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Homotopy and homology groups of the
n-dimensional Hawaiian earring

by

Katsuya Eda (Tokyo) and Kazuhiro Kawamura (Tsukuba)

Abstract. For the n-dimensional Hawaiian earring Hn, n ≥ 2, πn(Hn, o) '
Zω and πi(Hn, o) is trivial for each 1 ≤ i ≤ n−1. Let CX be the cone over a space
X and CX∨CY be the one-point union with two points of the base spacesX and Y
being identified to a point. Then Hn(X∨Y ) ' Hn(X)⊕Hn(Y )⊕Hn(CX∨CY )
for n ≥ 1.

1. Introduction. The n-dimensional Hawaiian earring Hn is the sub-
space of the (n + 1)-dimensional Euclidean space defined by

Hn =
∞⋃

m=0

{(x0, . . . , xn) : (x0 − 1/m)2 + x2
1 + . . . + x2

n = 1/m2}

and we let o = (0, . . . , 0). The fundamental group of the 1-dimensional Hawai-
ian earring was first studied by H. B. Griffiths [8] and is known to be somewhat
complicated. See also [9], [2] and [5]. The abelianization of π1(H1, o), that
is, the first integral singular homology group, is explicitly presented in [6]:
H1(H1) ' Zω ⊕

⊕
c Q ⊕

⊕̂
c Z, where Zω is the direct product of countable

many copies of the integer group, c is the cardinality of the real line, and
⊕̂

c Z
is the Z-adic completion of the free abelian group of rank c. It seems difficult
to give a topological interpretation of the direct summand

⊕
c Q⊕

⊕̂
c Z, but

one way to explain the complexity would be as follows: The first homology
group of a path-connected space is the quotient group of the fundamental
group factored by its commutator subgroup. An element of the commuta-
tor subgroup can reverse the order of group multiplications of elements only
finitely many times, while an element of π1(H1, o) that corresponds to a loop
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in H1, the projection of which to each circle is null-homotopic, need not be
“canceled” by finitely many commutativity relations. This has an effect on
that complexity.

On the other hand, it is known that πn(X, x) is an abelian group for each
n ≥ 2 and for each pointed space (X, x). Moreover, as is implicitly stated in
[1, p. 295], one can disregard the order of group multiplications on πn(X, x)
in an infinitary sense. In the present paper, we shall make this situation
clearer and prove that πn(Hn, o) is isomorphic to Zω for each n ≥ 2. This
result follows from the main theorem which is stated after some preliminary
definitions.

Let (Xi, xi) be pointed spaces such that Xi ∩ Xj = ∅ for i 6= j. The
underlying set of a pointed space (

∨̃
i∈I(Xi, xi), x∗) is the union of all Xi’s

obtained by identifying all xi to a point x∗ and the topology is defined by
specifying the neighborhood bases as follows:

(1) If x ∈ Xi \ {xi}, then the neighborhood base of x in
∨̃

i∈I(Xi, xi) is
the one of Xi;

(2) The point x∗ has a neighborhood base, each element of which is of
the form

∨̃
i∈I\F (Xi, xi)∨

∨
j∈F Uj , where F is a finite subset of I and each

Uj is an open neighborhood of xj in Xj for j ∈ F .

A space X is said to be semi-locally strongly contractible at x ∈ X if
there exist a neighborhood U of x and a continuous map r : U × I → X
such that r(u, 0) = u, r(u, 1) = x for u ∈ U and r(x, t) = x for 0 ≤ t ≤ 1.

For abelian groups Ai,
∏̃

i∈IAi denotes the subgroup of the direct product∏
i∈I Ai consisting of all f ’s such that {i ∈ I : f(i) 6= 0} is at most countable.

In the next section, we prove:

Theorem 1.1. Let n≥2 and Xi be an (n−1)-connected space which is se-
mi-locally strongly contractible at xi for each i∈I. Then πn(

∨̃
i∈I(Xi, xi), x∗)

is isomorphic to the group
∏̃

i∈Iπn(Xi, xi).

Since Hn is homeomorphic to
∨̃

i∈N(Si, xi), where Si is the n-sphere, we
have

Corollary 1.2. For the n-dimensional Hawaiian earring Hn, n ≥ 2,
πn(Hn, o) ' Zω and πi(Hn, o) is trivial for each 1 ≤ i ≤ n− 1.

In the last section, we study the singular homology groups of the one-
point unions of spaces. The next theorem generalizes [4, Theorem 1.2].

Theorem 1.3. Let CX be the cone over a space X and CX ∨CY be the
one-point union with two points of the base spaces X and Y being identified
to a point. Then

Hn(X ∨ Y ) ' Hn(X)⊕Hn(Y )⊕Hn(CX ∨ CY ) for n ≥ 1.

As an application, we shall show
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Corollary 1.4. The homotopy group πn(CHn ∨ CHn, o) is trivial
for n ≥ 2. On the other hand , πm+n−1(CHm ∨ CHn, o) is non-trivial for
m,n ≥ 2.

We remark that π1(CH1 ∨ CH1, o) is non-trivial [7]. Corollary 1.2 and
the first half of Corollary 1.4 seem to show a difference between the cases
n = 1 and n ≥ 2. However, the second half of Corollary 1.4 indicates that
the difference just reflects the effect of the Whitehead products which re-
duce to the commutators in the case m = n = 1. (We refer the reader to
[4] for the case n = 1.) The last corollary also shows that we cannot drop
the assumption of semi-local strong contractibility in Theorem 1.1. Also
we cannot drop the (n − 1)-connectedness of the space Xi either. An ex-
ample which indicates this is given by means of the Whitehead product
(see [10, Chapter 4, Section 7]). Throughout this paper, all spaces are
Tikhonov spaces and all maps are assumed to be continuous unless other-
wise stated.

2. Lemmas and proof of Theorem 1.1

Definition 2.1. A continuous map f : In →
∨̃

i∈I(Xi, xi) with f(∂In) =
{x∗} is said to be standard if there exists a sequence (im : m < ω) such that
il 6= im for distinct l and m and f(In−1 × [1/2m+1, 1/2m]) ⊂ Xim

for each
m < ω.

Observe that f(∂(In−1 × [1/2m+1, 1/2m])) = x∗ in the definition above.
The following is the key step for the proof of Theorem 1.1.

Lemma 2.2. Let n ≥ 2 and let Xi be an (n − 1)-connected space which
is semi-locally strongly contractible for each i ∈ I. Then, for any continuous
map f : In →

∨̃
i∈I(Xi, xi) with f(∂In) = x∗, there exists a standard map

which is homotopic to f relative to the boundary.

Since the proof of the above lemma is long and somewhat technical, we
outline it below, focusing on the main difficulty. Our goal is to construct
a homotopy relative to ∂In between the given map f and a standard map.
Throughout the remainder of this section, unless otherwise stated, a “homo-
topy” means a “homotopy relative to ∂In”. Two major obstacles prevent us
from proceeding straightforwardly.

1) We have no information, at the beginning, what the preimage f−1(Xi)
looks like. All we could say is that it is a compact subset of In which may be
very complicated. For example, it might be homeomorphic to, say, “Wada
Lake”. Nor do we know the relationship between two preimages f−1(Xi) and
f−1(Xj). They may be linked in a rather complicated way. So our first task
is to change f by a homotopy in such a way that the preimage f−1(Xi) has a
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“good shape” (such a subset will be called a canonical neighborhood below)
for each i. This process is described in Lemmas 2.4 and 2.5. These lemmas
produce a map g : In → (

∨̃
i∈I(Xi, xi), x∗) which is homotopic to f such that

g−1(Xi) is the disjoint union of the closures of some canonical neighborhoods.

2) Next we need to “rearrange” these preimages by a homotopy to obtain
a standard map. Thus g−1(Xi) should be contained in In−1 × [1/2i+1, 1/2i].
Our method here is modeled on the proof of the well known fact: πn(X)
is abelian for each n ≥ 2. It is somewhat technical but not so difficult to
move each of the canonical neighborhoods to the “right place.” The diffi-
culty here is that we need to rearrange infinitely many canonical neighbor-
hoods by induction and the continuity of the resulting maps on each inductive
step should be retained during the whole procedure. This requires a rather
careful construction and the point of this construction is that, once we rear-
range a standard neighborhood, all the later stages must keep it fixed. This
process is described as the iterated application of the “basic construction”
below.

Let us start with auxiliary arguments.

Definition 2.3. A canonical neighborhood in In is an open set of the
form

∏n
i=1(an, bn).

Lemma 2.4. Let X be an (n− 1)-connected space and P be an n-dimen-
sional polyhedron in In which is the union of finitely many n-simplexes. Let
{Di | 0 ≤ i ≤ m} be the decomposition of P into those n-simplexes. Suppose
that f : In → X is a continuous map such that f(∂P ∪ ∂In) = {x∗}. Then
there exists a homotopy H : In × I → X such that


H(u, 0) = f(u) for u ∈ In,

H(u, t) = x∗ for u ∈ ∂In, 0 ≤ t ≤ 1,

H(u, t) = f(u) for u 6∈ intP, 0 ≤ t ≤ 1,

H(u, 1) = x∗ for u ∈
⋃m

i=0 ∂Di.

P r o o f. Let E =
⋃m

i=0 ∂Di ⊃ ∂P. Since X is (n − 1)-connected, f |E is
homotopic to a constant map relative to ∂P. Let H ′ : E × I → X be the
relevant homotopy, i.e.


H ′(u, 0) = f(u) for u ∈ E,

H ′(u, 1) = x∗ for u ∈ E,

H ′(u, t) = x∗ for u ∈ ∂P, 0 ≤ t ≤ 1.
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Since Dj ×{0}∪∂Dj × I is a retract of Dj × I for each j, we can extend H ′ to
a map H : P ×I → X such that H(u, t) = x∗ for u ∈ ∂P and 0 ≤ t ≤ 1. Then
H naturally extends to the required homotopy H : In × I → X by defining
H(u, t) = f(u) for each u ∈ cl(In \ P ).

Lemma 2.5. Let n ≥ 2, let Xi be an (n−1)-connected space which is semi-
locally strongly contractible at xi for each i ∈ I, and let X =

∨̃
i∈I(Xi, xi).

Then each continuous map f : In → X with f(∂In) = x∗ is homotopic relative
to ∂In to a map g : In → X such that :

• For each i there exist finitely many pairwise disjoint canonical neigh-
borhoods {Oj | 0 ≤ j ≤ m} such that f(Oj) ⊂ Xi, f(∂Oj) = {x∗} and
f−1(Xi \ {xi}) ⊂

⋃m
j=0 Oj .

P r o o f. We shall obtain the map g as the limit limm→∞ fm of maps
fm : In → X, to be constructed inductively. We start with a preliminary
construction.

Preliminary construction. Fix i ∈ I and let O = f−1(Xi \ {xi}). There
exists a neighborhood U of xi which semi-locally strongly contracts to xi

in Xi. Since Xi is a Tikhonov space, there exists a continuous function F :∨̃
i∈I(Xi, xi) → [0, 1] such that

F (x) =

{
0 if x ∈ Xi \ U,

1 if x = x∗ or x 6∈ Xi.

(The existence of such a function on Xi directly follows from the definition
of the Tikhonov spaces. The function naturally extends to a function on∨̃

i∈I(Xi, xi) by the above formula, and the continuity follows from the defi-
nition of the topology of

∨̃
i∈I(Xi, xi).) Let r : U × I → Xi be a contraction

such that r(x0, t) = x0, r(u, 1) = x0, and r(u, 0) = u (u ∈ U), and let
K : X × I → X be defined by

K(x, t) =

{
x if x 6∈ Xi or F (x) = 0,

r(x, t ·min{1, 2F (x)}) otherwise.

Define H : In × I → X by H(u, t) = K(f(u), t). Let h(u) = H(u, 1) and
O′ = h−1(Xi \ {xi}). Then H is a homotopy between f and h relative to
∂In, and we have cl O′ ⊂ O. There exists an n-dimensional polyhedron P
which is the union of the closures of finitely many canonical neighborhoods
such that cl O′ ⊂ intP ⊂ P ⊂ O. Now, applying Lemma 2.4 to h and
P , we obtain a map h′ which is homotopic to h relative to ∂In such that
h′
−1(Xi \ {xi}) is covered by a pairwise disjoint collection of finitely many

canonical neighborhoods whose boundaries are all mapped to {x∗} by h′.
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Here we remark that the homotopy between f and h′ above fixes points in
f−1(

∨̃
j∈I\{i}(Xj , xj)).

Inductive construction of fm. Let im (m < ω) be an enumeration of the
indices i such that (Xi \ {xi})∩ Im(f) 6= ∅. We inductively define continuous
maps fm : In → X and homotopies Hm : In × [1 − 1/2m, 1 − 1/2m+1] → X
from fm to fm+1 for each m. Let f0 = f . Suppose that we have defined
a map fm. We perform the preliminary construction above for i = im and
obtain a map fm+1 via a homotopy Hm : In × [1 − 1/2m, 1 − 1/2m+1] → X

relative to ∂In ∪ f−1
m (

∨̃
j∈I\{im}(Xj , xj)). This completes the inductive con-

struction.

Since fm = fl on f−1
l (Xil

) for each m > l, it follows that the limit map
g = limm→∞ fm exists and is continuous. Now, it is easy to see that g has
the desired properties. This completes the proof of Lemma 2.5.

Next we introduce a “Basic Construction” as the composition of some
auxiliary homotopies (a) and (b) below. Given a map f as in the conclusion
of Lemma 2.5, the Basic Construction describes the process of “moving up”
a canonical neighborhood P with f(∂P ) = x∗. As previously mentioned, the
construction is inspired by the proof of the fact that the higher homotopy
groups are abelian.

Auxiliary homotopies. (a) Let
∏n

i=1(ci, di) be a canonical neighborhood
and let f : In → X =

∨̃
i∈I(Xi, xi) satisfy f(

∏n−1
i=1 [ci, di] × {cn, dn}) = {x∗}

and

(a.1) f(
∏n−2

i=1 [ci, di]× {dn−1} × [cn, dn]}) = {x∗} or
(a.2) f(

∏n−2
i=1 [ci, di]× {cn−1} × [cn, dn]}) = {x∗}.

We shall homotope f to a map f0 such that

f0

( n−2∏
i=1

[ci, di]× [(cn−1 + dn−1)/2, dn−1]× [cn, dn]}
)

= {x∗}

(if (a.1) holds) or

f0

( n−2∏
i=1

[ci, di]× [cn−1, (cn−1 + dn−1)/2]× [cn, dn]}
)

= {x∗}

(if (a.2) holds) respectively.
When f(

∏n−2
i=1 [ci, di]× {dn−1} × [cn, dn]) = {x∗}, we define a homotopy

relative to ∂In from f to a map f0 which is constantly x∗ on
∏n−2

i=1 [ci, di] ×
[(cn−1 + dn−1)/2, dn−1] × [cn, dn]. The homotopy is given as follows. Define
K0 : (In−2 × I× I)× I → X by
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K0((s, u, v), t)

=



f

(
s, cn−1 +

2(dn−1 − cn−1)
(dn−1 − cn−1)(1 + t)

(u− cn−1), v
)

for s ∈
∏n−2

i=1 [ci, di],

cn−1 ≤ u ≤ (cn−1(1− t) + dn−1(1 + t))/2,

cn ≤ v ≤ dn;

x∗ for s ∈
∏n−2

i=1 [ci, di],

(cn−1(1− t) + dn−1(1 + t))/2 ≤ u ≤ dn−1,

cn ≤ v ≤ dn;

f(s, u, v) otherwise.

Then K0((s, u, v), 1) = f(s, u, v), and f0(s, u, v) = K0((s, u, v), 0) has the
desired property. When f(

∏n−2
i=1 [ci, di] × {cn−1} × [cn, dn]) = {x∗}, we sim-

ilarly define a homotopy K1 from f to a map f1 which is constantly x∗ on∏n−2
i=1 [ci, di]× [cn−1, (cn−1 + dn−1)/2]× [cn, dn].

(b) Next we consider a map f : In → X such that f(
∏n−1

i=1 [ci, di] ×
[α, dn]) = f(∂(

∏n
i=1[ci, di])) = {x∗}, where cn < α ≤ β < dn, and construct

a homotopy K2 : (In−1 × I) × I → X that “moves continuously the subset∏n−1
i=1 [ci, di]× [cn, α] up to the level

∏n−1
i=1 [ci, di]× [β, dn].” Precisely, let

K2((s, u), t)

=



f

(
s, cn +

u− tcn − (1− t)β
t(α− cn) + (1− t)(dn − β)

(α− cn)
)

for s ∈
∏n−1

i=1 [ci, di], u ∈ [tcn + (1− t)β, tα + (1− t)dn];

x∗ for s ∈
∏n−1

i=1 [ci, di],

u ∈ [cn, tcn + (1− t)β] ∪ [tα + (1− t)dn, dn];

f(s, u) otherwise.

Basic Construction. Let f : In → X be a map satisfying the conclusion
of Lemma 2.5 such that f(s, p) = f(s, q) = x∗ for s ∈ In−1, where 0 ≤ p <
q ≤ 1. Take a pairwise disjoint family P of canonical neighborhoods so that
f−1(X \ {x∗}) ∩ (In−1 × [0, q]) ⊂

⋃
P ⊂ In−1 × [0, q] and f(∂P ) = {x∗} for

each P ∈ P. Fix P =
∏n

i=1(ai, bi) ∈ P with bn ≤ p. We shall construct a map
h such that:

(B1) h is homotopic to f relative to ∂In ∪ (In−1 × [q, 1]).
(B2) Define f ′ : In−1 × [0, p] → X by: f ′(s, u) = x∗ if (s, u) ∈ P and

f ′(s, u) = f(s, u) otherwise. Then f ′ and h|In−1×[0, p] are homotopic relative
to ∂(In−1 × [0, p]).
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Step 1: Let J = In−2 × {bn−1} × [bn, q] (see Figure 1). For each Q ∈ P,
take a standard neighborhood Q′ ⊂ Q so that Q′ ∩ J = ∅ and let P ′ = {Q′ :
Q ∈ P}. Applying (a) above to construct homotopies in each Q separately
and putting these together, we have a map g0, the continuity of which is
guaranteed by the topology of X, such that

• g0(Q \Q′) = {x∗} for Q ∈ P,

• g0 is homotopic to f relative to In \
⋃
P,

• g−1
0 (X \ {x∗}) ⊂

⋃
P ′, and

• g0(J) = {x∗}

(see Figure 2).

Step 2. Applying (a) again to g0 for ci = 0, di = 1 (i ≤ n − 2),
cn−1 = an−1, dn−1 = bn−1, cn = bn and dn = q, we obtain a map g1
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which is homotopic to g0 relative to ∂In−1 × [q, 1] and such that g1(In−2 ×
[(an−1 + bn−1)/2, bn] × [bn, q]) = x∗. Apply (a) once more to g1 for ci = ai,
di = bi (i ≤ n) to obtain a map g2 such that

• g2(
∏n−2

i=1 [ai, bi]× [an−1, (an−1 + bn−1)/2]× [an, bn])) = {x∗},
• g2|

∏n
i=1[ai, bi] is homotopic to g0|

∏n
i=1[ai, bi] relative to ∂

∏n
i=1[ai, bi];

• g2(
∏n−2

i=1 [ai, bi]× [(an−1 + bn−1)/2g, bn−1]× [bn, q]) = {x∗};
• g2 is homotopic to g0 relative to In−1 × [q, 1]

(see Figure 3).

Step 3. Finally, applying (b) to g2 for ci = ai, di = bi (i ≤ n − 2),
cn−1 = (an−1 + bn−1)/2, dn−1 = bn−1, cn = an, dn = q, α = bn, and β = p,
we obtain a map h which is homotopic to f relative to ∂In ∪ In−1× [q, 1] (see
Figure 4).

Now, we can see that the composition of the above four homotopies (be-
tween f and h) is a homotopy relative to ∂In ∪ (In−1 × [q, 1]), and h satisfies
the required condition. This construction of h and a homotopy between f
and h are called the Basic Construction below.

Proof of Lemma 2.2. We may assume that f satisfies the conclusion of
Lemma 2.5 and also f(s, u) = x∗ for 1/2 ≤ u ≤ 1. Let (im : m < ω) be
an enumeration of {i ∈ I : Im(f) ∩ (Xi \ {xi}) 6= ∅} without repetition.
(If the last set is finite, the conclusion is well known and so we assume,
at the outset, that infinitely many Xi’s intersect Im(f).) We define maps
fm : In → X and homotopies Hm : In × [1/2m+1, 1/2m] → X by induction.
First (= the 0th step), let f0 = f and take a collection P0 of finitely many
pairwise disjoint canonical neighborhoods which covers f−1

0 (Xi0). Performing
the Basic Construction for each member of the collection P0 and for p =
1/2 + 1/4, q = 1, we have a homotopy H0 : In × [1/2, 1] → X relative to
∂In such that H0(a, 1) = f(a) and f1(a) = H0(a, 1/2) satisfies f−1

1 (Xi0) ⊂
In−1 × [3/4, 1].

In the mth step, we consider the subspace Xim
and take a collection

Pm of finitely many pairwise disjoint canonical neighborhoods which covers
f−1

m (Xim). Performing the basic constructions finitely many times for the
map fm and p = 1/2 + 1/2m+2, q = 1/2 + 1/2m+1, we obtain a homotopy
Hm : In × [1/2m+1, 1/2m] → X such that

• Hm(s, u, t) = fm(s, u) for (s, u) ∈ In−1 × [1/2 + 1/2m+1, 1] ∪ ∂In,
1/2m+1 ≤ t ≤ 1/2m;

• if Hm(s, u, 1/2m+1) ∈ Xik
\{xik

}, then 1/2+1/2k+2 ≤ u ≤ 1/2+1/2k+1

for each k ≤ m.

Finally, define
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
H(s, u, t) = Hm(s, u, t) for 1/2m+1 ≤ t ≤ 1/2m,

H(s, u, 0) = x∗ if 0 ≤ u ≤ 1/2,

H(s, u, 0) = Hm(s, u, 1/2m+1) if 1/2 + 1/2m+1 ≤ u ≤ 1/2 + 1/2m,

and h(s, u) = H(s, (1 + u)/2, 0). Then H is continuous and consequently h is
homotopic to f relative to the boundary. It is easy to see that h is standard.

Proof of Theorem 1.1. Let ri :
∨̃

i∈I(Xi, xi) → (Xi, xi) be the canonical
retraction and ri∗ : πn(

∨̃
i∈I(Xi, xi), x∗) → πn(Xi, xi) the induced homomor-

phism. Define h : πn(
∨̃

i∈I(Xi, xi), x∗) →
∏

i∈I πn(Xi, xi) by pih(x) = ri∗(x),
where pi :

∏
i∈I πn(Xi, xi) → πn(Xi, xi) is the projection. Since In is sep-

arable, it follows that Im(h) ⊂
∏̃

i∈Iπn(Xi, xi). Since, for each countable
sequence (im : m < ω) with im 6= in (m 6= n), (Xim : m < ω) converges to
x∗, h is surjective.

Now, it suffices to show that h is injective. Let h([f ]) = 0, where [f ]
denotes the homotopy class relative to the boundary. By Lemma 2.2, we
may assume that f is standard; let (im : m < ω) be the corresponding
sequence. Then rim∗([f ]) = 0 for each m < ω. Since rimf(s, u) = x∗ for
u ≤ 1/2m+1 or u ≥ 1/2m, f |In−1 × [1/2m+1, 1/2m] is null-homotopic relative
to the boundary; let Hm : In−1 × [1/2m+1, 1/2m] × I → X be the relevant
homotopy. Define H : In × I → X by H|In−1 × [1/2m+1, 1/2m] × I = Hm

for each m < ω and H(s, 0, t) = x∗. Then H is a homotopy from f to the
constant map relative to the boundary.

3. Proofs of Theorem 1.3 and Corollary 1.4. The cone CX over a
space X is the quotient space of the cylinder X × I obtained by shrinking
X × {1} to a point. Let p : X × I → CX be the canonical projection. For a
subset A of I, let CAX = p(X × A) ⊂ CX. We identify X with the subset
p(X × {0}) of CX. The one-point union of pointed spaces (X, x) and (Y, y)
is the quotient space obtained from the disjoint union X ∪Y by identifying x
and y. It is denoted by (X, x) ∨ (Y, y) and frequently abbreviated to X ∨ Y
when no confusion occurs. Throughout the remaining part of the paper, we
assume that the base point of the cone CX of a pointed space (X, x) is p(x, 0)
and is simply denoted by x under the above identification.

Proof of Theorem 1.3. Let A = C(1/3,1]X∪C(1/3,1]Y and B = C[0,2/3)X∨
C[0,2/3)Y. Then A and B are open subsets of CX∨CY with A∪B = CX∨CY ,
and A∩B has the same homotopy type as the disjoint union X∪Y . Consider
the following part of the Mayer–Vietoris sequence:

Hn(A ∩B) α−→ Hn(A)⊕Hn(B)
β−→ Hn(A ∪B) ∂−→ Hn−1(A ∩B)
γ−→ Hn−1(A)⊕Hn−1(B).
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For simplicity, we assume that n ≥ 2. The argument for the case n = 1 is
an easy modification. First notice that Hi(A ∩ B) ' Hi(X) ⊕ Hi(Y ). Since
A has the homotopy type of the space of two points and n ≥ 2, we see
that Hn(A) = Hn−1(A) = 0. In addition, B has the homotopy type of the
one-point union X ∨Y , and hence Hi(B) ' Hi(X ∨Y ). Let iX : X ↪→ X ∨Y
and iY : Y ↪→ X ∨ Y be the inclusion maps, and let rX : X ∨ Y → X and
rY : X ∨ Y → Y be the canonical retractions. Clearly rX ◦ iX = id and
rY ◦ iY = id. Under the above isomorphisms, the homomorphisms α and γ
correspond to the homomorphism induced by (iX)∗ + (iY )∗ = h and hence
both have the left inverse (rX)∗ + (rY )∗. In particular, γ is injective. Also
it is easy to see that the homomorphism β corresponds to the one induced
by i : X ∨ Y ↪→ CX ∨ CY . Therefore the above sequence reduces to the
following split short exact sequence:

0 −→ Hn(X)⊕Hn(Y ) h−→ Hn(X ∨ Y ) i∗−→ Hn(CX ∨ CY ) −→ 0

Therefore the conclusion of the theorem follows.

Proof of Corollary 1.4. We show that πi(CHn∨CHn) = {0} for 1 ≤ i ≤ n
by induction on i. Since the space Hn is locally simply connected, CHn is
also locally simply connected. In addition, CHn is first countable (as a metric
space) and contractible, and CHn∨CHn is simply connected by [7, Theorem
1]. (See also [3].) Suppose that we have shown πj(CHn ∨ CHn) = {0}
for j < i (≤ n). Then, by the Hurewicz isomorphism theorem, we have
πi(CHn∨CHn) ' Hi(CHn∨CHn). Since Hn∨Hn is homeomorphic to Hn,
the proof of Theorem 1.1 shows that Hi(Hn ∨Hn) is naturally isomorphic to
Hi(Hn)⊕Hi(Hn) via the isomorphism (iHn

)∗+(iHn
)∗. By Theorem 1.3 we see

that Hi(CHn∨CHn) = {0}. Therefore, πi(CHn∨CHn) ' Hi(CHn∨CHn) =
{0}. This completes the proof of the first part of the corollary.

Let X and Y be copies of the pointed spaces (Hm, o) and (Hn, o) re-
spectively and X ∨ Y their one-point union. Let rX : X ∨ Y → X and
rY : X ∨ Y → X be the canonical retractions. As pointed out in the proof
of Theorem 1.3, the surjection Hm+n−1(X ∨ Y ) → Hm+n−1(CX ∨ CY ) is
induced by the inclusion i : X ∨ Y ↪→ CX ∨CY. Let Xj ⊂ X and Yj ⊂ Y be
the corresponding copies of {(x0, . . . , xm) : (x0−1/j)2+x2

1+. . .+x2
m = 1/j2}

and {(x0, . . . , xn) : (x0 − 1/j)2 + x2
1 + . . . + x2

n = 1/j2} respectively.

Here we recall the proof of [1, Theorem 2]. Let αj ∈ πm(Xj) and βj ∈
πn(Yj) be non-trivial elements and [αj , βj ] ∈ πm+n−1(X ∨Y ) be their White-
head product. Since [αj , βj ] can be realized by a map into Xj∨Yj , an element
γ ∈ πm+n−1(X ∨ Y ) is defined with representation γ =

∑∞
j=1[αj , βj ]. (This

γ is defined as a homotopy class containing a standard map to
∨̃

j<ωXj ∨Yj .
We refer the reader to [1, p. 295] for the precise definition of γ.) The Hurewicz
homomorphism π∗ → H∗ from the homotopy groups to the singular homology
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groups is denoted by ϕ. Since rX∗([αj , βj ]) is trivial for each j and the
homotopy track of the contraction is contained in Xj , rX∗(γ) is trivial and
hence rX∗ϕ(γ) is also trivial. By [1, Theorem 2], ϕ(γ) is non-trivial and hence
i∗ϕ(γ) = ϕi∗(γ) is non-trivial and so is i∗(γ) ∈ πm+n−1(CX ∨ CY, o).

Remark 3.1. The proof of Theorem 1.3 shows that the homomorphism
i∗ : Hn(X ∨ Y ) → Hn(CX ∨ CY ) induced by the inclusion i : X ∨ Y →
CX∨CY is surjective. Due to the simple structure of connected open subsets
of [0, 1], we can see that i∗ : π1(X ∨ Y, x) → π1(CX ∨ CY, x) is surjective.
However, we do not know whether i∗ : πn(X ∨ Y, x) → πn(CX ∨ CY, x) is
surjective for n ≥ 2.
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