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Abstract. We introduce the notions of Kuratowski-Ulam pairs of topological spaces
and universally Kuratowski-Ulam space. A pair (X,Y) of topological spaces is called a
Kuratowski–Ulam pair if the Kuratowski–Ulam Theorem holds inX×Y . A space Y is
called a universally Kuratowski–Ulam (uK–U) space if (X,Y ) is a Kuratowski–Ulam
pair for every space X . Obviously, every meager in itself space is uK–U. Moreover, it
is known that every space with a countable π-basis is uK–U. We prove the following:

• every dyadic space (in fact, any continuous image of any product of separable
metrizable spaces) is uK–U (so there are uK–U Baire spaces which do not have
countable π-bases);

• every Baire uK–U space is ccc.

1. Kuratowski–Ulam pairs. We use standard set-theoretical notions.
In particular, ordinal numbers will be identified with the set of their predeces-
sors and cardinal numbers with the initial ordinals. For a set A and a cardinal
κ, [A]<κ is the family of all subsets of A with cardinality less than κ. Similarly
we define the families [A]κ and [A]≤κ.

The symbols X, Y , Z denote topological spaces, M(X) denotes the family
of all meager subsets inX. For E ⊂ X×Y and x ∈ X, Ex denotes the x-section
of E, etc.

A family U of non-empty open subsets of X is called a pseudo-basis
(π-basis for short) of X if every non-empty open set W in X contains a
U ∈ U . A topological space X is κ-cc if there is no family of size κ of
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open, pairwise disjoint sets in X. Note that the ccc property is the same as
ω1-cc.

For a given space X we will use the following two cardinals:

add(M(X)) = min
{
|D| : D ⊂M(X) &

⋃
D 6∈ M(X)

}
,

π(X) = min{|U| : U is a π-basis for X}.

A pair of topological spaces (X,Y ) is called a Kuratowski–Ulam pair
(briefly, K–U pair) if the Kuratowski–Ulam theorem holds in X × Y :

K–U: If E ∈M(X × Y ), then {x ∈ X : Ex 6∈ M(Y )} ∈ M(X).

Kuratowski and Ulam proved that (X,Y ) is a K–U pair whenever π(Y ) <
add(M(X)). (See, e.g., [KK] or [JO, Theorem 15.1, p. 56]. For applications
of this method for Ellentuck topologies generated by filters see [IR].) Thus
any pair (X,Y ), where Y is a topological space with a countable π-basis, is
a K–U pair. This fact suggests the consideration of the following property of
topological spaces.

Definition 1. A topological space Y is called a universally Kuratowski–
Ulam space (uK–U space for short) if (X,Y ) is a K–U pair for any topological
space X.

Thus, by the Kuratowski–Ulam theorem, every space Y with a countable
π-basis is a uK–U space. Note also that every space Y meager in itself is uK–U.

The scheme of this paper is the following. First we show that there are
uK–U Baire spaces without countable π-basis. Next we prove that every Baire
uK–U space satisfies the ccc condition and give some examples of Baire ccc
spaces which are not uK–U. We finish with descriptions of properties of the
class of uK–U spaces.

Theorem 1. If S is a dense subspace of 2κ, Z a regular topological space
and f : S → Z a continuous surjection, then Z is a uK–U space.

Fix the following notation. By Φ we denote the family of all functions
ϕ : A→ 2 where A ∈ [κ]<ω. There is a canonical isomorphism U between the
family Φ and the family U of all basic open sets in 2κ: U(ϕ) = {y ∈ 2κ : ϕ ⊂ y}.
Note that if ϕ ⊂ ψ, ϕ,ψ ∈ Φ, then U(ψ) ⊂ U(ϕ). We say that a set U ⊂ S is
basic open in S if U = Ũ ∩S for some basic open set Ũ ⊂ 2κ. We say that a set
A ⊂ 2κ is determined by a set of coordinates τ ⊂ κ if A = {y ∈ 2κ : y|τ ∈ A∗}
for some A∗ ⊂ 2τ . By cl(A), int(A) we denote the closure and interior of A in
the space 2κ, and by clS(A), intS(A) the closure and interior of A in S.

We will use the following lemma:
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Lemma 1. If W ⊂ S is a regular open set then it is a countable union of
basic open sets in S.

P r o o f. Note that S, as a dense subspace of 2κ, has the ccc property. Thus
we can find a sequence 〈Bn〉n<ω of basic open sets in 2κ such that S∩

⋃
n<ω Bn

is a dense subset of W . Each Bn is determined by τn ∈ [κ]<ω. Consider τ =⋃
n<ω τn ∈ [κ]≤ω. Then cl(W ) = cl(

⋃
n<ω Bn) is determined by τ . Therefore

int(cl(W )) is determined by τ , so it is expressible as
⋃

n<ω Un, where Un are
basic open sets in 2κ.

Now consider U = S ∩
⋃

n∈ω Un. Observe that W = intS(clS(W )) =
S ∩ int(cl(W )), so W = U .

Corollary 1. If V is a non-meager open set in Z, then there exists a
basic open set W ⊂ S such that f [W ] is non-meager and f [W ] ⊂ V .

P r o o f. Because Z is regular, there exists a non-meager open V ′ such that
clZ(V ′) ⊂ V . In fact, for each z ∈ V there is an open set Vx such that
x ∈ Vx ∈ clZ(Vx) ⊂ V . If all Vx are meager then by the Banach Category
Theorem [JO, Theorem 16.1, p. 62], V =

⋃
x Vx is meager, a contradiction.

Put W0 = f−1[V ′] and W1 = intS(clS(W0)). Note that W1 is regular open
in S and V ′ ⊂ f [W1] ⊂ V . By Lemma 1, W1 is a countable union of basic
open sets in S, so the image of one of them is non-meager.

Proof of Theorem 1. Let X be any topological space and E ⊂ X × Z be a
nowhere dense closed set.

Let P be the set of all pairs (G, I) where G is an open set in X and
I ∈ [κ]<ω. Define a relation ≺ on P by (H,J) ≺ (G, I) if

• H ⊂ G and J ⊃ I, and
• if W ⊂ S is a basic open set determined by I then either

— H × f [W ] ⊂ E, or
— there exists W ′ ⊂W , a basic open set determined by J , and an open

set U ⊂ Z such that f [W ′] ⊂ U and (H × U) ∩ E = ∅.

Claim. For any (G, I) ∈ P and any non-empty open set G0 ⊂ G there
exists (H,J) ∈ P such that (H,J) ≺ (G, I) and H ⊂ G0.

In fact, let |I| = n and {Wi : 0 < i ≤ 2n} be the finite sequence of all
basic open sets determined by I. For each i ≤ 2n consider two cases. If
Gi−1 × f [Wi] ⊂ E, set Gi = Gi−1 and Ji = Ji−1. (Here J0 = I.) Otherwise
find W ′

i ⊂ Wi, a basic open set in S determined by Ji, and open sets Ui ⊂ Z,
Gi ⊂ Gi−1 with f [W ′

i ] ⊂ Ui and (Gi × Ui) ∩ E = ∅. Finally, set H = G2n and
J =

⋃
0<i≤2n Ji.

Now choose inductively a sequence Pn ⊂ P such that

• P0 = {(X, ∅)}.
• If (H,J), (H ′, J ′) are distinct members of Pn then H ∩H ′ = ∅.
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• For (H,J) ∈ Pn+1 there exists (G, I) ∈ Pn such that (H,J) ≺ (G, I).
• Pn+1 is a maximal family which satisfies the conditions above.

Then all the G∗n =
⋃
{H : (H,J) ∈ Pn} are open and dense, so

⋂
n<ω G

∗
n is

comeager in X.
Take any x ∈

⋂
n<ω G

∗
n. We have to prove that Ex is meager. It is sufficient

to prove that for any non-meager open set V ⊂ Z there exists a non-empty
open set V0 ⊂ V with Ex ∩ V0 = ∅.

Fix a non-meager open set V ⊂ Z. By Corollary 1 there exists a basic
open set W0 ⊂ S such that f [W0] ⊂ V is non-meager. Assume that W0 is
determined by J ∈ [κ]<ω. For x there is a sequence 〈(Hn, Jn)〉n such that for
each n,

• (Hn, Jn) ∈ Pn;
• x ∈ Hn;
• (Hn+1, Jn+1) ≺ (Hn, Jn), so Jn+1 ⊃ Jn.

Since J is finite, there exists n with Jn+1 ∩ J = Jn ∩ J . Note that Jn

determines a finite partition of S. Since f [W0] is non-meager, there exists an
open basic set W determined by Jn such that f [W ∩W0] is not meager. Since
E is nowhere dense, Hn+1 × f [W ] 6⊂ E. Therefore there exists W ′ ⊂ W ,
a basic open set of S determined by Jn+1, and an open set U ⊂ Z such that
(Hn+1 × U) ∩ E = ∅ and f [W ′] ⊂ U . Now W ′ ∩W0 6= ∅, so f [W ′ ∩W0] 6= ∅
and U ∩ V 6= ∅. We have x ∈ Hn+1 and (Hn+1 × (U ∩ V )) ∩ E = ∅, so
(U ∩ V ) ∩ Ex = ∅.

In particular, for every cardinal κ the space 2κ is uK–U.

Corollary 2. There exists a uK–U Baire space Y without a countable
π-basis.

P r o o f. Consider Y = 2ω1 . By Theorem 1, Y is a uK–U space. On the
other hand, it is well known that π(Y ) = ω1. In fact, let {Un : n < ω} be
a sequence of basic open sets in Y . For each n there exists An ∈ [ω1]<ω and
ϕn : An → 2 such that Un = U(ϕn). Then A =

⋃
An is countable. Choose

α ∈ ω1 \A and take V = {y ∈ Y : y(α) = 1}. Then V is open in Y and no Un

is contained in V . Thus {Un : n ∈ ω} is not a π-basis for Y .

A compact space X is said to be dyadic if it is a continuous image of the
space 2κ for some cardinal κ (cf. [RE, p. 285]). Thus Theorem 1 implies the
following.

Corollary 3. Every dyadic space is uK–U.

A topological space X is said to be quasi-dyadic if it is a continuous image
of the Tikhonov product

∏
αXα of a family {Xα : α < κ} of metric separable

spaces (see [FG]).

Theorem 2. Every regular quasi-dyadic space is uK–U.
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P r o o f. We start with the following lemma.

Lemma 2. Every metric separable space is a continuous image of a dense
subset of the space 2ω.

P r o o f. This is a consequence of the fact that every metric separable space
is homeomorphic to a subspace of the Hilbert cube Iω (see e.g. [AK, Theorem
4.14, p. 22]) and that Iω is a continuous image of 2ω. Thus every metric
separable space is a continuous image of some subspace of 2ω. On the other
hand, it is easy to prove that every subset of a Cantor set is a continuous image
of a dense subset of 2ω.

To complete the proof of Theorem 2, assume that Y is a regular space, Xα,
α < κ, are metric separable spaces, and f :

∏
α<κXα → Y is a continuous

surjection. For every α < κ there exists a continuous surjection fα : Aα → Xα,
where Aα is a dense subspace of 2ω. Then the set

∏
α<κAα is dense in 2ωκ and

f ◦
∏

α<κ fα is a continuous surjection from
∏

α<κAα onto Y . By Theorem 1,
Y is a uK–U space.

Theorem 3. Assume that X is a non-meager space, Y is a Baire space
and (X,Y ) is a K–U pair. Then Y is add(M(X))-cc.

P r o o f. Suppose that κ = add(M(X)) and B = {Bα : α < κ} is a family
of open, non-empty, pairwise disjoint sets in Y . Let A = {Aα : α < κ} be a
family of nowhere dense sets in X with

⋃
A 6∈ M(X). Define W ⊂ X × Y ,

W =
⋃

α<κAα × Bα. Note that W is nowhere dense in X × Y . In fact, fix a
basic open set U × V and consider two cases. If V0 = V \ clY (

⋃
α<κBα) 6= ∅

then U ×V0 is open and disjoint from W . Otherwise V0 = ∅. Then V ∩Bα 6= ∅
for some α < κ, so for an open, non-empty set U ′ ⊂ U \ Aα we find that
U ′ × (V ∩Bα) is a non-empty open set disjoint from W .

On the other hand,

{x : Wx 6∈ M(Y )} =
⋃
A 6∈ M(X)

thus (X,Y ) is not a K–U pair.

Remark. There exist completely regular spaces X non-meager in them-
selves with add(M(X)) = ω1. In fact, it is well known that X = 2ω1 has this
property. (All sets Eα = {x ∈ X : x(ξ) = 0 for ξ ≥ α} are closed and
nowhere dense in X, but

⋃
α<ω1

Eα 6∈ M(X). Another example: the space
(ωω, τd) from Example 1 below; see [R].)

Thus we have the following.

Corollary 4. Every Baire uK–U space satisfies the ccc condition.

Now we will show that the assumption of ccc for a Baire space Y is not
sufficient to make it uK–U.
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For s ∈ ω<ω and f ∈ ωω with s ⊂ f define

(s, f) = {g ∈ ωω : s ⊂ g and f ≤ g}.

Note that the family of such pairs forms a basis for a ccc topology τd on ωω. It
is known that (ωω, τd) is a completely regular, Baire space (see [R]). Moreover,
let τ denote the standard topology on ωω. For f, g ∈ ωω the symbol f ≤∗ g
means that the set {n ∈ ω : f(n) > g(n)} is finite.

Example 1. ((ωω, τ), (ωω, τd)) and ((ωω, τd), (ωω, τd)) are not K–U pairs.

P r o o f. Define W = {(f, g) ∈ (ωω)2 : f ≤∗ g}.

Claim 1. W is meager in the topologies τd × τd and τ × τd.

Put Wn = {(f, g) ∈ ωω × ωω : ∀k>n f(k) ≤ g(k)}. We will verify that all
Wn are nowhere dense in the topology τd × τd. Let (s, f) × (r, h) be a basic
set. Fix k > n such that k 6∈ dom(s) ∪ dom(r). Choose s1, r1 ∈ ω<ω such that
s ⊂ s1, r ⊂ r1, s1(k) > r1(k), s1 ≥ f |dom(s1), and r1 ≥ h|dom(r1). Let f1 be
any extension of s1 with f1 ≥ f and h1 be any extension of r1 with h1 ≥ h.
Then (s1, f1) × (r1, h1) ⊂ (s, f) × (r, h). Observe that e(k) > g(k) for each
(e, g) ∈ (s1, f1)× (r1, h1). Thus (s1, f1)× (r1, h1)∩Wn = ∅, so Wn is nowhere
dense, and consequently W is meager in the topology τd × τd.

Similarly we can prove that W is meager in the topology τ × τd.

Claim 2. Wf 6∈ M(τd) for each f ∈ ωω.

Note that Wf = {h : f ≤∗ h}. Fix a basic set (s, g) and define g1 ∈ ωω such
that g1(i) = h(i) if i ∈ dom(s) and g1(i) = max(h(i), f(i)) otherwise. Then
(s, g1) ⊂ (s, g) ∩Wf . Therefore Wf is comeager in the topology τd.

Corollary 5. The space (ωω, τd) is not a uK–U space.

We also have another better known example of a ccc space which is not
uK–U. Let d denote the density topology on the real line. Recall that (R, d)
is a Baire space with the ccc property, and A ⊂ R is d-nowhere dense iff
it is d-meager iff m(A) = 0. Here m denotes the Lebesgue measure. (The
basic properties of this topology are described in [JO]. See also [FT] for more
details.)

Example 2. For X = (R, d) the pair (X,X) is not a K–U pair.

P r o o f. Consider
A = {(x, y) : x− y 6∈ Q}.

As is easily seen, both A and its complement are d × d-dense (this is a con-
sequence of Steinhaus’ Theorem [HS], see also [AL]). Moreover, A is a Gδ

subset of the plane with full Lebesgue measure, so it contains a closed set E
(in Euclidean topology so also in d × d topology) with positive measure. The
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set E is nowhere dense in (R2, d× d) and, by Fubini’s Theorem,

{x : Ex 6∈ M(d)} = {x : m(Ex) > 0} 6∈ M(d).

2. Properties of the class of uK–U spaces. In this section we present
more results and problems about uK–U spaces. We omit some proofs because
they are standard.

Property 1. The product of finitely many uK–U spaces is also a uK–U
space.

P r o o f. Assume that Y and Z are uK–U spaces, X is a topological space
and E is a closed nowhere dense subset of X × Y × Z. Let E′ = {(x, y) ∈
X × Y : E(x,y) 6∈ M(Z)}. Then E′ ∈M(X × Y ). Since (X,Y ) is a K–U pair,
we have {x ∈ X : (E′)x 6∈ M(Y )} ∈ M(X).

Now observe that if Ex 6∈ M(Y × Z) then (E′)x 6∈ M(Y ). In fact,

Ex = {(y, z) : (x, y, z) ∈ E} = {(y, z) : z ∈ E(x,y)}

and this set is closed. Then int(Ex) 6∈ M(Y ×Z), and by the Banach Category
Theorem, there exists an open set U × V ⊂ Ex with U × V 6∈ M(Y × Z).
Therefore U 6∈ M(Y ), V 6∈ M(Z), and

U ⊂ {y : (Ex)y 6∈ M(Z)} 6∈ M(Y ),

so
(E′)x = {y : E(x,y) 6∈ M(Z)} 6∈ M(Y ).

Thus

{x ∈ X : Ex 6∈ M(Y × Z)} ⊂ {x ∈ X : (E′)x 6∈ M(Y )} ∈ M(X).

Property 2. The product of countably many uK–U spaces is a uK–U
space.

P r o o f. Suppose that {Yn}n<ω are uK–U spaces, X is any topological space
and W ⊂ X ×

∏
n<ω Yn is a dense open set. Put πn(x, y) = (x, y|n) for n < ω

(that is, πn is the natural projection from X ×
∏

n Yn onto X ×
∏

i<n Yi). Let
Wn = πn[W ]; then Wn is a dense open set in X ×

∏
i<n Yi. Because finite

products of uK–U spaces are uK–U (cf. Property 1), {x ∈ X : (Wn)x is dense}
is comeager for every n, so H = {x ∈ X : (Wn)x is dense for every n} is
comeager in X.

Now, if there is an x ∈ H such that Wx is not dense in
∏

n<ω Yn, there are
n < ω and non-empty open sets Gi⊂Yi for i<n such that Wx does not meet∏

i<nGi×
∏

i≥n Yi. But then (Wn)x does meet
∏

i<nGi, which is impossible.

Applications. Recall that the product X × Y of Baire spaces may be non-
Baire. (Some conditions for X and Y which imply that X×Y is a Baire space
are described in [HMC].) Note that if X and Y are Baire spaces and (X,Y ) is
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a K–U pair, then X × Y is a Baire space. Similarly, the product X × Y of a
Baire space X and a uK–U Baire space Y is a Baire space.

Remark. Property 2 leads to the natural problem whether the product
of any family of uK–U spaces is always uK–U. This problem has been solved
recently by D. Fremlin [DF] in the affirmative.

Property 3. Any open subspace of a uK–U space is itself uK–U.

Property 4. If Y0 is a dense subspace of a uK–U space Y , then it is also
a uK–U space.

Property 5. Assume that Y0 is a subspace of a uK–U space Y such that
Y0 ⊂ intY (clY (Y0)). Then Y0 is also a uK–U space.

Example 3. There exists a subspace Y0 of a uK–U space Y which fails to
be a uK–U space.

P r o o f. Take Y0 to be the discrete space of size ω1. As Y0 has weight
ω1, it embeds into Y = [0, 1]ω1 (see e.g. [RE, Theorem 2.3.11, p. 113]). By
Theorem 2, Y is uK–U, but Y0 is not ccc, so it is not uK–U, by Corollary 4.

We say that a set A ⊂ X is nowhere meager in a space X if U ∩A 6∈ M(X)
for every open, non-meager set U ⊂ X.

Property 6. Suppose that Y0 is a uK–U dense subspace of a space Y . If
Y0 is nowhere meager in Y then Y is a uK–U space.

The assumption about Y0 cannot be omitted.

Example 4. There exists a non-uK–U space Y with a dense uK–U subspace
Y0.

P r o o f. Let Y be any complete dense-in-itself metric space which is non-
ccc. By Corollary 4, Y is not uK–U space. For every n > 0 choose a discrete
set Yn ⊂ Y which forms a 1/n-net in Y . Then Y0 =

⋃
n>0 Yn is dense in Y ,

dense in itself and meager in itself. Thus Y0 is a uK–U space.

Property 7. Suppose that {Yi : i < ω} is a sequence of uK–U subspaces
of a topological space Y . Then

⋃
i Yi is also a uK–U space.

Corollary 6. The topological sum of countably many uK–U spaces is a
uK–U space.

Example 5. The topological sum of uncountably many uK–U spaces may
fail to be a uK–U space.

P r o o f. Let Y be a discrete space of size ω1. Then Y is not ccc, so it is
not a uK–U space. On the other hand, every singleton is a uK–U space.

Property 8. The homeomorphic image of a uK–U space is also a uK–U
space.
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Property 9. The image of a uK–U Baire space under a continuous open
function is a uK–U space.

Note that any space Y is a continuous image of the space Y ×Q meager in
itself. Thus any Y is a continuous image of a uK–U space.

Remark. The results above lead to the problem whether any continuous
image of a uK–U Baire space is also uK–U. This problem has recently been
solved by D. Fremlin [DF] in the negative.
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