic automorphisms.
If both S and T have commuting self-joinings then Je

2(T ) = Je
2(S).

P r o o f. As we have already noticed, Je
2(S) and Je

2(T ) are the sets of
extremal points of J2(S) and J2(T ). From Proposition 1, J2(S) = J2(T )
and therefore Je

2(S) = Je
2(T ).

Lemma 1. Let T be an automorphism of (X,B, µ) and assume that T has
commuting self-joinings. Then for every factor A of T and every λ ∈ J2(T ),

Φλ(L2(A, µ)) ⊂ L2(A, µ)

and
(A⊗A) ∩ (X × B) = X ×A mod λ.

In particular , these assertions hold if T has simple spectrum.

P r o o f. The first assertion follows from ΦλπA = πAΦλ. Now, the second
assertion follows from the first one. Indeed, if f, g ∈ L2(A, µ) and also f⊗g ∈
L2(A⊗A, λ) then

E(f ⊗ g |X × B) = E(f ⊗ 1 |X × B)(1⊗ g) = 1⊗ (Φλ(f)g)

and since Φλ(f) ∈ L2(A, µ), we have E(f⊗g |X×B) ∈ L2(X ×A, λ). Since
the products of functions as above span L2(A ⊗ A, λ), E(· |X × B) sends
L2(A⊗A, λ) to L2(X ×A, λ) and the result follows.
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Remark 1. Without the assumption that T has commuting self-joinings,
the assertions of Lemma 1 remain true for any self-joining λ and any factor
A such that πA commutes with Φλ. That is in particular the case when
πA is a spectral projector, i.e. if the spectral types of UT on L2(A, µ) and
L2(A, µ)⊥ are mutually singular. This can also be seen from the following
general observation.

If Ti are automorphisms of (Xi,Bi, µi) (i = 1, 2) and λ ∈ J(T1, T2) then

(6) σΦλf,UT2
� σf,UT1

for every f ∈ L2(X1,B1, µ1).

Indeed,

σ̂Φλf,UT2
(n) = (UnT2

Φλf |Φλf) = (ΦλUnT1
f |Φλf) = (UnT1

f |Φ∗λΦλf).

Recall that given a Hilbert space H, U ∈ U(H) and f, g ∈ H, the correlation
measure σf,g,U is defined by σ̂f,g,U (n) = (Unf | g), n ∈ Z, and it satisfies
σf,g,U � σf,U (see e.g. [24], p. 18). Here we find σΦλf,UT2

= σf,Φ∗λΦλf,UT1

and σΦλf,UT2
� σf,UT1

follows.

2. GAUSSIAN AUTOMORPHISMS AND JOININGS

2.1. Gaussian spaces and generalized Gaussian automorphisms.
For general properties of Gaussian spaces and Gaussian dynamical systems,
we refer to [22] and [1], Chapter 14. By a Gaussian probability space we mean
a standard probability space (X,B, µ) together with an infinite-dimensional
closed real subspace Hr of L2

0(X,B, µ) such that

(7) B(Hr) = B and each non-zero function of Hr has a Gaussian distri-
bution.

We refer to the subspace H = Hr+iHr as the complex Gaussian space of
X (or simply as the Gaussian space of X). We define a generalized Gaussian
automorphism, or simply a Gaussian automorphism, as an ergodic automor-
phism of (X,B, µ) such that H is invariant under UT . In the classical case
where Hr is the space of a real stationary centered process (f ◦ Tn), i.e.
where UT |H has simple spectrum, we call T a standard Gaussian automor-
phism. We want first to point out that important features of the Gaussian
structure do not depend on the automorphism T . For instance, this is the
case of the decomposition into Wiener chaos:

L2(X,B, µ) =
∞⊕
n=0

H(n)

where H(0) is the subspace of constant functions, H(1) = H and, for n > 1,
H(n) is defined inductively as the orthocomplement of

⊕
k<nH

(k) in the
span of all products f1 . . . fm of functions in H, m ≤ n. The nth chaos
H(n) is isometric to the symmetric tensor power H�n in such a way that
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f1 � . . .� fn corresponds to the projection of the product f1 . . . fn, and we
shall constantly identify H(n) with H�n. In fact, when f1, . . . , fn ∈ H are
pairwise orthogonal, their product is orthogonal to the chaos H(k), k < n
(see [1], Corollary on p. 358), so it belongs to H(n) and we can identify it
with f1 � . . . � fn. Moreover, H�n is spanned by such tensor products of
pairwise orthogonal functions (see Lemma 6.13 in [22]).

The following lemma is well known but since no explicit reference seems
to exist, we give a proof for the reader’s convenience. Given two Gaussian
spaces Hi, we call operators U : H1 → H2 which map Hr

1 into Hr
2 real

operators.

Lemma 2. For two given Gaussian probability spaces (Xi,Bi, µi), and
their Gaussian spaces Hi (i = 1, 2), any real isometry U from H1 onto
H2 extends to a unique measure-theoretic isomorphism TU : (X2,B2, µ2)→
(X1,B1, µ1) such that f ◦TU = Uf for every f ∈ H1. Moreover , the operator
UTU : L2(X1,B1, µ1) → L2(X2,B2, µ2) maps each chaos H(n)

1 onto H
(n)
2 ,

and its restriction to H(n)
1 is given by U�n.

P r o o f. Let (Y, C, ν) be the product space RN equipped with its Borel
σ-algebra and ν the infinite product of normalized centered Gaussian dis-
tributions. Since orthogonal Gaussian random variables in a Gaussian space
are independent (e.g. Proposition 2.4 of [22]), any orthonormal basis (fi)i≥0

of Hr
1 yields a metric isomorphism S1 : (X1,B1, µ1) → (Y, C, ν), S1(x) =

(fi(x))i≥0. Since (Ufi)i≥0 is an orthonormal basis of Hr
2, we also have

an isomorphism S2 : (X2,B2, µ2) → (Y, C, ν), S2(x) = (Ufi(x))i≥0. Now,
Ufi(x) = fi ◦ TU (x) µ2-a.e., i ≥ 0, implies S2(x) = S1(TU (x)) µ2-a.e. and
thus we define TU = S−1

1 ◦ S2.
The second part of the lemma now follows directly from the fact that the

nth chaos is spanned by the products f1 . . . fn, where fj ∈ H1, j = 1, . . . , n,
are pairwise orthogonal.

Such an isomorphism TU will be called a Gaussian isomorphism. By the
uniqueness property, TUV = TV ◦ TU whenever the product is defined.

Assume that (X,B, µ) is a Gaussian probability space, and H its Gaus-
sian space. We denote by Lr(H) the algebra of bounded real operators on
H and by U r(H) the group of real unitary operators on H. Note that, since
any two real infinite-dimensional separable Hilbert spaces are isometric, it
follows from Lemma 2 that the set {TU : U ∈ U r(H)} is up to a Gaussian
isomorphism the same for all Gaussian probability spaces.

Of course, any automorphism T of (X,B, µ) which preserves H is equal
to TU where U is the restriction of UT to H. In particular, we have the
following.
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Proposition 2. Let T be a Gaussian automorphism, H its Gaussian
space and U the restriction of UT to H. If V is a real unitary operator on
H commuting with U , then TV ∈ C(T ). Conversely , any S ∈ C(T ) such
that USH = H is equal to TV for some V ∈ U r(H) commuting with U .

However, we emphasize that such an automorphism S need not be er-
godic. So, it is a Gaussian automorphism iff it is ergodic.

Let Cr(U) denote the subgroup of those operators in U r(H) which com-
mute with U . The subgroup of all S in C(T ) which preserve the Gaussian
space will be called the Gaussian centralizer of T and denoted by Cg(T ).
The map V 7→ TV is a topological isomorphism from Cr(U) onto Cg(T ).
Indeed, for each n ≥ 1 the map V 7→ V �n from Cr(U) to U(H�n) is con-
tinuous in the strong topology, hence by Lemma 2, V 7→ TV is continuous,
and conversely, S 7→ V = US |H is clearly continuous.

It is well known that up to isomorphism there exists exactly one standard
Gaussian automorphism whose Gaussian process has a given continuous
symmetric spectral type σ. We will denote it by Tσ (the unicity of Tσ also
follows from Lemma 2 since up to unitary isomorphism a unitary operator
U with simple spectrum is determined by its maximal spectral type). In this
case, if H = Z(h) with h ∈ Hr (and σh = σ), the space Hr is generated
by finite sums

∑
anU

nh with an ∈ R. Hence, in the representation sending
h to 1, Hr corresponds to the space of Hermitian functions in L2(T, σ)
(we say that f is Hermitian if f(z) = f(z) σ-a.e.). It follows that the real
operators in W ∗(U) correspond to the Hermitian functions in L∞(T, σ),
and Cr(U) corresponds to the group of Hermitian functions of modulus 1 in
L∞(T, σ). This latter group is denoted by Fσ, the strong operator topology
corresponding to the L2-topology on Fσ.

In the general case of an automorphism T = TU where U is a real unitary
operator on H, the spectral type σ of U is a symmetric measure on the circle,
and the spectral type of U�n is

σ(n) := σ ∗ . . . ∗ σ︸ ︷︷ ︸
n

.

Thus, as in the standard case, the maximal spectral type of TU is expσ;
moreover, T is ergodic iff σ is continuous and then it is weakly mixing. In
this case, we shall say that T is a Gaussian automorphism of type σ. Then
the Gaussian space H can be spectrally identified with a closed subspace of
L2(T, σ,H ′), where H ′ is a separable Hilbert space, the action of U on H
being identified with the multiplication by z. The real operators in W ∗(U)
still correspond to the symmetric functions in L∞(T, σ). Note also that H⊗n

and thus H�n can be identified with closed subspaces of L2(Tn, σn,H ′⊗n),
with U�n corresponding to the multiplication by z1 . . . zn (in the standard
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case, H�n corresponds to L2
sym(Tn, σn), the subspace of functions invariant

under permutations of coordinates).
Let us finally notice that if we decompose the Gaussian space H of T

into H = Z(f1)⊕Z(f2)⊕ . . . with fi real and σ = σf1� σf2� . . . , then the
factors B(Z(fi)) are independent and T is isomorphic to the direct product
Tσf1 ×Tσf2 × . . . Conversely, any direct product of Gaussian automorphisms
is a Gaussian automorphism since a sum of independent Gaussian variables
remains Gaussian.

2.2. Classical factors of a Gaussian automorphism. Assume that
T is a Gaussian automorphism with the Gaussian space H = Hr + iHr. We
define a Gaussian factor of T as a factor B(H1), where H1 is the subspace of
H spanned by a non-trivial UT -invariant subspace Hr

1 of Hr. In the standard
case T = Tσ, this factor is isomorphic to Tτ where τ is the maximal spectral
type of UT on H1. Conversely, every Tτ with τ � σ appears as a Gaussian
factor of Tσ, or of any Gaussian automorphism of type σ. Also, by the
remarks at the end of the previous section, a Gaussian automorphism of
type σ appears as a factor of the infinite direct product Tσ×Tσ× . . . , which
we shall denote by T∞σ .

In general, B(H) → B(H1) is always relatively weakly mixing. Indeed,
if we let Hr

2 = Hr 	 Hr
1, then Hr

2 is UT -invariant, B(H1) and B(H2) are
independent and B(H) is the smallest factor containing both of them. So,
T is represented as a direct product T1 × T2 and the relative product of
T × T over B(H1) is isomorphic to T1 × T2 × T2, which is ergodic by the
weak mixing property of T .

Consider the decomposition into Wiener chaos

L2
0(B(H1)) = H

(1)
1 ⊕H(2)

1 ⊕ . . .
with H(1)

1 = H1. As H(n)
1 is spanned by the products f1 . . . fn where fi ∈ H1

(1 ≤ i ≤ n) and f1, . . . , fn are pairwise orthogonal, H(n)
1 is contained in H(n)

and the inclusion map H
(n)
1 → H(n) corresponds to the natural embedding

of H�n1 in H�n. It follows (see also [22], Cor. 2.6, Prop. 7.7) that

(8) H
(n)
1 = L2(B(H1)) ∩H(n),

and, if we denote by π : H → H1 and π(n) : H(n) → H
(n)
1 the orthogonal

projectors, then

(9) π(n) = π�n.

Assume that (Hr
α)α∈Λ is a family of closed invariant real subspaces of Hr.

Then we have

(10) B
( ⋂

α∈Λ
Hα

)
=
⋂

α∈Λ
B(Hα).
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Indeed, when Λ is finite, (10) was proved in [34] (see also Remark 5, in
Section 3.2 below). Thus, since H is separable, it suffices to consider the
case when (Hr

α) is a decreasing sequence of subspaces. Let then Hr
0 =

⋂
Hr
α,

and πα : H → Hα, π0 : H → H0 be the corresponding projectors. By (9),
for each n ≥ 1 the sequence (π(n)

α ) = (π�nα ) converges weakly to π
(n)
0 and

thus πB(Hα) converges weakly to πB(H0). Therefore
⋂B(Hα) = B(H0).

In particular, we have

Proposition 3. If A is an arbitrary factor of a Gaussian automorphism
T then there exists a smallest Gaussian factor of T containing A.

This smallest Gaussian factor will be called the Gaussian cover of A and
will be denoted by Âg.

Now, we have a larger class of factors of a Gaussian automorphisms
which arise directly from the Gaussian structure.

Definition 1. If B(H1) is a Gaussian factor of a Gaussian automor-
phism T and K1 is a compact subgroup of Cg(T |B(H1)) then the factor
A = B(H1)/K1 is called a classical factor of T .

In order to study most properties of classical factors, with no loss of
generality we can restrict ourselves to the case A = B(H)/K where K is a
compact subgroup of Cg(T ). Then the ergodic decomposition of the relative
product, µ ⊗A µ =

T
K λS dS, where dS stands for the normalized Haar

measure on K, corresponds to the decomposition of the orthogonal projector
πA = πL2(A),

πA =
\
K
US dS.

In particular, since each US preserves the chaos, πA preserves the chaos and
thus

(11) L2(A) =
∞⊕
n=0

L2(A) ∩H(n).

This fact has already been observed in the standard case in [18].
The analysis of compact factors in the general case relies upon analy-

sis of compact subgroups of Cg(T ) = Cr(U). We shall discuss it later on
(Section 3.4). Let us finish this section by some description in the standard
case. Then Cr(U) is spectrally identified with the group Fσ defined in the
previous section.

Proposition 4. Let K be a compact subgroup of Fσ. Then there exists
a countable measurable partition P of the circle such that every function in
K is σ-a.e. constant on each element of P.
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P r o o f. Let mK stand for the normalized Haar measure of K. By a
standard result (see e.g. [35], p. 65), since the embedding K ⊂ Fσ may be
seen as a Borel map from K to L2(T, σ), there is a Borel function F on K×T
such that, for mK-almost every g,

F (g, z) = g(z) for σ-almost every z.

Then, for σ-almost every z, the map Fz : g 7→ F (g, z) = g(z) is a measurable
group homomorphism from K to T, and thus it is a continuous character of
K (e.g. see [20]). Since the group of characters of K is countable, the result
follows.

The partition P corresponding to K is moreover symmetric, in the sense
that A ∈ P iff A ∈ P. When A = A, the corresponding constants must be
real, i.e. they must be equal to ±1.

Example 1. The most classical example is the even factor , where K =
{1,−1}. Moreover, it is clear that, for any symmetric countable measurable
partition P of the circle, the subgroup of all g ∈ Fσ which are constant on
each element of P is compact and thus yields a classical factor.

Let A be a subset of the circle such that σ(A) > 0 and σ(A∩A) = 0. We
first consider the Gaussian factor BA = B(HA∪A) of Tσ, where HA∪A is the
spectral subspace of H associated with A∪A. We then have a classical factor
AA = BA/KA, where KA is the group of all g ∈ Fσ|A∪A which are constant
on A (and on A). Now, given any classical factor A1 = B(H1)/K1, if we take
for A a subset of some element of the partition associated with K1 such that
HA∪A ⊂ H1, then KA contains the restrictions to A∪A of all functions in K1.
It follows that AA ⊂ A1. So, every classical factor contains some factor AA
(see Section 3.5 for the case of generalized Gaussian automorphisms).

2.3. Gaussian joinings. Let Tj : (Xj ,Bj , µj) → (Xj ,Bj , µj), j = 1, 2,
be Gaussian automorphisms, with Tj of type σj and Hj its Gaussian space.
We say that a joining λ of T1 and T2 is a Gaussian joining if, given any
f1 ∈ Hr

1 and f2 ∈ Hr
2, the function (x1, x2) 7→ f1(x1) + f2(x2) on the

probability space (X1×X2,B1⊗B2, λ) has a Gaussian distribution whenever
it is not identically 0. We shall naturally identify H1 and H2 with subspaces
of L2(X1 ×X2, λ). So, λ ∈ J(T1, T2) is a Gaussian joining iff

Hr = Hr
1 +Hr

2 is a Gaussian space.

We denote by Jg(T1, T2) the set of Gaussian joinings of T1 and T2.
First notice that every Gaussian joining is ergodic. Indeed, since σf1+f2

� σf1 +σf2 , the spectral type of T1×T2 on H is absolutely continuous with
respect to σ1 + σ2, hence continuous.
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Lemma 3. Assume that λ is a Gaussian joining between T1 and T2.
Then Φλ maps each chaos H(n)

1 into H
(n)
2 and moreover

Φλ|H(n)
1

= (Φλ|H1)�n.

P r o o f. We can write Φλ = π2 ◦ i1, where i1 : L2(B(H1))→ L2(B(H)) is
the natural embedding, and π2 : L2(B(H)) → L2(B(H2)) is the orthogonal
projector. Since i1 and π2 have a decomposition along the chaos into the
corresponding symmetric tensor products, the result follows.

This proves that λ is uniquely determined by the operator Φ = Φλ|H1 .
It is a real operator from H1 to H2, satisfying

(12) ‖Φ‖ ≤ 1 and ΦUT1 |H1 = UT2 |H2Φ.

Note that, in particular, for every f1 ∈ H1 and f2 ∈ H2, since
T
f1f2 dλ =T

Φf1f2 dµ2, we have

(13) ‖f1 + f2‖2H = ‖f1‖2H1
+ 2Re(Φf1 | f2)H2 + ‖f2‖2H2

.

We will now show that any real operator Φ : H1 → H2 satisfying (12)
corresponds to a Gaussian joining of T1 and T2. Let such a Φ be given. The
first step is to construct a “joining” of the unitary operators Uj = UTj |Hj .
The formula (13) defines a Hermitian form ‖ · ‖2 on H1 ⊕H2, which is non-
negative since ‖Φ‖ ≤ 1, but in general not definite (when ‖Φf1‖H2 = ‖f1‖H1 ,
we have ‖f1 − Φf1‖2 = 0). By passing to the corresponding quotient we
obtain a pre-Hilbert space which after completion yields a Hilbert space H,
containing isometric embeddings of H1 and H2. Then, for f1 ∈ H1 and
f2 ∈ H2, we have

(f1 | f2)H = (Φf1 | f2)H2 .

Since ΦU1 = U2Φ, we have (ΦU1f1 |U2f2)H2 = (Φf1 | f2)H2 whence
‖U1f1 + U2f2‖H = ‖f1 + f2‖H . Therefore the map f1 + f2 7→ U1f1 + U2f2

has a unique extension to an isometry U : H → H. The same argument for
the map f1 + f2 7→ U∗1 f1 +U∗2 f2 shows that U ∈ U(H). By construction, for
j = 1, 2, Hj is U -invariant and U |Hj = Uj .

Moreover, if we let Hr = Hr
1 +Hr

2, then clearly H = Hr + iHr and U
preserves Hr.

We can then identify Hr with the real Gaussian space of a Gaussian
probability space (X,B, µ) and consider the automorphism TU given by
Lemma 2 (and the property σf1+f2 � σf1 + σf2 shows that TU is ergodic,
hence a Gaussian automorphism). Therefore B(Hj) is a Gaussian factor of
TU and by the uniqueness assertion in Lemma 2, TU |B(Hj) is isomorphic
to Tj . We also have B = B(H) = B(H1) ∨ B(H2).

Finally, TU is isomorphic to a Gaussian joining between T1 and T2, and
the corresponding Markov operator Φλ satisfies
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(Φλf1 | f2)H2 = (f1 | f2)H = (Φf1 | f2)H2 ,

for every f1 ∈ H1 and f2 ∈ H2, whence Φλ|H1 = Φ.
We have proved the following:

Theorem 1. For two given Gaussian automorphisms T1 and T2 with
Gaussian spaces H1 and H2, the mapping λ 7→ Φλ|H1 establishes a 1-1
correspondence between Gaussian joinings of T1 and T2 and real operators
from H1 to H2 of norm at most 1 intertwining UT1 |H1 and UT2 |H2 .

In the case of a single Gaussian automorphism T = T1 = T2 we speak
about Gaussian self-joinings and we use the notation Jg

2 (T ). By Theorem 1
it is a semigroup isomorphic to the semigroup

ST = {Φ ∈ Lr(H) : ‖Φ‖ ≤ 1, ΦUT = UTΦ}.
It is compact in the weak topology of J2(T ) which corresponds to the weak
operator topology (in this topology, the multiplication is only separately
continuous). Also, up to an obvious identification, Cg(T ) ⊂ Jg

2 (T ).
If T = Tσ then STσ can naturally be identified with the semigroup of

Hermitian functions in the unit ball of L∞(T, σ). If λ ∈ Jg
2 (Tσ), the ac-

tion of Φλ on L2(T, σ) is the multiplication by a Hermitian function φλ of
modulus ≤ 1 and, by Lemma 3, the action of Φλ on H(n) ' L2

sym(Tn, σn) is
given by

(14) Φ
(n)
λ g(z1, . . . , zn) = φλ(z1) · . . . · φλ(zn)g(z1, . . . , zn).

In particular, Jg
2 (Tσ) is commutative.

We say that a self-joining λ in J2(T ) has a Gaussian disintegration if
its ergodic decomposition consists a.e. of Gaussian joinings, i.e. if there is a
probability Borel measure P on Jg

2 (T ) such that

λ =
\

Jg
2 (T )

% dP (%).

Then Φλ still preserves the chaos and, for each n ≥ 0,

(15) Φλ|H(n) =
\

Jg
2 (T )

(Φ%|H)�n dP (%).

Finally, the set of joinings with Gaussian disintegration is a semigroup, and
in the standard case it is commutative.

3. GAUSSIAN AUTOMORPHISMS WITH GAUSSIAN SELF-JOININGS

3.1. Definition, basic properties and examples of GAG

Definition 2. A Gaussian automorphism T is called a GAG if Je
2(T ) =

Jg
2 (T ).
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The following lemma characterizes the GAG property in terms of sta-
tionary processes.

Lemma 4. A Gaussian automorphism T of type σ is a GAG if and
only if , for every ergodic automorphism S : (Y, C, ν) → (Y, C, ν), for every
real-valued fi ∈ L2

0(Y, ν) for which the processes (fi ◦Sn)n∈Z are Gaussian,
σfi � σ (i = 1, 2) and f1 + f2 6= 0, the function f1 + f2 has a Gaussian
distribution.

P r o o f. Only the necessity requires a proof. Let Bi = B(Z(fi)) and
A = B1 ∨ B2. Then S|B1 and S|B2 are isomorphic to Gaussian factors of
T , and A can be identified with an ergodic joining λ of them. Then λ can
be extended to an ergodic joining of T . Indeed, taking % ∈ J2(T ) which
corresponds to the Markov operator Φ ◦ π|A we obtain a self-joining whose
restriction to A ⊗ A is λ, and almost every ergodic component λ̃ of % has
the same restriction, since λ is ergodic. Now λ̃ ∈ Jg

2 (T ) and f1 + f2 belongs
to its Gaussian space.

A few observations directly follow from Lemma 4:

Proposition 5. Let T be a Gaussian automorphism of type σ.

(i) T is a GAG iff Tσ is a GAG.
(ii) If T is a GAG and S is a Gaussian automorphism of type η � σ,

then S is also a GAG.
(iii) If T is a GAG then every finite or infinite ergodic self-joining λ

of T is Gaussian. More precisely , in L2(X × X × . . . , λ), the sum of the
coordinate Gaussian spaces spans a Gaussian space.

For (iii), which might be stated “GAG of order two implies GAG of
all orders”, it is sufficient to remark that, in the setting of Lemma 4, we
have σf1+f2 � σf1 + σf2 � σ and then proceed inductively for a sum
f1(x1) + . . .+ fn(xn) where each fi is a real function in the Gaussian space
of T .

In connection with the classical problem whether 2-mixing implies 3-
mixing, in [15] one proposes to consider a stronger property: the only er-
godic self-joining λ ∈ Je

∞(T ) whose restriction to any two coordinates is the
product measure (one says that such a joining is pairwise independent) is
the product measure. A remarkable result of B. Host in [9] shows that this
property holds for automorphisms with singular spectra. For other results
of this type see [6], [15], [29]. The following result has already been shown
in [33] in the case of Gaussian–Kronecker automorphisms.

Proposition 6. If Tσ is a GAG then any ergodic self-joining which is
pairwise independent is globally independent.
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P r o o f. Take λ ∈ Je
∞(Tσ). In view of Proposition 5(iii), λ is Gaussian.

Now in the Gaussian space of (T∞σ , λ) the coordinate Gaussian spaces are
pairwise orthogonal since λ is pairwise independent, hence they are globally
independent.

It follows from Proposition 5 that the GAG property is a property of
the measure σ itself. We will say that a symmetric measure σ on T is a
GAG measure if the corresponding standard Gaussian automorphism Tσ is
a GAG. We now consider the problem of existence of GAG measures.

We shall say that a symmetric measure σ on the circle has the Foiaş–
Strătilă (FS ) property if, for each ergodic automorphism S : (Y, C, ν) →
(Y, C, ν), any real-valued f ∈ L2

0(Y, ν) with σf = σ is a Gaussian vari-
able. Recall that the Foiaş–Strătilă theorem (see [2], or [1], p. 375) asserts
that this property holds for continuous symmetric measures concentrated on
K ∪K, where K is a Kronecker set (Tσ is then called a Gaussian–Kronecker
automorphism). By Lemma 4, again since σf1+f2 � σf1 + σf2 , we have

FS⇒ GAG.

Some easy extensions of the Foiaş–Strătilă theorem are given in [17]:
a continuous symmetric measure σ such that the group {zn : n ∈ Z} is
dense in Fσ in the L2-topology (a symmetric Kronecker measure) satisfies
the FS property. If σ has the FS property and η � σ then η also has the
FS property. Some measures with the FS property which are not Kronecker
are also constructed in [17].

The next theorem characterizes the GAG property and exhibits a much
larger class of GAG automorphisms.

Theorem 2. Tσ is a GAG if and only if it has commuting self-joinings.
In particular , if Tσ has simple spectrum then it is a GAG.

In order to prove Theorem 2, we will need the following well-known
lemma.

Lemma 5. Let σ, τ be continuous symmetric measures on the circle. Then
there exists an S ∈ Cg(Tσ) which is isomorphic to Tτ .

P r o o f. Let H denote the Gaussian space of Tσ. Recall that Cg(Tσ) and
Fσ are isomorphic in such a way that, if S corresponds to the function g,
then US |H is spectrally conjugate to the operator Vg of multiplication by
g on L2(T, σ). Since both measures σ and τ are continuous, the standard
Borel spaces (T, σ) and (T, τ) are Borel isomorphic. Since both measures
are symmetric, we can choose a g : (T, σ) → (T, τ) which establishes an
isomorphism and satisfies g(z) = g(z) σ-a.e., that is, g ∈ Fσ. Now, the
spectral type of Vg is the image of σ by g and, since g is one-to-one (σ-a.e.),
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Vg has simple spectrum. Hence the corresponding S ∈ Cg(Tσ) is isomorphic
to Tτ .

Remark 2. Assume that in the above lemma we consider instead of τ
a sequence (τj), j ≥ 1, of continuous symmetric measures on the circle.
By considering a measurable partition consisting of symmetric sets Aj with
σ(Aj) > 0, we can find g ∈ Fσ such that g|Aj establishes an isomorphism
(T, σ|Aj )→ (T, τj). Then Sg is isomorphic to Tτ1×Tτ2× . . . Thus, in Cg(Tσ)
we can find an S isomorphic to any given Gaussian automorphism. Con-
versely, given any Gaussian automorphism T , Cg(T ) contains an automor-
phism isomorphic to Tσ.

Proof of Theorem 2. If Tσ is a GAG then every self-joining of it has a
Gaussian disintegration, and we have already noticed that in the case of
a standard Gaussian automorphism this implies the commutativity prop-
erty. Conversely, from Lemma 5 we can find in Cg(Tσ) some GAG auto-
morphism S ' Tτ (e.g. a Gaussian–Kronecker automorphism) and then S
has commuting self-joinings. If Tσ also has commuting self-joinings, then
Je

2(Tσ) = Je
2(S) = Jg

2 (S) by Corollary 1. Now, S and Tσ have the same
Gaussian space, and the result follows.

Remark 3. The class of standard Gaussian automorphisms which are
GAG is larger than the class of simple spectrum Gaussian automorphisms.
The second author has recently proved that if σ is a GAG then so is σ ∗ σ
(this result will be published elsewhere). No Gaussian automorphism of the
form Tσ∗σ has simple spectrum.

Directly from Theorem 2 and the existence of a mixing simple spectrum
Gaussian automorphism (see [21]) we obtain

Corollary 2. There exists a mixing GAG.

Remark 4. According to Proposition 6, we hence obtain some mixing
Gaussian automorphisms for which the product measure is the only pairwise
independent self-joining. It follows that such automorphisms are mixing of
all orders (see [15]). The fact that a mixing Gaussian automorphism is mix-
ing of all orders is classical ([19]). We do not know, however, whether the
assertion of Proposition 6 is satisfied for all Gaussian automorphisms with
zero entropy.

3.2. The centralizer and the structure of factors for a GAG. Let
T : (X,B, µ)→ (X,B, µ) be a Gaussian automorphism, and H be its Gaus-
sian space. If T is a GAG and S ∈ C(T ) then the graph self-joining λS is
Gaussian and, by Lemma 3, the Markov operator ΦλS = US preserves the
Gaussian space. Hence
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Proposition 7. If T is a GAG then C(T ) = Cg(T ).

We have already seen that if A is a Gaussian factor of T then T is
relatively weakly mixing over A. In order to show that, for a GAG, the
converse holds we first recall that any joining λ of two automorphisms
Ti : (Xi,Bi, µi) → (Xi,Bi, µi), i = 1, 2, determines a factor of T1 and a
factor of T2. Indeed, the intersection (B1×X2)∩ (X1×B2) (mod λ) can be
naturally identified with a factor B1(λ) of T1 on the one hand, and with a
factor B2(λ) of T2 on the other hand. The restriction of λ to B1(λ)⊗B2(λ)
is then a graph joining. More precisely, L2(B1(λ)) is the subspace of all
f ∈ L2(B1) such that ‖Φλf‖ = ‖f‖, or equivalently, Φ∗λΦλf = f . Note in
passing that, as Φ∗λΦλ is a non-negative self-adjoint operator of norm ≤ 1,
the orthogonal projector πB1(λ) is the weak limit

(16) πB1(λ) = lim
k→∞

(Φ∗λΦλ)k.

Let us now come back to the case of a Gaussian self-joining λ of the
Gaussian automorphism T . Let H1 and H2 be the subspaces of L2(X×X,λ)
corresponding to the coordinate Gaussian spaces, both isomorphic to H.
Then B(H1) = B×X and B(H2) = X×B and, sinceH1 andH2 are contained
in the Gaussian space of (T × T, λ), by (10), we have B(H1) ∩ B(H2) =
B(H1 ∩ H2) and thus both Bi(λ) are Gaussian factors. Furthermore, the
natural isomorphism between B1(λ) and B2(λ), given by the restriction of
Φλ to L2(B1(λ)), is a Gaussian isomorphism.

Remark 5. As λ is a Gaussian joining, it follows from (16) and Lemma 3
that πB1(λ) is decomposed along the chaos into the tensor products of its
restriction to H. This yields a direct proof that B1(λ) is a Gaussian factor.
Since for two Gaussian factors B(H1) and B(H2) of a Gaussian automor-
phism, B(H1)∨B(H2) can be seen as their Gaussian joining, this also proves
(10) for a finite family of Gaussian factors.

Lemma 6. Let T be a GAG. Every factor A of T such that T is relatively
weakly mixing over A is a Gaussian factor.

P r o o f. Let λ := µ ⊗A µ ∈ Je
2(T ) = Jg

2 (T ). Then both factors B1(λ)
and B2(λ) are equal to A. Thus A is a Gaussian factor.

In particular, we have proved that if T is a GAG then the Gaussian cover
Âg of any factor A of T equals Â. We will now show how to make use of
Veech’s theorem (see [36]) to obtain the following.

Theorem 3. Let T be a GAG. For every factor A of T there exists a
compact subgroup K ⊂ Cg(T |Â) such that A = Â/K. In other words, each
factor of a GAG is classical.
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P r o o f. Since the restriction of T to Â = Âg is still a GAG, there is no
harm to assume that Âg = B. Let then

µ⊗A µ =
\
% dP (%)

denote the ergodic decomposition of µ⊗A µ. Since the restriction of µ⊗A µ
to A⊗A is the diagonal joining (the graph self-joining corresponding to the
identity), the restriction of this decomposition to A⊗A is trivial and

A ⊂ B1(%) and A ⊂ B2(%)

for P -a.a. %. Now, since the Bi(λ) are Gaussian factors, B = Âg = B1(%) =
B2(%) and % is P -a.e. a graph measure. By Veech’s theorem, A = B/K for
some compact group K ⊂ C(T ) and the result follows from Proposition 7.

Let T : (X,B, µ)→ (X,B, µ) be a Gaussian automorphism and let A be
a compact factor of some Gaussian factor B(H1) of T . Then

(17) Âg = B(H1).

Indeed, let Âg = B(H ′1). Clearly, H ′1 ⊂ H1. On the other hand, B(H1) can-
not contain a non-trivial factor B(H2) independent of its compact factor A,
and thus H1 cannot contain a non-trivial Gaussian subspace H2 orthogonal
to H ′1.

Assume now that Ai = B(Hi)/Ki, i = 1, 2, are classical factors of a
Gaussian automorphism T . We then have

(18) if A1 ⊂ A2 then H1 ⊂ H2, K2H1 ⊂ H1 and K1 ⊃ K2|H1 .

Indeed, B(H1) = Âg
1 ⊂ Âg

2 = B(H2) whence H1 ⊂ H2. Moreover, K2

preserves Âg
1, whence it preserves H1. We have

A1 ⊂ A2 ∩ B(H1) = B(H1)/(K2|H1)

and (18) follows from the saturation property.
Suppose moreover that T is a GAG and assume that R establishes an

isomorphism of A1 and A2. Take a % ∈ Je
2(T ) = Jg

2 (T ) such that %|A1⊗A2 is
the graph of R. Then Ai ⊂ Bi(%) and it follows that B(Hi) = Âg

i ⊂ Bi(%),
i = 1, 2. Thus %|B(H1)⊗B(H2) is the graph of a Gaussian isomorphism S be-
tween B(H1) and B(H2), extending R. We now have two compact subgroups
K1 and S−1K2S that fix all elements of A1. By the saturation property,
K1 = S−1K2S and we have proved the following:

Proposition 8. Let T be a GAG. If B(H1)/K1 and B(H2)/K2 are
isomorphic then there exists a Gaussian isomorphism S of the factor B(H1)
onto the factor B(H2) such that K1 = S−1K2S.

3.3. Semisimplicity and the GAG property. Generalizing the ear-
lier notions of minimal self-joinings ([25]) and 2-fold simplicity ([36], [15]),
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in [14] one introduces the concept of semisimplicity. An automorphism T :
(X,B, µ) → (X,B, µ) is called semisimple if for each λ ∈ Je

2(T ) the exten-
sion (B ⊗B, λ)→ (B ×X,λ) is relatively weakly mixing. If T is a Gaussian
automorphism and λ ∈ Jg

2 (T ) then B×X is a Gaussian factor of (T ×T, λ),
so the extension above is relatively weakly mixing. Hence

each GAG is semisimple.

An open question remains whether semisimplicity of a Gaussian automor-
phism implies the GAG property.

The results of the previous section can also be obtained from the results
of [14] since we have shown that the family of Gaussian factors coincides
with the family of factors relative to which a GAG is weakly mixing, so the
Gaussian factors define the smallest natural family for a GAG (in the sense
of [14]). We should also notice that an earlier analysis of the structure of
factors in the Gaussian–Kronecker case has been done by the third author
in [32].

We will now show that factors of a standard GAG are also semisimple.
To this end we first need the following.

Proposition 9. Assume that T : (X,B, µ) → (X,B, µ) is semisimple
and has commuting self-joinings. Then each of its factors is also semisimple.

P r o o f. Let A be a factor of T and assume that λ ∈ Je
2(T |A). Extend λ

to a λ̃ ∈ Je
2(T ). Consider now the Furstenberg decomposition (A⊗A, λ)→

Â → A × X of (A ⊗ A, λ) → A× X. In particular, Â → A × X is distal.
Since (B⊗B, λ̃)→ B×X is relatively weakly mixing, Â ⊂ B×X. It follows
from Lemma 1 that

(A⊗A) ∩ (B ×X) = A×X,
whence Â = A × X and thus (A ⊗ A, λ) → A × X is relatively weakly
mixing, which shows that A is semisimple.

Corollary 3. If Tσ is a GAG then each of its factors is semisimple.

3.4. GAG measures. Mutual singularity and translations. We
now pass to some facts relating the GAG property and measure-theoretical
properties.

Proposition 10. Let σ be a GAG measure. If σ1, σ2 � σ are symmetric
measures and σ1 ⊥ σ2, then Tσ1 and Tσ2 are disjoint.

P r o o f. It is enough to show that a self-joining λ of Tσ1 and Tσ2 is
the product measure in the case when λ is ergodic. Then it follows directly
from Lemma 4 that, in L2(λ), the sum of the Gaussian spaces H1, H2

of the factors spans a Gaussian space (i.e. λ ∈ Jg(Tσ1 , Tσ2)). Since the
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spectral types σi on Hi are mutually singular, these subspaces are moreover
orthogonal. Therefore B(H1) and B(H2) must be independent and λ is the
product measure.

Corollary 4. If σ is a GAG measure then for each z ∈ T \ {1},
σ ⊥ σ ∗ δz.

P r o o f. Assume that σ 6⊥ σ ∗ δz0 for some z0 ∈ T \ {1}. We can then
find symmetric measures η1, η2 � σ such that η1 ⊥ η2 but η1 and a certain
translation of η2 are not mutually singular. It follows from Proposition 3
of [17] that Tη1 and Tη2 have a non-trivial common factor, and in particular,
they are not disjoint. This contradicts Proposition 10.

Remark 6. We state as a question whether the condition formulated in
Proposition 10 is in fact equivalent to the GAG property.

We will see that the sum of two mutually singular measures which are
GAG need not be GAG (Remark 7). We have, however,

Lemma 7. If σ1, σ2 are GAG measures and Tσ1 ⊥ Tσ2 , then σ1 + σ2 is
a GAG measure.

P r o o f. Put σ = σ1 + σ2 and let H denote the Gaussian space of Tσ.
Then H = H1 ⊕H2 where the spectral type of Hi is σi, i = 1, 2. Take λ ∈
Je

2(Tσ). We have to show that, whenever f, g ∈ Hr, the function h : (x, y) 7→
f(x) + g(y) is a Gaussian variable on the corresponding probability space.
We write f = f1 + f2, g = g1 + g2, where f1, g1 ∈ Hr

1 and f2, g2 ∈ Hr
2. Let

hi(x, y) = fi(x)+gi(y), i = 1, 2. Since σi is a GAG measure, (hi◦(Tnσ ×Tnσ ))
is a Gaussian process, and its spectral measure is absolutely continuous with
respect to σi. So, the factor of (Tσ × Tσ, λ) generated by hi is isomorphic
to a factor of Tσi . By the disjointness condition the variables h1 and h2 are
independent, whence their sum h remains Gaussian.

Given a subset L ⊂ Aut(X,B, µ) we denote by gp(L) the subgroup of
Aut(X,B, µ) generated by L. In order to state some other properties of GAG
measures we need the following lemma.

Lemma 8. Let S and T be two commuting ergodic automorphisms of
(X,B, µ). Let F = gp(S) and G = gp(S, T ). If G/F is compact and
Je

2(T ) ⊂ Je
2(S) then Je

2(T ) = Je
2(S).

P r o o f. Take λ ∈ Je
2(S). For R ∈ G, the image of λ under R×R depends

only on the coset R̃ = RF of R in G/F . We denote it by λR̃. Let

(19) λ̃ =
\

G/F

λR̃ dR̃
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where dR̃ is the normalized Haar measure on G/F . Each λR̃ is still an
ergodic self-joining of S and thus (19) appears as the ergodic decomposition
of λ̃. By construction, λ̃ is also T × T -invariant. Let

(20) λ̃ =
\

Je
2(T )

% dP (%)

be its ergodic decomposition as a T × T -invariant measure.
Then, by assumption, % ∈ Je

2(T ) ⊂ Je
2(S) P -a.e., and the two decomposi-

tions (19) and (20) must coincide. Hence almost every λR̃ is T ×T -invariant,
which readily implies that λ itself is T×T -invariant. Since G/F is generated
by the coset of T , it follows that the decompositions (19) and (20) are trivial
and hence λ ∈ Je

2(T ).

Now, if T is a standard Gaussian automorphism and S ∈ Cg(T ), we
have Jg

2 (T ) ⊂ Jg
2 (S). So, if T is a standard GAG and S ∈ C(T ), then

Je
2(T ) = Jg

2 (T ) ⊂ Jg
2 (S) ⊂ Je

2(S). Therefore, if moreover gp(S, T )/gp(S) is
compact, we see by Lemma 8 that S is also a GAG.

Proposition 11. Assume that σ is a GAG measure. Then

(i) the image of σ under the map z 7→ zN is a GAG measure (N ∈
Z \ {0});

(ii) for each decomposition σ = σ0 + σ̃0 with σ0 ⊥ σ̃0 and each z0 ∈ T
the measure τ = σ0 ∗ δz0 + σ̃0 ∗ δz0 is a GAG measure.

P r o o f. Let T = Tσ and let H be its Gaussian space. For each case, it
is enough to find S ∈ C(T ) such that gp(S, T )/gp(S) is compact and the
spectral type of US |H is the given measure (note that in both cases, the
measure is continuous and thus S will be ergodic).

For (i), S = TN has the required properties. To see (ii) let us define
g ∈ Fσ by g(z) = z0 σ-a.e. and g(z) = z0 σ̃0-a.e. Then g spans a compact
subgroup of Fσ and if R ∈ Cg(T ) corresponds to g, it follows that S = TR
is a GAG, while its spectral type on H is the image of σ under z 7→ zg(z),
which is equal to τ .

Remark 7. If Tσ is a GAG, then TNσ is a standard GAG . Indeed, since
σ ⊥ σ ∗ δu for each u ∈ T \ {1}, the map z 7→ zN is one-to-one σ-a.e. and it
follows that the multiplicity function of TNσ on H remains 1.

Note also that if σ is a GAG measure and τ is defined as in (ii), with
z0 6= 1, then, by Corollary 4, σ ⊥ τ but σ + τ cannot be a GAG measure,
although σ and τ are GAG.

Example 2. Let σ be a GAG measure. By the remark above, σ ∗ δ−1 is
GAG but σ+σ ∗ δ−1 is not. Let (X,B, µ) be the Gaussian probability space
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and H be the Gaussian space of Tσ. Consider the direct product T = Tσ×Tσ.
It is a Gaussian automorphism with Gaussian space H̃ = H1 ⊕H2, where
H1 and H2 are the two natural copies of H in L2(X ×X,µ⊗ µ).

Put F : X ×X → X ×X, F (x, y) = (x,−y). We have F = TV , where
V : H̃ → H̃ is given by V (f1 + f2) = f1 − f2 for f1 ∈ H1, f2 ∈ H2, and
thus F ∈ Cg(T ). Now, let S = F ◦ T . Then US preserves H1 and H2, and
its restrictions to H1 and H2 are, up to a natural identification, UTσ |H and
−UTσ |H , which have spectral types σ and σ ∗ δ−1 respectively. Also, both
have simple spectrum and, since σ ⊥ σ∗δ−1, it follows that US |H̃ has simple
spectrum and its spectral type is τ = σ + σ ∗ δ−1. Thus S is isomorphic to
Tτ and, in particular, S is not a GAG.

Therefore, it may happen that the composition of a generalized GAG
with a compact element of its Gaussian centralizer is not a GAG (cf. remarks
before Proposition 11).

Note that S and T have the common (classical for both) factor BF of
those sets which are fixed under F . However, if R denotes the switching of
coordinates (x, y) 7→ (y, x) and if we let K be the finite group generated by
F and R, then K is contained in Cg(T ) and the factor A = (B ⊗ B)/K of
BF is still a common factor of T and S, but for the latter automorphism it
is not a classical factor. Indeed, suppose that A may be written in the form
A = B(H ′)/K′ as a classical factor of S. Then, since T ∈ Cg(S) and S is
standard, H ′ is also UT -invariant and K′ ⊂ Cg(T |B(H′)). By (17) and (18)
(applied for T ), H ′ = H̃ and K′ = K. This is a contradiction since S and R
do not commute.

Assume moreover that Tσ has simple spectrum, i.e. each chaos H(n) is
cyclic under UTσ and σ(m) ⊥ σ(n) for every m 6= n. It easily follows that,
under US , each H̃(n) = (H1⊕H2)�n is the orthogonal sum of finitely many
cyclic subspaces and that the convolution powers of τ are still mutually sin-
gular. Therefore +∞ is not an essential value of the multiplicity function
of Tτ . It was already noticed by Vershik in [38] that Gaussian automorphisms
Tτ for which +∞ is not an essential value of the multiplicity function have
strong Gaussian behavior, for example all isomorphisms between such au-
tomorphisms must be Gaussian. The fact that the spectral types on the
chaos are mutually orthogonal also implies that, for each λ ∈ J2(Tτ ), Φλ
preserves the chaos (see Remark 1). Despite all this, we deduce that such
automorphisms need not be GAG.

3.5. More about classical factors. We give here a more precise
description of classical factors of generalized Gaussian automorphisms and
typical examples. We shall make use of some basic facts of representation
theory for which we refer to [8].
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Consider a separable Hilbert space H, a unitary operator U ∈ U(H),
and a compact subgroup K ⊂ U(H) each of whose elements commutes with
U . By a direct consequence of the Peter–Weyl theorem (see [8], Theorem
27.44), H is a direct sum of finite-dimensional K-invariant subspaces on
which the action of K is irreducible. Given such a subspace F0, of dimension
m, let (f1, . . . , fm) be an orthonormal basis of F0 and let F be the closed U -
invariant subspace generated by F0. Then U |F has spectral multiplicity ≤ m
and thus admits a spectral representation in some closed subspace F̃ of
L2(T, τ,Cm), where τ is its maximal spectral type. Let us denote by f̃ the
vector-valued function corresponding to f ∈ F and by Ṽ the operator on F̃
corresponding to V ∈ L(F ).

Any operator W ∈ W ∗(U) commutes with each element of K and thus
yields an intertwining between the actions of K on F0 and on WF0. By [8],
Theorem 27.13, its restriction to F0 must be of the form a constant times
an isometry. Passing to the spectral representation, for every g ∈ L∞(T, τ)
there hence exists a constant c(g) such that for j, k = 1, . . . ,m,

(g · f̃j | g · f̃k) = c(g)(f̃j | f̃k).

If j 6= k the inner product is zero and it follows that, for any two Borel
subsets A′ and A′′ of the circle,

(χA′ f̃j |χA′′ f̃k) = (χA′∩A′′ f̃j |χA′∩A′′ f̃k) = 0.

Hence the cyclic subspaces Z(fj) are pairwise orthogonal. For j = k, we find
that for every Borel subset A of the circle,

σfj (A) = (χAf̃j | f̃j) = ‖χAf̃j‖2

does not depend on j. Thus the fj ’s have the same spectral measure, equiv-
alent to τ , and U |F has uniform multiplicity m.

We may therefore suppose that τ is the common spectral measure of
the fj ’s and that the spectral isomorphism maps fj to the constant func-
tion f̃j : z 7→ ej , where (e1, . . . , em) is the canonical basis of Cm (and
F̃ = L2(T, τ,Cm)). To the action of K on F0 corresponds an irreducible
representation ξ of K in the unitary group U(m) such that, for V ∈ K and
j = 1, . . . ,m, we have Ṽ f j(z) = ξ(V )ej . Then, for every g ∈ L∞(T, τ), since

Ṽ commutes with the multiplication by g, we get Ṽ (g · f̃j)(z) = g(z) ξ(V )ej ,
and it follows that

(21) Ṽ f(z) = ξ(V ) · f(z) for every f ∈ L2(T, τ,Cm).

By separability of H, we get:

Proposition 12. H is the orthogonal sum of U -invariant and K-in-
variant subspaces F such that U |F has a uniform finite multiplicity m and ,
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in some spectral representation of F as L2(T, σU |F ,Cm), K acts by some
irreducible representation in U(m) according to formula (21).

Now, let T be a Gaussian automorphism of type σ and let A = B(H)/K
be a classical factor of T , where H is a UT -invariant Gaussian subspace
and K is a compact subgroup of Cg(T |B(H)). Consider a decomposition σ =
σ0 + σ̃0, where σ0 is the restriction of σ to a Borel subset A0 of T such that
A0 ∪A0 = T and σ(A0 ∩A0) = 0, and let H0 = HA0 = {f ∈ H : σf � σ0}.
Since H0 is a spectral subspace of U = UT |H , it must be K-invariant. More-
over we have H = H0⊕H0. Any operator V0 ∈ L(H0) commuting with U |H0

has a unique extension to a real operator V ∈ L(H) commuting with U , by
letting V f = V0f on H0. Therefore K is determined by its action on H0,
and conversely, any compact subgroup of U(H0) commuting with U yields
a compact subgroup of Cg(T |B(H)).

This allows us to extend the construction in Example 1 to generalized
Gaussian automorphisms.

Example 3. Consider T = T
(m)
σ , the m-fold direct product Tσ×. . .×Tσ,

and its Gaussian space H = Hm
σ ≈ L2(T, σ,Cm). Then H0 corresponds to

the subspace L2(T, σ0,Cm). Every operator R ∈ U(m) yields a unitary oper-
ator VR on H0, by letting ṼRf(z) = R · f(z) in the spectral representation,
and VR extends to a real unitary operator on H commuting with U . We
thus get a subgroup Uσ0(m) of Cg(T ) and a compact factor B(Hm

σ )/Uσ0(m)
which we shall denote by Aσ0(m).

If we come back to the general case of a Gaussian automorphism T of
type σ and a classical factor A = B(H)/K of it, since H0 is K-invariant, by
Proposition 12 we find a Gaussian subspace F0 ⊂ H0 such that U |F0 has a
uniform multiplicity m and in a spectral representation K acts by (21). Let
τ0 be the spectral type of U |F0 , F = F0 ⊕ F 0 and τ = τ0 + τ̃0. Then U |F
still has uniform multiplicity m, so we can identify T |B(F ) with T

(m)
τ . The

factor A∩ B(F ) is a compact factor of B(F ) determined by some subgroup
of Uτ0(m), hence it contains Aτ0(m). This proves:

Proposition 13. Every classical factor of a Gaussian automorphism of
type σ = σ0 + σ̃0 contains a factor Aτ0(m) for some measure τ0 � σ0 and
some positive integer m.

In particular, if an automorphism has a common factor with a GAG T
of type σ, we can assert that it has a factor isomorphic to some Aτ0(m) with
τ0 � σ0.

The next proposition gives a new example of non-disjoint automorphisms
without common factors.
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Proposition 14. Let σ = σ0 + σ̃0 with σ0 ⊥ σ̃0, and let m1 6= m2 be
two positive integers. Then Aσ0(m1) and Aσ0(m2) are not disjoint , but if
moreover σ is a GAG measure, they have no common factor.

P r o o f. Assume m1 < m2. Then B(Hm1
σ ) and thus Aσ0(m1) appear nat-

urally as factors of B(Hm2
σ ). Since Aσ0(m2) is a compact factor, it cannot be

independent of any other non-trivial factor of B(Hm2
σ ). This yields a joining

of Aσ0(m1) and Aσ0(m2) which is different from the product measure.
Suppose now that σ is a GAG measure and Ai are non-trivial factors of

Aσ0(mi), i = 1, 2. As Ai is also a factor of B(Hmi
σ ), it is classical and can

be written as Ai = B(Hi)/Ki. By (18), since Ai ⊂ Aσ0(mi), Hi is invariant
under Uσ0(mi). It follows that the multiplicity of U

T
(mi)
σ

on Hi must be equal
to mi. Indeed, passing to the spectral representation in L2(T, σ,Cmi), if Hi

is spanned by m cyclic subspaces Z(f1), . . . , Z(fm), then every f̃ ∈ H̃i takes
σ-a.e.(z) its values in the subspace spanned by the f̃j(z). By separability,
this subspace is σ-a.e. invariant under U(mi), hence equal either to {0} or
to Cmi , and it follows that m ≥ mi.

On the other hand, if A1 and A2 were isomorphic, by Proposition 8, the
restrictions of U

T
(mi)
σ

to Hi (i = 1, 2) would be unitarily equivalent and
therefore they would have the same multiplicity.

3.6. Factors and Gaussian isomorphisms. We will now decide which
factors of a GAG can be isomorphic to a Gaussian automorphism. Let
(X,B, µ) be a Gaussian probability space with Gaussian space H. Recall
(see [16]) that for each non-zero f ∈ H(n) (n ≥ 1) there exists α∗ ∈ R+ such
that

(22)
\
X

eα|f |
2/n

dµ

{
<∞ for each α < α∗,
=∞ for each α > α∗.

Assume now that T and S are Gaussian automorphisms with Gaussian
spaces H and J respectively. It follows that the distributions of a real vari-
able from H(n) and of a real variable from J (m) are different whenever
n 6= m. Moreover, (22) easily extends to every f ∈⊕n

k=1H
(k) \⊕n−1

k=1 H
(k)

and therefore, if I is an isomorphism between a factor A1 of S and a factor
A2 of T and if f ∈ L2(A1)∩ J (n), then either UI(f) ∈ H(1) ⊕ . . .⊕H(n), or
the orthogonal projection of UIf on H(k) is not zero for infinitely many k’s.

To each a ∈ (0, 1) we assign the Gaussian self-joining λa of S correspond-
ing, by Theorem 1, to the operator f 7→ af on J (which clearly belongs
to SS). Let then Φa = Φλa . In view of Lemma 3, for each n ≥ 1,

Φa(f) = anf for each f ∈ J (n).

So, each chaos J (n) is the eigenspace of Φa corresponding to the eigenvalue
an. Note also that Φa commutes with every Markov operator of a self-joining
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of S with a Gaussian disintegration and, in particular, if A is a classical
factor of S, then πAΦa = ΦaπA.

Proposition 15. Let S and T be Gaussian automorphisms, let J and
H be the Gaussian spaces of S and T respectively , and assume that T is a
GAG. Let A be a factor of T and A′ a classical factor of S. Suppose that I
establishes an isomorphism of the factors A and A′. Then for each m ≥ 1,

UI(H(m) ∩ L2(A)) = J (m) ∩ L2(A′).
P r o o f. Fix a ∈ (0, 1) and let λa and Φa be defined as above. Then

we consider λ̃a,the restriction of λa to A′ ⊗A′. The corresponding Markov
operator Φλ̃a equals πA′Φa|L2(A′) but, since A′ is a classical factor, πA′Φa =
ΦaπA′ and thus Φλ̃a = Φa|L2(A′). So, for each n ≥ 0, J (n) ∩ L2(A′) is an
eigenspace of Φλ̃a and L2(A′) is the orthogonal sum of these eigenspaces.

Consider now the ergodic self-joining λ of A corresponding to λ̃a by I. Then
ΦλπA is the Markov operator of some self-joining of T and, since T is a
GAG, it preserves the chaos. Therefore, for all m ≥ 0, Φλ preserves the
subspace H(m)∩L2(A) and it follows that this subspace can be decomposed
according to the eigenspaces of Φλ:

H(m) ∩ L2(A) =
∞⊕
n=0

H(m) ∩ U∗I (J (n) ∩ L2(A′)).

However, H(m) ∩ U∗I (J (n) ∩ L2(A′)) = {0} whenever n 6= m since in view
of (22) a non-zero variable from H(m) has a different distribution from a
variable from J (n). Since

L2(A) =
∞⊕
m=0

H(m) ∩ L2(A),

the result follows.

The corollary below generalizes a fact which was well known for Gaussian
automorphisms with simple spectrum (cf. [38], Th. 5).

Corollary 5. Let T : (X,B, µ) → (X,B, µ) be a GAG with Gaussian
space H. Any isomorphism between T and another Gaussian automorphism
is Gaussian. Moreover , any UT -invariant subspace J of L2

0(X,µ) which is
spanned by a real subspace of Gaussian variables is contained in H.

The second assertion states that the only factors of a GAG which are
isomorphic to some Gaussian automorphism are its (natural) Gaussian fac-
tors; in other words, factors determined by non-trivial compact subgroups
are not isomorphic to any Gaussian automorphism.

Example 4. As an application we give a construction of weakly isomor-
phic but not isomorphic automorphims using a GAG. Let T = T∞σ , where
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Tσ is a GAG. Consider T and T1 = S × T , where S is a non-trivial com-
pact factor of Tσ. Clearly, T and T1 are weakly isomorphic. They cannot,
however, be isomorphic, since T1 is a non-trivial compact factor of T .

This generalizes a result from [32], where the same construction of two
weakly isomorphic but not isomorphic Gaussian systems was carried out
using Tσ with simple spectrum and some spectral arguments.

Corollary 6. Let T : (X,B, µ) → (X,B, µ) be a Gaussian automor-
phism with Gaussian space H. Assume that J ⊂ L2

0(X,µ) is a T -invariant
Gaussian subspace and that the spectral type η of UT on J is a GAG mea-
sure. Then J ⊂ H.

P r o o f. Consider the family Θ of all closed T -invariant Gaussian sub-
spaces J ′ ⊂ L2

0(X,µ) whose spectral type is η. By the GAG property, if
J1, J2 ∈ Θ, then J1 + J2 ∈ Θ, and it follows that there exists a biggest ele-
ment, say F , in Θ. Now, clearly, if S ∈ C(T ) and J ′ ∈ Θ then US(J ′) ∈ Θ.
According to Remark 2, we can take S ∈ Cg(T ) which is a GAG. Then we
must have SF = F and the Gaussian space of S is still H. So, by Corollary 5,
F ⊂ H and the result follows.

Remark 8. The proof of the above corollary allows us to define, similarly
to the notion of the Kronecker factor in ergodic theory, a biggest GAG
factor of type absolutely continuous with respect to a given GAG measure:
whenever S : (Y, C, ν)→ (Y, C, ν) is an ergodic automorphism of a standard
probability space and σ is a GAG measure, there exists a biggest factor
A ⊂ C such that S|A is a GAG of type� σ.

Remark 9. Let us see the particular meaning of Corollary 6 in terms of
stationary processes. Suppose that (Xn), (Yn) are two stationary centered
Gaussian processes defined on (Ω,F , P ) such that (Xn, Yn) is also station-
ary. Assume that B((Xn)) = F and that the spectral measure of (Yn) is σ
with Tσ a GAG. Then (Xn +Yn) is a stationary centered Gaussian process.
Indeed, B((Yn)) is a Gaussian factor which is GAG and whose Gaussian
space is given by the span of {Yn : n ∈ Z}. By Corollary 6 we have Yn ∈
span{Xk : k ∈ Z}.

K. Itô in [11], §29, raised the problem of whether each stationary process
is a function of a stationary Gaussian process. The Itô problem is equivalent
to the question of whether each dynamical system is a factor of a Gaussian
automorphism. Vershik in [38] answered this question in the negative by
showing that Tσ × Tσ cannot be a factor of a standard Gaussian automor-
phism whenever Tσ has simple spectrum. This sort of examples can also
be constructed using the GAG’s as follows from Corollary 6. All theorems
giving rise to classes of automorphisms disjoint from the Gaussian automor-
phisms yield counterexamples to the Itô question, historically the first one
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being proved by the third author in [33] (see also [13]). We will give, how-
ever, another class of transformations that are not factors of any Gaussian
system.

Proposition 16. Assume that T is a GAG. If an automorphism R is a
non-trivial distal extension of T then R cannot be a factor of any Gaussian
automorphism.

P r o o f. If T is a factor of a Gaussian automorphism S then Corollary 6
says in particular that S is a relatively weakly mixing extension of T ; if
R is a factor of S then R has to be relatively weakly mixing over T , a
contradiction.

4. ON THE DISJOINTNESS PROBLEM

4.1. Disjointness and common factors. Let (X,B, µ), (Y, C, ν) be
two probability spaces. Let λ be a probability measure on X × Y with
marginals µ and ν respectively. Denote by λ∞ the measure on (X∞ × Y,
B∞ ⊗ C) which is the infinite relative product of (X × Y,B ⊗ C, λ) over Y ,
i.e.

(23)
\

X∞×Y

n∏

i=1

fi(xi) g(y) dλ∞(x, y) =
\
Y

n∏

i=1

(Φλfi)g dν

for each fi ∈ L∞(X,µ), g ∈ L∞(Y, ν) (x = (x1, x2, . . .) ∈ X∞). The follow-
ing lemma is a relative version of the 0-1 law.

Lemma 9. Under the above assumptions, each function g ∈ L2(X∞× Y,
λ∞) invariant under all permutations of coordinates in X is (X∞ × C)-
measurable.

P r o o f. Let Bn and B′n denote the sub-σ-algebras on X∞ generated
by the coordinates x1, . . . , xn and xn+1, . . . respectively. The assumption
that g is invariant under permutations of X-coordinates implies that it is⋂
n≥1(B′n ⊗ C)-measurable. Then it follows from (23) that, for every n ≥ 1

and every f ∈ L∞(Bn ⊗ C, λ∞),\
fg dλ∞ =

\
E(f |X∞ ⊗ C)E(g |X∞ ⊗ C) dλ∞ =

\
fE(g |X∞ ⊗ C) dλ∞,

whence g = E(g |X∞ ⊗ C) a.e.

The following theorem contributes to a better understanding of Fursten-
berg’s problem on the relation between disjointness and the lack of common
factors (see [3]).

Theorem 4. Let S : (X,B, µ) → (X,B, µ), T : (Y, C, ν) → (Y, C, ν) be
two automorphisms. If S and T are not disjoint then T has a common
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factor with an infinite self-joining of S. If T and S are additionally ergodic
then T has a common factor with an ergodic infinite self-joining of S.

P r o o f. Let λ be a joining of S and T , λ 6= µ ⊗ ν. The measure λ∞

defined in Lemma 9 is a joining between an infinite self-joining of S and
T . Take a function g ∈ L2(Y, ν) such that Eλ(g(y) | B × Y ) is not constant
and consider the function G = Eλ

∞
(g(y) | B∞ × Y ). Then G is invariant

under all permutations of coordinates in X and hence by Lemma 9 it is
(B∞ × Y ) ∩ (X∞ × C)-measurable. As the projection of λ∞ on each factor
X×Y is λ and Eλ(g(y) | B×Y ) is not constant, G is not constant. Therefore
(B∞ × Y )∩ (X∞ ×C) is not trivial, and it is isomorphic both to a factor of
an infinite self-joining of S and to a factor of T .

Assume now that T and S are ergodic. It follows that there exists % ∈
J∞(S) such that T and (S∞, %) have a common factor. This common factor
is necessarily ergodic, so it is a common factor of T and almost every ergodic
component of %.

Remark 10. Theorem 4 simplifies (and unifies) the proofs of a number
of classical theorems on disjointness. Let us mention three of them:

(i) zero entropy automorphisms ⊥ K-automorphisms ([30], also [3]);
(ii) distal automorphisms ⊥ weakly mixing automorphisms ([3]);

(iii) rigid automorphisms ⊥ mildly mixing automorphisms ([5]).

Indeed, it is enough to show that the classes under consideration have no
common factors, that they are closed under taking factors and that the
left-hand class is closed under taking joinings. The latter property follows
from the fact that each automorphism has a biggest factor with zero entropy
(its Pinsker factor) for (i), a biggest distal factor for (ii), and a biggest factor
with a given rigidity sequence for (iii).

Observe also that the classical fact: Id is disjoint from any ergodic T ,
follows from the above scheme.

Remark 11. We notice, however, that the necessary condition for non-
disjointness in Theorem 4 is not sufficient, since an ergodic automorphism
T can be disjoint from some non-trivial factor of an ergodic self-joining of
itself. For example, it is known that an ergodic self-joining of a weakly mixing
automorphism can have a rotation as a factor, as the following construction
shows (details are left to the reader).

Let T be a weakly mixing automorphism. Choose a measurable ψ : X →
T so that the extension Tψ : (x, z) 7→ (Tx, ψ(x)z) on X × T (T is equipped
with the Lebesgue measure) remains weakly mixing. Then, on X × T2,

T̃ψ : (x, z, z′) 7→ (x, ψ(x)z, zz′)

is still weakly mixing.
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Now, take a z0 ∈ T which is not a root of 1 and let

S(x, z, z′, z′′) = (x, ψ(x)z, zz′, z0zz
′′)

on X × T3. Then S can be identified with an ergodic self-joining of T̃ψ but
it has z0 as an eigenvalue and thus has a rotation as a factor.

For a GAG we can improve the assertion of Theorem 4.

Theorem 5. Let T be a GAG of type σ and S be an ergodic automor-
phism. Assume that T 6⊥ S. Then S and T∞σ have a common factor. In
particular , if T∞σ 6⊥ S then S and T∞σ itself have a common factor.

P r o o f. By Theorem 4 the only thing we have to note is that each ergodic
infinite self-joining of T is a factor of T∞σ .

Remark 12. It follows from Proposition 13 that, if an ergodic automor-
phism S is not disjoint from a GAG of type σ, it has a factor isomorphic to
some Aτ (m) where τ � σ and τ ⊥ τ̃ . Moreover, since a compact factor can-
not be independent of any other non-trivial factor, a classical factor of T∞σ
cannot be disjoint from any Gaussian automorphism of type σ, and therefore
we have here a necessary and sufficient condition for non-disjointness.

Moreover, we recall that quite a similar condition of non-disjointness for
an ergodic automorphism S and a simple automorphism T was given by del
Junco and Rudolph ([15], Th. 4.1): S must then have a factor isomorphic to
some compact factor of a finite direct product T× . . .×T . Again, Theorem 4
allows us to simplify the proof in [15]. Indeed, as in the case of a GAG, any
infinite ergodic self-joinings of T is isomorphic to a factor of T∞, and any
non-trivial factor of T∞ contains a compact factor of a finite direct product
of copies of T (for an analysis of the factors of T∞, see [13]).

We will also need a result which was already used in [13] to prove that
Gaussian automorphisms are disjoint from simple automorphisms.

Proposition 17. Assume that S : (X,B, µ) → (X,B, µ) is ergodic and
T is a Gaussian automorphism. Assume moreover that S 6⊥ T . Then there
exists an ergodic infinite self-joining of S which has a factor isomorphic to
a classical factor of T .

P r o o f. By Theorem 4 we can find a factor A of T , an ergodic infinite
self-joining λ of S and a factor of (S∞, λ) which is isomorphic to A. In view
of Remark 2, we can find in Cg(T ) a standard GAG T ′. Then every factor
of T ′ is classical and is also a classical factor of T . Thus Ã :=

∨
n∈Z T

′nA
is a classical factor of T . Clearly, Ã can be viewed as an infinite ergodic
self-joining of A, hence it is isomorphic to a factor of an ergodic infinite
self-joining of (S∞, λ), whence to a factor of an ergodic infinite self-joining
of S.
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Remark 13. It follows from the proof that each factor A of a Gaussian
automorphism is contained in a classical factor A′ isomorphic to an infinite
self-joining of A.

4.2. Disjointness from a GAG—spectral point of view. Assume
that T : (X,B, µ) → (X,B, µ) is a Gaussian automorphism of type σ, with
Gaussian space H. Let λ ∈ J2(T ) be a self-joining with a Gaussian disinte-
gration. As we already noticed in Section 2.3, Φλ then preserves the chaos. In
contrast to the ergodic case, Φλ|H = 0 does not imply Φλ = 0 on L2

0(X,µ),
as the well-known example of the even factor shows: in this case the cor-
responding Markov operator is the orthogonal projector on the sum of the
even chaos. However, such a behavior is more general. We write σ = σ0 + σ̃0

with σ0 ⊥ σ̃0. Put H0 = {f ∈ H : σf � σ0}. Hence H = H0 ⊕H0, where
H0 = {f : f ∈ H0} = {g ∈ H : σg � σ̃0}.

Proposition 18. Let T be a Gaussian automorphism with Gaussian
space H. If λ ∈ J2(T ) has a Gaussian disintegration and λ 6= µ ⊗ µ then
Φλ|H(2n) 6= 0 for each n ≥ 1.

P r o o f. Let
Φλ =

\
Jg

2 (T )

Φ% dP (%)

correspond to the ergodic decomposition of λ. Let us remark first that for
some f ∈ H0, there is a set of positive P -measure on which Φ%f 6= 0. Indeed,
if not, by separability, we get Φ%|H0 = 0 a.e., whence also Φ%|H0

= 0 a.e.,
and thus Φ%|H = 0 a.e. Since % ∈ Jg

2 (T ) a.s., it follows that Φ% = 0 on
L2(X,µ) a.s. and therefore the same holds for Φλ, a contradiction.

Now take a “good” f ∈ H0. We have Φ%f ∈ H0 since H0 is a spectral
subspace and thus Φ%f ⊥ Φ%f = Φ%f . Therefore in the natural identification
of H(2) with H�2, |f |2 = f � f and |Φ%f |2 = Φ%(f)�Φ%(f). It follows that

Φλ(|f |2) = Φλ(f � f) =
\
|Φ%f |2 dP (%) > 0.

This proves the case n = 1. For the general case, it is enough to replace f
by f�n. We still have H�n0 ⊥ H�n0 (in H�n) and this still implies

Φ%(f�n � f�n) = (Φ%f)�n � (Φ%f)�n = |(Φ%f)�n|2 6= 0

for % in a set of positive P -measure.

Since the relative product over a classical factor has a Gaussian disinte-
gration, we have the following.

Corollary 7. Assume that A is a non-trivial classical factor of a Gaus-
sian automorphism T with Gaussian space H. Then, for each n ≥ 1,

L2(A) ∩H(2n) 6= {0}.
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Remark 14. As H0 ⊥ H0, H0 ⊗ H0 may be viewed as a subspace of
H�2 (the embedding being given by f ⊗ g 7→ f ⊗ g + g ⊗ f). The proof
of Proposition 18 yields more precisely Φλ|H0⊗H0

6= 0, and thus if A is a
non-trivial classical factor then L2(A) ∩ (H0 ⊗H0) 6= {0}.

Example 5. Let K = {Sz : z ∈ T} be the compact subgroup of Cg(T )
where USz = Vz is defined on H by Vzf = zf if f ∈ H0 and Vzf = zf if
f ∈ H0, for z ∈ T, and let A = B/K (if T is standard, then A is of the type
given in Example 1). We have

πA =
\
T
Vz dz.

Clearly, πA|H = 0. On the second chaos we have

Vz(f � g) = Vzf � Vzg =




f � g if f ∈ H0 and g ∈ H0,
z2f � g if f, g ∈ H0,
z2f � g if f, g ∈ H0.

Hence πA(f � g) = f � g in the first case, and 0 in the other two cases.
It follows that the restriction of πA to H�2 is the orthogonal projector on
H0 ⊗H0.

For T a GAG, Proposition 18 gives rise to a necessary condition of non-
disjointness of T with another automorphism.

Corollary 8. Let T be a GAG and S : (Y, C, ν) → (Y, C, ν) an auto-
morphism. Assume that S and T are not disjoint. Then the maximal spectral
type of S and σ ∗ σ are not mutually singular (or more generally , the same
holds for σ(2n) for all n ≥ 1).

P r o o f. Let λ ∈ J(T, S) be different from the product measure and put
Ψ := Φ∗λ ◦ Φλ. It follows from (5) that Ψ 6= 0 on L2

0(X,µ). Thus Proposi-
tion 18 implies that Ψ does not vanish identically on the second chaos of T .
Consequently, Φλ|H(2) : H(2) → L2(Y, C, ν) is non-zero and the assertion
follows from (6).

4.3. Disjointness of a GAG from a Gaussian automorphism.
Assume that σ is a GAG measure and let τ be a continuous symmetric
measure. Our first aim is to prove that if Tσ 6⊥ Tτ then σ and a translation of
τ are not mutually singular. In fact, the same conclusion holds and the proof
will be the same under the weaker hypothesis that Tτ and some Gaussian
automorphism of type σ are not disjoint.

Then, by Proposition 17 and the fact that an ergodic infinite self-joining
of a GAG of type σ is still a Gaussian automorphism of type σ, there exist a
(classical) factor A of a GAG T of type σ, a classical factor A′ of Tτ and an
isomorphism I from A′ to A. The factor A may be written as A = B(H)/K,
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whereH is an invariant Gaussian subspace of T and K is a compact subgroup
of Cg(T |B(H)). Similarly we can find an invariant Gaussian subspace F of
Tτ and a compact subgroup L ⊂ Cg(T |B(F )) such that A′ = B(F )/L. We
will show that the existence of such an I implies that the spectral type of
U |T on H and some translation of the spectral type of U |Tτ on F are not
mutually singular. Therefore, with no loss of generality we shall assume that
H and F are the whole Gaussian spaces of T and Tτ respectively.

For any symmetric Borel subsets A,B ⊂ T we consider the spectral
Gaussian subspaces

HA = {f ∈ H : σf � σ|A}, FB = {g ∈ F : σg � τ |B}
and we define

AA = B(HA) ∩ A, A′B = B(FB) ∩ A′.
We also have

AA = B(HA)/KA, A′B = B(FB)/LB ,
where KA = K|B(HA) and LB = L|B(FB).

By Bsym(T) we denote the sub-σ-algebra of B(T) consisting of all sets
which are invariant under the map z 7→ z. The pointwise isomorphism I
induces a Boolean (mod null sets) isomorphism A → A′ still denoted by I.

Lemma 10. Under these assumptions, there exists a unique map

I∗ : B(T)sym mod σ → B(T)sym mod τ

such that I(AA) = A′I∗(A) for each symmetric Borel subset A ⊂ T.

P r o o f. Fix a symmetric Borel set A ⊂ T. We have to show that I(AA)
is of the form A′B for some symmetric Borel set B ⊂ T. Clearly, the set B
is then uniquely determined mod τ and it will not change if A is modified
by a σ-null set.

Take a standard GAG S ∈ Cg(Tτ ) and consider the classical factor of
Tτ constructed from I(AA) as in the proof Proposition 17,

Ã =
∨

n∈Z
SnI(AA).

Since Tτ is standard, the only invariant subspaces of F are its spectral
subspaces, and Ã = B(FB)/L′ for some symmetric Borel set B ⊂ T and
some compact subgroup L′ ⊂ Cg(Tτ |B(FB)). Again since Tτ is standard,
any classical factor of Tτ is S-invariant. It follows that Ã ⊂ A′, hence
Ã ⊂ A′ ∩ B(FB) = A′B , and moreover, Ã is a compact factor of A′B .

The factor I−1Ã ⊂ A of T is generated by a family of factors isomorphic
to AA. Since T is a GAG, it follows from Proposition 8 that the Gaussian
cover of each factor in this family is Gaussian isomorphic to B(HA). As HA
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is a spectral subspace of H, this actually implies that each of these factors
is contained in B(HA). Therefore

AA ⊂ I−1Ã ⊂ A ∩ B(HA) = AA,
and I(AA) = Ã.

Now, I−1(A′B) is of the form B(H ′)/K′ and, since it contains AA as a
compact factor, we must have H ′ = HA. Thus

AA ⊂ I−1(A′B) ⊂ A ∩ B(HA) = AA
and finally I(AA) = A′B .

We shall now show that I∗ corresponds to some point mapping on the
circle. Since it is defined only on symmetric sets, let us fix a Borel subset
A0 (for example, the upper half of the circle) such that

A0 ∪A0 = T, σ(A0 ∩A0) = 0.

Lemma 11. There exists a Borel map ψ : T → A0 such that I∗(A) =
ψ−1(A) for every symmetric Borel subset A ⊂ T and ψ∗τ � σ. Moreover ,
ψ(z) = ψ(z) τ -a.e.

P r o o f. The first condition is equivalent to saying that ψ−1(A) =
I∗(A∪A) for every Borel subset A of A0. When A = A0, since A0∪A0 = T,
we have AA∪A = A whence I∗(A ∪ A) = T. If σ(A) = 0 then HA = {0},
which implies that FI∗A = {0} and hence τ(I∗A) = 0. For the first assertion
of the lemma, it now suffices to show that

(24) I∗
( ∞⋂

i=1

Ai

)
=
∞⋂

i=1

I∗Ai

and

(25) I∗
( ∞⋃

i=1

Ai

)
=
∞⋃

i=1

I∗Ai

for every sequence (Ai)i≥1 of symmetric Borel subsets of T.
By (10), if A =

⋂∞
i=1Ai then B(HA) =

⋂∞
i=1 B(HAi) and thus AA =⋂∞

i=1AAi . The same holds for the factors A′I∗(Ai) and (24) follows.

Now, let A =
⋃∞
i=1Ai. Clearly, I∗A ⊃ ⋃∞i=1 I

∗(Ai). On the other hand,
as HA is the smallest Gaussian space which contains all HAi (i ≥ 1),∨∞
i=1AAi is a compact factor of B(HA). Hence AA ⊂ B(HA) cannot con-

tain a factor independent of
∨∞
i=1AAi and A′I∗A cannot contain a factor

independent of
∨∞
i=1A′I∗Ai . Therefore

⋃∞
i=1 I

∗Ai = I∗A.

For the second assertion, let ψ̃(z) = ψ(z). Then ψ̃−1(A) = ψ−1(A) =
ψ−1(A) for every Borel subset A ⊂ A0, whence ψ̃ = ψ τ -a.e.
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We identify H with a closed subspace of a space L2(T, σ,H) by the
spectral representation and we identify H(2) = H�H with a closed subspace
of L2(T2, σ ⊗ σ,H⊗H), in such a way that

UT g(w, z) = wzg(w, z).

Let A ∈ Bsym(T). Then HA corresponds to the functions supported by A and
H

(2)
A to the subspace of all functions supported by A × A. More precisely,

the multiplication by χA corresponds to the spectral projector H → HA

and it commutes with the action of Cg(T ) on H. It follows that the multi-
plication by χA×A = χA � χA commutes with the action of Cg(T ) on H(2)

and thus, since A = B(H)/K with K ⊂ Cg(T ), it maps L2(A) ∩H(2) onto
L2(A)∩H(2)

A = L2(AA)∩H(2). Similarly, we identify spectrally L2(A′)∩F (2)

with a closed subspace of L2
sym(T2, τ ⊗τ) and then, for a given B ∈ Bsym(T),

the multiplication by χB×B corresponds to the orthogonal projector on
L2(A′B) ∩ F (2).

By Proposition 15, the isometry UI : L2(A)→ L2(A′) maps L2(A)∩H(2)

onto L2(A′) ∩ F (2) and L2(AA) ∩ H(2) onto L2(A′I∗A) ∩ F (2). Thus, for
g ∈ L2(A) ∩H(2), if B = I∗A, then

(26) UI(χA×A · g) = χB×B · UIg.
Now, by Corollary 7, L2(A) ∩H(2) 6= {0}. Put σ0 = σ|A0 , so that we have
a decomposition σ = σ0 + σ̃0 with σ0 ⊥ σ̃0 as in the previous section. If we
let again H0 = {f ∈ H : σf � σ0}, by Remark 14, we still have L2(A) ∩
(H0 ⊗H0) 6= {0}. Here we consider H0 ⊗H0 as a subspace of H(2), which
corresponds to a subspace of functions supported by (A0×A0)∪ (A0×A0),
but it is also naturally identified with the subspace of their restrictions to
A0 ×A0.

Then L2(A) ∩ (H0 ⊗ H0) is represented by a closed non-zero subspace
of L2(A0 × A0, σ ⊗ σ,H ⊗H) and the restriction of UI yields an isometry,
still denoted by UI , from this subspace to a subspace of L2

sym(T2, τ ⊗ τ). On
L2(A) ∩ (H0 ⊗H0), (26) now becomes

(27) UI(χA×A · g) = χB×B · UIg
whenever A is a Borel subset of A0 and B = I∗(A ∪A).

By Lemma 11, χB×B(w, z) = χA×A(ψ(w), ψ(z)) and (27) extends to

(28) UI(f · g) = f ◦ (ψ,ψ) · UIg
for every f ∈ L∞(A0×A0) which is measurable with respect to the σ-algebra
generated by the sets of the form A × A. But this σ-algebra consists of all
sets invariant under the map (w, z) 7→ (z, w). Hence (28) holds for every
f ∈ L∞(A0 ×A0) invariant under (w, z) 7→ (z, w). On the other hand, from
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UIUT = UTτUI , we have

(29) UI(f · g) = f · UIg
when f(w, z) = wz, and (29) remains valid for every continuous f which
may be written as a function of wz.

Now, take f(w, z) = ‖wz‖ (where ‖u‖ denotes the distance from u ∈ T
to 1 on the complex plane). Then both (29) and (28) hold, so

f(w, z)UIg(w, z) = UI(f · g)(w, z) = f(ψ(w), ψ(z))UIg(w, z)

for g ∈ L2(A)∩ (H0⊗H0). Since we can find a non-zero g belonging to this
intersection and then UIg 6= 0, there exists a set of positive τ ⊗ τ -measure
on which f(w, z) = f(ψ(w), ψ(z)), i.e.

‖wz‖ = ‖ψ(w)ψ(z)‖.
Therefore on a set of positive τ ⊗ τ -measure

wz = ψ(w)ψ(z).

We can then find z and a set of w of positive τ -measure such that

ψ(w) = wzψ(z)

and since by Lemma 11, ψ∗τ � σ we see that σ 6⊥ τ ∗ δzψ(z).
We have proved the following result.

Theorem 6. Let T be a GAG of type σ and let Tτ be a standard Gaussian
automorphism. Suppose that T and Tτ are not disjoint. Then there exists
z0 ∈ T such that σ 6⊥ τ ∗ δz0 .

Corollary 9. Let T be a GAG of type σ and S be a generalized Gaus-
sian automorphism of type τ and assume T 6⊥ S. Then there exists z0 ∈ T
such that σ 6⊥ τ ∗ δz0 .

P r o o f. All we need to show is that T∞σ 6⊥ Tτ . By Proposition 17 we can
find a factor A of T∞σ isomorphic to a classical factor of S. But a classical
factor of S cannot be disjoint from Tτ .

Using Theorem 6 and the fact that Tσ and Tτ have a common factor
whenever σ and a certain translation of τ are not mutually singular, we can
now give more precise forms of some results of Section 3.4 (see Proposition 10
and Lemma 7) and of [17] (see Th. 4 and Lemma 2).

Corollary 10. Let σ and τ be two continuous symmetric measures on
T with σ ⊥ τ .

(i) If σ, τ are GAG measures then σ+ τ is a GAG measure if and only
if σ ⊥ τ ∗ δz for each z ∈ T.

(ii) If σ and τ have the FS property then σ + τ has the FS property if
and only if σ ⊥ τ ∗ δz for each z ∈ T.
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Finally, Theorem 6 allows us to give examples of zero-entropy Gaussian
automorphisms which are disjoint from any GAG.

Example 6. Let % be a continuous symmetric probability Borel measure
on T which is quasi-invariant under a countable subgroup D of the circle, i.e.

% ∗ δz � % for each z ∈ D.
Assume that % is ergodic, where by ergodicity we mean that each Borel
subset invariant under all translations by D must be of trivial %-measure (for
examples of ergodic % see e.g. [10], IV.8.3, [24], III.3). From the ergodicity of
% follows the weaker property that if 0 < τ � % then there exists z ∈ D\{1}
such that τ 6⊥ τ ∗δz. Indeed, if not, since D is countable, there exists a Borel
set A such that τ(T \A) = 0 and τ(zA) = 0 for each z ∈ D \ {1}. Then for
each Borel subset B ⊂ A,

τ
( ⋃

z∈D
zB
)

= τ(B).

If B has positive τ -measure, then %(T \⋃z∈D zB) = 0 and it follows that

τ
(
T \

⋃

z∈D
zB
)

= 0.

Therefore τ(B) = τ(A) and since τ is continuous, we obtain a contradiction.
Suppose T% 6⊥ T , where T is a GAG of type σ. Then there exists a

non-zero measure τ � % such that for some z ∈ T, τ ∗ δz � σ. Since τ is
not singular with respect to a translation of itself, the same holds for σ and
we obtain a contradiction with Corollary 4.
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[28] T. de la Rue, Rang des systèmes dynamiques gaussiens, Israel J. Math. 104 (1998),

261–283.
[29] V. V. Ryzhikov, Joinings, intertwining operators, factors and mixing properties

of dynamical systems, Russian Acad. Sci. Izv. Math. 42 (1994), 91–114.
[30] Ya. G. S ina i, The structure and properties of invariant measurable partitions, Dokl.

Akad. Nauk SSSR 141 (1961), 1038–1041.
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