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Toeplitz matrices and convergence
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Heike Mi l d enbe r g e r (Jerusalem)

Abstract. We investigate ‖χA,2‖, the minimum cardinality of a subset of 2ω that
cannot be made convergent by multiplication with a single matrix taken from A, for
different sets A of Toeplitz matrices, and show that for some sets A it coincides with
the splitting number. We show that there is no Galois–Tukey connection from the chaos
relation on the diagonal matrices to the chaos relation on the Toeplitz matrices with the
identity on 2ω as first component. With Suslin c.c.c. forcing we show that ‖χM,2‖ < b · s
is consistent relative to ZFC.

1. Introduction. A way of generalizing the notion of limit for bounded
sequences (i.e. sequences in `∞) or 0-1-sequences (2ω) is obtained by using
the so-called summation methods. These methods work as follows: We fix
an ω × ω matrix A = (ai,j)i,j∈ω and consider for f ∈ `∞ or f ∈ 2ω the
product A · f (where, as usual in linear algebra, (A · f)(i) =

∑
j∈ω ai,jf(j)).

We are interested whether

A lim f := lim
i→∞

∞∑
j=0

(ai,jf(j))

exists.
Below, the quantifier ∀∞ means “for all but finitely many”. Toeplitz (cf.

[6]) showed: A lim is an extension of the ordinary limit iff A is a regular
matrix, i.e. iff

(i) (∃m)(∀i)
∑∞

j=0 |ai,j | < m,
(ii) limi→∞

∑∞
j=0 ai,j = 1, and

(iii) (∀j) limi→∞ ai,j = 0.

Regular matrices are also called Toeplitz matrices.
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We are going to work with certain subsets of the set M of all Toeplitz
matrices.

Definition 1.1. (a) L denotes the set of all linear Toeplitz matrices. A
matrix is linear iff each column j has at most one entry ai,j 6= 0 and for
j < j′ the i with ai,j 6= 0 is smaller than or equal to the i with ai,j′ 6= 0 if
both exist.

(b) Lu denotes the set of all linear uniform Toeplitz matrices. A matrix
is linear uniform iff there are strictly increasing c(i), i ∈ ω, such that for
each i,

ai,j =

{ 1
c(i)− c(i− 1)

for j ∈ [c(i− 1), c(i)),

0 for other j.
Here, we stipulate c(−1) = 0.

(c) Dk denotes the set of all linear Toeplitz matrices that have at most
k non-zero entries in each line. We call the matrices in D = D1 diagonal
matrices.

Following Vojtáš [15], we define for A ⊆ M limit relations and their dual
chaos relations and their norms:

L∞,A = {(f,A) | f ∈ `∞ ∧A ∈ A ∧A lim f exists},
χA,∞ = {(A, f) | A ∈ A ∧ f ∈ `∞ ∧A lim f does not exist}.

For every binary relation R with domain X and range Y such that (∀x ∈ X)
(∃y ∈ Y ) R(x, y) we can define

‖R‖ = min{|Y| | Y ⊆ Y ∧ (∀x ∈ X)(∃y ∈ Y)R(x, y)}.
For the above relations this reads

‖L∞,A‖ = min{|A| | A ⊆ A ∧ (∀f ∈ `∞)(∃A ∈ A) A lim f exists},

‖χA,∞‖ = min{|F| | F ⊆ `∞∧
(∀A ∈ A)(∃f ∈ F) A lim f does not exist}.

By replacing `∞ by 2ω, we get the versions L2,A and χA,2. Families that
are dominating w.r.t. a chaos relation χA,· are called A-chaotic. We shall
soon see that for the cardinals we are interested in, 2ω and `∞ give the same
result.

The following inequalities follow from inclusions: ‖χM,2‖ ≥ ‖χM,∞‖ ≥
‖χD,∞‖, and ‖χM,2‖ ≥ ‖χD,2‖ ≥ ‖χD,∞‖. The equality ‖χD,2‖ = ‖χD,∞‖ =
s, the splitting number, is well known [14]. Vojtáš (cf. [16]) also gave some
bounds valid for any A ⊇ D:

s ≤ ‖χA,2‖ ≤ b · s.
We shall investigate whether ‖χA,2‖ coincides with the lower or rather

with the upper bound in this inequality.
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First we recall the definitions of the cardinal characteristics b and s
involved. The order of eventual dominance ≤∗ is defined as follows: For
f, g ∈ ωω we say f ≤∗ g if there is k ∈ ω such that for all n ≥ k we have
f(n) ≤ g(n).

The unbounding number b is the smallest size of a subset B ⊆ ωω such
that for each f ∈ ωω there is some b ∈ B such that b 6≤∗ f . The splitting
number s is the smallest size of a subset S ⊆ [ω]ω such that for each X ∈ [ω]ω

there is some S ∈ S such that X ∩S and X \S are both infinite. The latter
is expressed as “S splits X”, and S is called a splitting family. For more
information on these cardinal characteristics, we refer the reader to the
survey articles [5, 7, 13].

In [11], Kamburelis and Wȩglorz have introduced a strengthening of
splitting, called finitely splitting, FS, and have shown that its norm is fs =
max(b, s). We recall the definition of fs: Let P be a partition of an infinite
subset of ω into finite sets. A set X ∈ [ω]ω is said to block-split P if there
are infinitely many P ∈ P that are included in X and there are infinitely
many P ∈ P that have empty intersection with X. Then we have

FS = (partitions P of an infinite subset of ω into finite sets, [ω]ω,

{(P, X) | X block-splits P}),
fs = ‖FS‖.

We give a brief survey of the paper. In Section 2 we show that for any
set A of regular matrices, ‖χA,∞‖ = ‖χA,2‖, so the nature of the bounded
sequences (in a separable space) does not have an impact on the chaos
numbers. We show that on the matrix side we only need to consider L and
its subsets.

However, we conjecture that the nature of the matrices has an impact.
We investigate ‖χA,2‖ for different sets A of linear Toeplitz matrices.

Section 3 is a technical interlude on block-splitting with bounded block
sizes, which is a subrelation of the chaos relation.

In Section 4 we prove: If

(∗) (∀A ∈ A)(∃ε > 0)(∃L ∈ ω)(∃∞i ∈ ω)(∃j0, . . . jL−1)∑
0≤l<L

ai,jl
>

1
2

+ ε,

then ‖χA,2‖ = s. Moreover, we prove ‖χLu,2‖ = s.
In Section 5, we give a model with matrices that shows that it is con-

sistent relative to ZFC that not every splitting family is Lu-chaotic. From
the proof we deduce that there is no Galois–Tukey connection from χD,2 to
χM,2 with the identity on 2ω as the first component.
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In Section 6, we apply Shelah’s theory of Suslin forcing and show that
‖χM,2‖ < b ·s is consistent. I thank Andreas Blass for carefully reading that
section.

2. Reduction to 2-valued sequences and to linear matrices. In
this section, we show that the range of the bounded sequences can be any
separable space; indeed, Vojtáš’ s = sσ result (cf. [15]) easily generalizes to:

Proposition 2.1. For any A ⊆ M such that ‖χA,∞‖ is infinite we have
‖χA,∞‖ = ‖χA,2‖.

We include a proof for completeness’ sake and in order that the skeptical
reader may see that at this point regular matrices are not harder to treat
than diagonal matrices.

P r o o f. The non-trivial inequality is ‖χA,∞‖ ≥ ‖χA,2‖. Without loss of
generality, `∞ = [0, 1]ω. To each f ∈ [0, 1]ω we assign (gn,k

f | n ∈ ω, k ≤ n),
gn,k

f ∈ 2ω, such that

(∀ regular A)(∀n, k)(A lim gn,k
f exists → A lim f exists).

Then we apply this assignment to the set F witnessing ‖χA,∞‖ to get F ′ =
{gn,k

f | n ∈ ω, k ≤ n, f ∈ F} witnessing ‖χA,2‖. We set

gn
f (j) =

{
k if f(j) ∈ [k/n, (k + 1)/n), k < n,
n− 1 if f(j) ∈ [(n− 1)/n, 1],

gn,k
f (j) =

{
1 if gn

f (j) > k,
0 else.

Then gn
f (j) =

∑
k<n gn,k

f (j). It remains to show: If A lim f does not exist
then there are n and k such that A lim gn,k

f does not exist. If the first limit
does not exist, then there are two subsequences 〈il,ν | ν ∈ ω〉, l = 0, 1, such
that limν→∞

∑
j ail,ν ,jf(j) =: Ll exist and are distinct. We take n such that

1/n < |L0 −L1|/(6m), where m is as in property (i) from the introduction.
Then for l = 0, 1 we have

(∀∞ν)
∣∣∣∣ ∑

j

ai`,ν ,j

(
gn

f (j)
n

− f(j)
)∣∣∣∣ ≤ L0 − L1

3
,

and hence limi→∞
∑

j ai,j

∑
k<n gn,k

f (j) does not exist and therefore for one
of the summands limi→∞

∑
j ai,jg

n,k
f (j) does not exist.

Now we show how to reduce M to L. This reduction shows that there
are Borel morphisms (see [4]) from χL,2 to χM,2 and the same for ∞ instead
of 2.
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Proposition 2.2. There is a Borel function r : M → L such that

(∀f ∈ `∞)(M lim f exists → r(M) lim f exists).

P r o o f. Let M = (mi,j)i,j∈ω be given. By induction on n we choose
line numbers i(n) and indicators c(n) for the edges of the steps of the stairs
built by the non-zero entries in r(M). We begin with i(0) = 0 and c(0) such
that ∣∣∣ ∑

j∈ω

m0,j −
∑

j<c(0)

m0,j

∣∣∣ ≤ 1
2
.

Suppose now that i(n) and c(n) have been chosen. Then we choose i(n+1) >
i(n) as the first number such that

(∀j < c(n))(∀i′ ≥ i(n + 1)) |mi,j | ≤
1

c(n) · 2n+2
.

Then we choose c(n + 1) > c(n) as the first number such that∣∣∣ ∑
j∈ω

mi(n+1),j −
∑

j<c(n+1)

mi(n+1),j

∣∣∣ ≤ 1
2n+1

.

Now we set r(M) = (rn,j)n,j∈ω with

rn,j =
{

mi(n),j if j ∈ [c(n), c(n + 1)),
0 else.

It is routine to check that r(M) is linear Toeplitz and that r(M) lim f exists
whenever M lim f exists.

So from now on, we work with linear matrices.

3. Finitely splitting with bounded block size. In this section,
we investigate some notions of splitting lying between (ordinary) splitting
and Kamburelis and Wȩglorz’ finitely splitting. We are going to iterate
sequential compositions transfinitely often. On sequential compositions, the
reader may want to consult [4], yet the knowledge of this background theory
is not necessary to understand the proofs given here.

We show that the variant of splitting obtained by taking finitely split-
ting restricted to sequences {Bi | i ∈ ω} of bounded block size, that is,
(∃n)(∀i) |Bi| ≤ n, has s as its norm. There are infinitely many sequential
compositions involved in our proof. We carry out an induction on a rank,
as simple induction on the block size seems to fail.

We fix a splitting family S and define the first ω steps in a hierarchy
of families with increasing splitting properties yet the same cardinalities
(Sc stands for ω \ S):

S1 = S ∪ {ω},
Sn+1 = {(S ∩ T ) ∪ (Sc ∩ T ′) | S ∈ S1, T, T ′ ∈ Sn}.
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For a sequence 〈Xi | i < k〉 of pairwise disjoint infinite subsets of ω we
say “S splits 〈Xi | i < k〉 simultaneously” if (∀i < k) |Xi∩S| = |Xi \S| = ω.
The union of the Xi need not be ω.

The next lemma contains one idea of the induction step in the more com-
plex splitting situation of Lemma 3.2 and constitutes the first ω induction
steps of the latter lemma.

Lemma 3.1. For any sequence 〈Xi | i < k〉 of pairwise disjoint infinite
subsets of ω there is some S ∈ Sk that splits the sequence simultaneously.

P r o o f. The proof is by induction on k. For k = 1, this is just the
ordinary splitting.

k → k+1: We first split
⋃

i<k+1 Xi in the usual sense with some S ∈ S1.
First case: S already splits every Xi, i < k + 1. As S ⊆ Sk+1, we are

finished.
Second case: There are sets Il, l = 0, 1, 2, such that

k + 1 = I0 ∪ I1 ∪ I2,

I0 ∪ I1 6= ∅,
(∀i ∈ I0) Xi ⊆∗ S,

(∀i ∈ I1) Xi ∩ S is finite,
(∀i ∈ I2) S splits Xi.

We assume |I0∪I2| < k+1; otherwise we take I1 instead of I0. By induction
hypothesis, there is some T ∈ Sk that splits 〈Xi ∩S | i ∈ I0 ∪ I2〉 simultane-
ously and some T ′ ∈ Sk that splits 〈Xi ∩ Sc | i ∈ I1〉 simultaneously. Then
(S ∩ T ) ∪ (Sc ∩ T ′) splits 〈Xi | i < k + 1〉 simultaneously.

For i ∈ I0 we have Xi ⊆∗ S and T ∩ Xi = S ∩ T ∩ Xi; moreover,
Xi \ (S ∩ T ∩Xi) is infinite and Xi ∩ S ∩ T is infinite. Hence also

Xi \ ((S ∩ T ) ∪ (Sc ∩ T ′)) = Xi \ ((S ∩ T ∩Xi) ∪ (Sc ∩ T ′))
=∗ Xi \ (S ∩ T ∩Xi)

is infinite.
For i ∈ I1, that S splits Xi is shown in a similar manner with Sc, T ′

instead of S, T .
For i ∈ I2, S ∩ Xi is infinite, and T ∩ Xi ∩ S is infinite, hence Xi ∩

((S ∩ T ) ∪ (Sc ∩ T ′)) is infinite. Moreover, S ∩Xi \ T is infinite, and hence
S ∩Xi \ ((T ∩ S) ∪ (Sc ∩ T ′)) and Xi \ ((T ∩ S) ∪ (Sc ∩ T ′)) are infinite.

The sequential aspect in the sense of [4] is that when choosing T and T ′

we refer to Xi ∩S and Xi ∩Sc. Now we will go beyond ω and achieve more
splitting, going into the direction of finitely splitting from [11].
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For ω and for ordinals α > ω we define

Sω =
⋃
n∈ω

Sn,

Sα = {(S ∩ T ) ∪ (Sc ∩ T ′) | S ∈ Sω ∧ (∃β ∈ α)(T ∈ Sβ ∧ T ′ ∈ Sβ)}.

For a sequence 〈{Bi,j | i ∈ ω} | j < k〉 of sets of pairwise disjoint non-
empty finite subsets Bi,j of ω we say “S block-splits 〈{Bi,j | i ∈ ω} | j < k〉
simultaneously” if (∀j < k)((∃∞i)(Bi,j ⊆ S) ∧ (∃∞i)(Bi,j ∩ S = ∅)). Thus
block-splitting is simultaneous block-splitting for k = 1.

On the set of all 〈{Bi,j | i ∈ ω} | j < k〉 such that for all j < k there is
νj ∈ ω such that for all i we have |Bi,j | ≤ νj we define a rank function r:

r(〈{Bi,j | i ∈ ω} | j < k〉) = kν0ω
ν0−1 + kν1ω

ν1−1 + . . . + kνm−1ω
νm−1−1,

where m ∈ ω, ν0 > ν1 > . . . > νm−1, and for ν ∈ ω,

kν = |{j < k | (∀i)(|Bi,j | ≤ ν) ∧ (∃i)(|Bi,j | = ν)}|,
k = kν0 + kν1 + . . . + kνm−1 .

The exponentiation, multiplication, and addition are to be interpreted as
ordinal operations in this section.

Lemma 3.2. For all n, k ∈ ω \ {0} for any sequence B = 〈{Bi,j | i ∈ ω} |
j < k〉 of sets of pairwise disjoint non-empty subsets Bi,j of ω such that each
|Bi,j | is less than n there is some S ∈ Sr(B) that simultaneously block-splits
〈{Bi,j | i ∈ ω} | j < k〉.

P r o o f. The proof is by induction on the rank r(B). For r(B) < ω, this
is Lemma 3.1.

Induction step: Suppose for all B with r(B) < α the claim is proved and
B with r(B) = α ≥ ω is given.

First we simultaneously split with some S ∈ Sk the sequence〈 ⋃
i∈ω

Bi,j

∣∣∣ j ∈ k
〉
.

First case: For all j < k, S block-splits {Bi,j | i ∈ ω}. Then S ∈ Sk ⊆
Sr(B) is as desired.

Second case: Not the first case. Then there is some j < k such that

(∃∞i)(S ∩Bi,j 6= ∅ ∧ Sc ∩Bi,j 6= ∅).

We define

J0 = {j < k + 1 | S block-splits {Bi,j | i ∈ ω}},
J1 = {j < k + 1 | S does not block-split {Bi,j | i ∈ ω}},
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and have J1 6= ∅. If j ∈ J1, then since S splits
⋃
{Bi,j | i ∈ ω} and does not

block-split {Bi,j | i ∈ ω} we see that

Lj := {i | S ∩Bi,j 6= ∅ ∧ Sc ∩Bi,j 6= ∅}
is infinite. We take

B′ = 〈{Bi,j | Bi,j ⊆ S, i ∈ ω} | j ∈ J0〉∧〈{Bi,j ∩ S | i ∈ Lj} | j ∈ J1〉.
Since J1 6= ∅ and since for j ∈ J1, i ∈ Lj we have |Bi,j ∩ S| < |Bi,j |, the
rank β of B′ is less than α. Hence by induction hypothesis there is some
T ∈ Sβ that simultaneously block-splits B′.

Similarly, by induction hypothesis there is some β′ < α and some T ′ ∈
Sβ′ that simultaneously block-splits

B′′ = 〈{Bi,j \ S | i ∈ Lj , Bi,j ∩ S ⊆ T} | j ∈ J1〉
∧〈{Bi,j \ S | i ∈ Lj , Bi,j ∩ T ∩ S = ∅} | j ∈ J1〉.

Now we show that (S ∩ T ) ∪ (Sc ∩ T ′) simultaneously block-splits B.
First case: j ∈ J0. Then X+

j = {i | Bi,j ⊆ S} is infinite and X−
j = {i |

S ∩ Bi,j = ∅} is infinite. Since T block-splits {Bi,j | i ∈ X+
j }, there are

infinitely many i ∈ X+
j such that Bi,j ⊆ S∩T and there are infinitely many

i ∈ X+
j such that Bi,j ⊆ S and Bi,j ∩ T = ∅. For these latter infinitely

many i we have Bi,j ∩ ((S ∩ T ) ∪ (Sc ∩ T ′)) = ∅. So altogether we conclude
that (S ∩ T ) ∪ (Sc ∩ T ′) block-splits {Bi,j | i ∈ ω}.

Second case: j ∈ J1. Then Lj is infinite. We know that T block-splits
{Bi,j ∩ S | i ∈ Lj}. So Y +

j = {i ∈ Lj | T ⊇ Bi,j ∩ S} and Y −
j = {i ∈ Lj |

Bi,j∩S∩T = ∅} are both infinite. Now T ′ block-splits {Bi,j\S | i ∈ Lj∩Y +
j }

and block-splits {Bi,j \ S | i ∈ Lj ∩ Y −
j }. Hence Z++

j = {i ∈ Lj ∩ Y +
j |

Bi,j\S ⊆ T ′} and Z−−
j = {i ∈ Lj∩Y −

j | (Bi,j\S)∩T ′ = ∅} are both infinite.
For i ∈ Z++

j we have Bi,j ⊆ (S ∩ T ) ∪ (Sc ∩ T ′) and for i ∈ Z−−
j we have

Bi,j ∩((S∩T )∪(Sc∩T ′)) = ∅. So again we conclude that (S∩T )∪(Sc∩T ′)
block-splits {Bi,j | i ∈ ω}.

Hence we proved:

Theorem 3.3. For all n ∈ ω \ {0} for any set {Bi | i ∈ ω} of pairwise
disjoint non-empty subsets Bi of ω such that each |Bi| is less than n there
is some S ∈ Sr(〈{Bi|i∈ω}〉) that block-splits {Bi | i ∈ ω}.

So, since Sr(〈{Bi|i∈ω}〉) has cardinality s, the norm of block-splitting with
bounded block size coincides with s. Moreover, if we consider all {Bi | i ∈ ω}
such that there is some n ∈ ω with |Bi| ≤ n for all i, then Sωω

contains for
each {Bi | i ∈ ω} some S that block-splits it.

4. Splitting is A-chaotic for some A. There are two sorts of matrices
for which we can construct chaotic families of the same size as splitting
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families; indeed, we shall start from splitting families and modify them
in a very controlled manner. In the first subsection we consider matrices
with concentrated weights (which comprise all the Dk) and make use of the
previous section. In the second subsection we modify splitting families in a
different manner and get Lu-chaotic families.

Matrices with concentrated weights. Using the results from the previous
section, we now prove:

Theorem 4.1. Let D ⊆ A ⊆ M. If (∗) (from the introduction) holds for
A, then ‖χA,2‖ = s.

P r o o f. Let ωω denote the ordinal exponentiation in this proof. We
show that Sωω

is a witness for ‖χA,2‖ = s for any A with (∗) and that SωL

is a witness for ‖χA,2‖ = s uniformly for each A that fulfils (∗) uniformly
with some fixed L. We fix for each A ∈ A some L as in (∗) and a set X of
infinitely many i’s and sets {j0(i), . . . , jL−1(i)} for i ∈ X such that

〈{j0(i), . . . , jL−1(i)} | i ∈ X〉
is pairwise disjoint. For the disjointness, we use clause (iii) from the defi-
nition of a regular matrix. Then we block-split (k = 1 now) the sequence
{{j0(i), . . . , jL−1(i)} | i ∈ X} by some S ∈ Sωω

. In the following χ denotes
the characteristic function, χS(j) = 0 if j 6∈ S, and χS(j) = 1 else. Then
limi∈X

∑L
ν=1 ai,jν(i) · χS(jν(i)) does not exist, because the sum is infinitely

often zero and infinitely often greater than 1/2 + ε. As the matrix A is
regular and hence has properties (i) and (ii), also limi∈X

∑
j ai,j ·χS(j) does

not exist. Since s is infinite, for countable α the cardinality of Sα is s.

Uniform matrices. With rather basic techniques we show:

Theorem 4.2. There are Borel functions even, odd : [ω]ω → [ω]ω ∪
{undefined} and there is a Borel function f : [ω]ω → 2ω such that for all
splitting families S the set {f(a(S)) | a ∈ {even, odd}, S ∈ S} is Lu-chaotic.
Hence ‖χLu,2‖ = s.

P r o o f. We let Even denote the set of all even natural numbers and Odd
the set of all odd ones. We set

even(X) = (X ∩ Even) ∪ {x− 1 | x ∈ X ∩ Even, x 6= 0}
if this is infinite and otherwise leave it undefined. Analogously, we set

odd(X) = (X ∩Odd) ∪ {x− 1 | x ∈ X ∩Odd}
if this is infinite and else undefined.

Let {Bn | n ∈ ω} be a set of infinitely many blocks Bn such that each
Bn is of the form Bn = {min(Bn),min(Bn) + 1}. The union of the Bn need
not be ω.
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Claim. If S is a splitting family then {a(S) | a ∈ {even, odd}, S ∈ S}
block-splits {Bn | n ∈ ω}.

P r o o f. Assume that {max Bn | n ∈ ω} ∩ Even is infinite (for the other
case, just work with Odd). Take A∈S such that A splits {max Bn | n∈ω}∩
Even. Then for the infinitely many n with n ∈ A∩{max Bn | n ∈ ω}∩Even
we have even(A) ⊇ Bn, and for the infinitely many n with n ∈ ({max Bn |
n ∈ ω} ∩ Even) \A we have even(A) ∩Bn = ∅, and the claim is proved.

Now we define

f(S)(n) =
{

1 if k ∈ S and n ∈ (3k−1, 3k],
0 else.

Now we show that {f(a(S)) | a ∈ {even, odd}, S ∈ S} is Lu-chaotic. We
take a matrix M ∈ Lu which is characterised by 〈c(n) | n ∈ ω〉. We denote
by dxe the least integer greater than or equal to x. By the claim, we may
take some S ∈ S and some a ∈ {even, odd} such that a(S) block-splits

{{dlog3(c(n))e − 1, dlog3(c(n))e} | n ∈ ω}.
Then M lim f(a(S)) does not exist because for those infinitely many k

such that k = dlog3(c(n))e ∈ a(S) and k−1 ∈ a(S) we have M ·f(a(S))(n) ≥
2/3, whereas for those infinitely many k such that k = dlog3(c(n))e 6∈ a(S)
and k − 1 6∈ a(S) we have M · f(a(S))(n) ≤ 1/3.

We needed much less than uniformity: For almost all n, the weights
mn,j , j ∈ [c(n), c(n + 1)), have to add up to more than 1/2 + ε in the right
half (or in the right (K − 1)/K part for some K ∈ ω) of [c(n), c(n + 1)).

5. Splitting is not necessarily chaotic. In this section we show the
following relative consistency:

Theorem 5.1. The following is consistent relative to ZFC: There is a
splitting family F and a Toeplitz matrix M such that

M lim f exists for each f ∈ F .

P r o o f. We take any model V of ZFC and add ℵ1 random reals simulta-
neously with the measure algebra Bℵ1 on 2ℵ1 . Let G be a generic filter and
let F = {Gα | α ∈ ω1} be ℵ1 random reals. We show that F is as claimed
in the theorem. Dow [8, Proposition 2.5] shows that these random reals are
a splitting family in V [G]. Define in V the set B of real numbers f ∈ ω2
such that

lim
n→∞

1
n

∑
i<n

f(i) =
1
2
.

The strong law of large numbers (cf. e.g. [2]) says that B has Lebesgue
measure one. Moreover, B is Borel. Random reals are generic for random
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forcing and hence lie in every Borel measure 1 set coded in the ground
model. So they lie in B∗, the evaluation of the Borel code (see [9, §42,
pp. 537, 538]) of B in V [G]. We have to show that the statement “for all
x ∈ B, the arithmetic mean limit exists” is absolute from V to V [G]. A
formalization for the statement is:

(∀x)
(

x ∈ B → (∀k ∈ ω)(∃n0 ∈ ω)(∀m,n ≥ n0)∣∣∣∣ ∑
i<n

x(i)
n

−
∑
i<m

x(i)
m

∣∣∣∣ <
1
k

)
.

This is Π1
1 and hence absolute by Shoenfield’s theorem. Since F ⊆ B∗, all

elements of F do have arithmetic mean limits and F is not chaotic.

Theorem 5.1 gives a partial answer to Vojtáš’ question in [16] whether
there is a Borel Galois–Tukey connection (E,F ) from χM,2 into χD,2, i.e.
E, F such that

E : M → D, F : 2ω → 2ω,
(5.1)

(∀M ∈ M)(∀f ∈ 2ω)(E(M) lim f does not exist
→ M lim F (f) does not exist).

Namely, if f ranges over the above splitting family F then F cannot be the
identity.

Since “There are Borel functions (E,F ) = (E, id) such that (5.1) holds”
is a Σ1

2-statement which is not true in the model from Theorem 5.1, its
negation holds in every model of ZFC.

6. χM,2 and finitely splitting. Vojtáš [14] showed χM,2 ≤ b·s. Indeed,
it is easy to see that there is a Borel Galois–Tukey connection from χM,2 into
Kamburelis and Wȩglorz’ finitely splitting relation. From the next theorem
it follows that there is no Borel Galois–Tukey connection in the opposite
direction.

Theorem 6.1. χM,2 < bs is consistent relative to ZFC.

P r o o f. Let V be a model of CH and add κ ≥ ℵ2 dominating reals by a
finite support iteration of c.c.c. Suslin forcings 〈Pα, Q̇β | β < κ, α ≤ κ〉 (see
[1] or [10]). E.g. we can take Hechler reals, that is, extend successively with
(Qα,≤Qα

) = (Q,≤Q) where

Q = {(s, F ) | s ∈ ω<ω, F ⊆ (ωω)M , F finite},
(s, F ) ≤Q (t, H) := F ⊇ H, s ⊇ t,

(∀h ∈ H)(∀i ∈ dom(s) \ dom(t)) s(i) ≥ h(i).

Let Gκ be generic over V for this iterated forcing.
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Since we add a dominating real in each step, we get b = κ in the final
model. By [1, Theorem 3.6.21] (the original proof can be found in [10, §3]),
the ground model stays a splitting family in the one-step extension. By the
stronger theorems from [10, §3] we conclude that the ground model stays a
splitting family after a finite support iteration of arbitrary length.

Now we show that the ground model not only stays splitting but stays
M-chaotic. The proof is a modification of the above mentioned proof for
the splitting relation. It is stronger in the sense that we preserve more than
splitting.

So 6.1 will be proved with

Theorem 6.2. Let Pκ be a κ-stage finite support iteration of a c.c.c.
Suslin forcing. Then 2ω ∩ V stays a chaotic family in V [Gκ], where Gκ is
any Pκ-generic filter over V .

P r o o f. We will need three lemmas.

Lemma 6.3. Suppose that {xα | α < ω1} ∈ V is a family of almost
disjoint infinite subsets of ω. Let ṁ be a Pκ-name for a Toeplitz matrix
such that


Pκ (∀α ∈ ω1) ṁ · χxαconverges.

Then there exists an α < ω1 such that 
Pκ
lim(ṁ · χxα

) < 1/2.

P r o o f. For every α choose, if possible, a condition pα ∈ P such that
pα 
Pκ lim(ṁ · χxα) ≥ 1/2. Since the sets xα are almost disjoint and since
ṁ is a name for a Toeplitz matrix no 2b+1 (the b is a bound from property
(i) of being Toeplitz; we can assume that b is a natural number) of the pα

can have a common lower bound q: Since the weakest element of our forcing
order forces ṁ to have the properties (i) and (iii) (from the introduction),
and since such a q would force that lim(ṁ · χxα0∪...∪xα2b−1

) > b, this would
be a contradiction to the almost disjointness of the xα’s.

Now since Pκ is c.c.c. there can only be countably many pα, because
otherwise we could enumerate the defined ones as {pα | α ∈ ω1} and thin
out this set in log2(2b) + 1 steps as follows:

Suppose at the beginning of a step we have ℵ1 conditions {qα | α < ω1}.
In the first step we take qα to be pα. Because of the c.c.c. we can find two
compatible ones, and we find a witness, say r0, of their compatibility. Then
we take away the two compatible elements and find among the rest again
two compatible ones and take a witness r1. We repeat this procedure in ω1

steps. At the limits we take away all formerly chosen pairs. At the end of
each step we rename the resulting rα, α < ω1 to be pα again.

After log2(2b) + 1 steps of this procedure, we have a condition qα that
lies under at least 4b members of the set {pα | α ∈ ω1}, which would be
a contradiction to the property (i) of being Toeplitz with bound b. Hence
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only countably many of the pα can be defined. Any α such that pα is not
defined has the required property.�6.3

Lemma 6.4 (Lemma 3.6.23 of [1]). Let M be a countable model of a
sufficiently rich finite part of ZFC. Then there exists a family {cα | α ∈ ω1}
⊆ 2ω such that

(i) cα is Cohen over M for every α < ω1 and
(ii) |c−1

α
′′{1} ∩ c−1

β
′′{1}| < ℵ0 for α 6= β.

P r o o f. See [1, 3.6.23, page 176] or §3 in [10].

The following lemma finishes the proof of Theorem 6.2:

Lemma 6.5. There is no ṁ ∈ V Pκ such that


Pκ
ṁ is Toeplitz , and

(∀y ∈ 2ω ∩ V ) 
Pκ ṁ · y converges.

P r o o f. Suppose not. Let ṁ be a name for a Toeplitz matrix such that
for every y ∈ 2ω ∩ V ,


Pκ ṁ · y converges.

Let S ⊆ κ be countable and such that ṁ ∈ V P �S . Since P �S = PS l Pκ

([10, §1]) also for every y ∈ 2ω ∩ V ,


PS
ṁ · y converges.

Now we work in V . Let M be a countable elementary submodel of H(χ)
for some sufficiently large χ containing PS and ṁ. By 6.4, there exists
a family {cα | α < ω1} ⊂ 2ω of almost disjoint (in the sense of 6.4(ii))
Cohen reals over M . By 6.3, we can find a Cohen real c over M such that

PS

lim(ṁ · c) < 1/2. Let M1 = M [c]. Let G be a PS-generic filter over
V . By [1, 3.6.5], G ∩ M1 is PS-generic over M1. Since ṁ ∈ M we have
ṁ[G] = ṁ[G ∩M1] = ṁ[G ∩M ]. Let M2 = M1[G ∩M1]. It follows that

M2 |= lim(ṁ[G ∩M1] · c) < 1/2.

Therefore, M1 |= “ 
PS
lim(ṁ · c) < 1/2.” By the properties of Cohen

forcing, which we interpret as C = (2<ω,⊆), there is some k ∈ ω such that
s = c�k and

M |= “s 
C “
PS
lim(ṁ · ċ) < 1/2, ” ”

where ċ is a canonical name for a Cohen real.
Let c′ be such that s ⊆ c′ and |ω \ (c−1′′{1} ∪ (c′)−1′′{1})| < ℵ0 and

c′ is Cohen real over M and c′ and c are almost disjoint. So, M [c′] |=
“
PS

lim(ṁ · c′) < 1/2”. Note that G ∩M [c′] is PS-generic over M [c′] and
ṁ[G ∩ M [c′]] = ṁ[G]. Thus, M [c′][G ∩ M [c′]] |= lim(ṁ[G] · c′) < 1/2.
Therefore, in V [G] we have
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1. lim(ṁ[G] · c) < 1/2, and
2. lim(ṁ[G] · c′) < 1/2, and
3. |ω \ (c−1′′{1} ∪ (c′)−1′′{1})| < ℵ0.

This contradicts the fact that ṁ was a name for a Toeplitz matrix: Since
c and c′ are almost disjoint, c + c′ is almost in 2ω and because of property
(iii) of Toeplitz matrices we may assume that it is actually in 2ω. Then by
property (ii) of Toeplitz matrices we have

lim(ṁ[G] · (c + c′)) = lim(ṁ[G] · c) + lim(ṁ[G] · c′) < 1/2 + 1/2.

However, property (i) and 3. imply that

lim(ṁ[G] · (c + c′)) = 1.

This is a contradiction.
Note that the whole proof of 6.2 would also work with lim ≤ 1/3+ε (for

any ε < 1/6) instead of 1/2 and limits replaced by eventual ranges of width
less than 1/6− ε =: δ. So indeed, we have much stronger chaos.�6.5,6.2,6.1

We conjecture χM,2 does not coincide with the splitting number. Finite
support iterations of c.c.c. Suslin forcings cannot establish this.

There might be some other finite support iteration or a countable support
iteration (of proper forcings [12]) of length ℵ2 such that in each iteration
step a matrix Mα is added and for all f ∈ 2ω ∩ V [Gα] the limit M lim f
exists.

Remark. Being smaller than the linear forgetful evasion number efl (see
[3]) seems to be closely related to being non-chaotic: Let F ⊆ 2ω be smaller
than the linear forgetful evasion number efl. Then there is some matrix
M obeying ((i) or (ii)) and (iii) of the regularity conditions such that for
all members of the family F we have M · f = 〈0, 0, . . .〉. This is proved as
in [3]. Theorem 6.2 shows that any finite support iteration of c.c.c. Suslin
forcings adding dominating reals and increasing the additivity of Lebesgue
null sets add(N ) (see [10]) over a ground model with CH gives a model of
s = χM,2 = ℵ1 < κ = add(N ) = b = min(e, b) = efl.
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[14] P. Vojt á š, Set theoretic characteristics of summability and convergence of series,

Comment. Math. Univ. Carolin. 28 (1987), 173–184.
[15] —, More on set theoretic characteristics of summability by regular (Toeplitz) matri-

ces, ibid. 29 (1988), 97–102.
[16] —, Series and Toeplitz matrices (a global implicit approach), Tatra Mt. Math. J.,

to appear.

Institute of Mathematics
Hebrew University of Jerusalem
Givat Ram, Jerusalem 91904, Israel
E-mail: heike@math.huji.ac.il

Received 5 July 1999;
in revised form 27 February 2000


