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On a problem of Steve Kalikow

by

Saharon She l ah (Jerusalem and New Brunswick, NJ)

Abstract. The Kalikow problem for a pair (λ, κ) of cardinal numbers, λ > κ (in
particular κ = 2) is whether we can map the family of ω-sequences from λ to the family of
ω-sequences from κ in a very continuous manner. Namely, we demand that for η, ν ∈ ωλ
we have: η, ν are almost equal if and only if their images are.
We show consistency of the negative answer, e.g., for ℵω but we prove it for smaller

cardinals. We indicate a close connection with the free subset property and its variants.

0. Introduction. In the present paper we are interested in the following
property of pairs of cardinal numbers:

Definition 0.1. Let λ, κ be cardinals. We say that the pair (λ, κ) has
the Kalikow property (and then we write KL(λ, κ)) if there is a sequence
〈Fn : n < ω〉 of functions such that

Fn : nλ → κ (for n < ω)

and if F : ωλ → ωκ is given by

(∀η ∈ ωλ)(∀n ∈ ω)(F (η)(n) = Fn(η�n))

then for every η, ν ∈ ωλ,

(∀∞n)(η(n) = ν(n)) iff (∀∞n)(F (η)(n) = F (ν)(n)).

In particular we answer the following question of Kalikow:

Kalikow Problem 0.2. Is KL(2ℵ0 , 2) provable in ZFC?

The Kalikow property of pairs of cardinals was studied in [Ka90]. Several
results are known already. Let us mention some of them. First, one can
easily notice that

KL(λ, κ) & λ′ ≤ λ & κ′ ≥ κ ⇒ KL(λ′, κ′).
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Also (“transitivity”)

KL(λ2, λ1) & KL(λ1, λ0) ⇒ KL(λ2, λ0)

and
KL(λ, κ) ⇒ λ ≤ κℵ0 .

Kalikow proved that CH implies KL(2ℵ0 , 2) (in fact that KL(ℵ1, 2) holds
true) and he conjectured that CH is equivalent to KL(2ℵ0 , 2).

The question 0.2 is formulated in [Mi91, Problem 15.15, p. 653].
We shall prove that KL(λ, 2) is closely tied with some variants of the

free subset property (both positively and negatively). First we present an
answer to problem 0.2 proving the consistency of ¬KL(2ℵ0 , 2) in 1.1 (see 2.8
too). Later we discuss variants of the proof (concerning the cardinal and
the forcing). Then we deal with a positive answer, in particular KL(ℵn, 2),
and we show that the negation of a relative of the free subset property for
λ implies KL(λ, 2).

We thank the participants of the Jerusalem Logic Seminar 1994/95 and
particularly Andrzej Ros lanowski for writing it up so nicely.

Notation. We will use the Greek letters κ, λ, χ to denote (infinite)
cardinals and the letters α, β, γ, ζ, ξ to denote ordinals. Sequences of
ordinals will be called ᾱ, β̄, ζ̄ with the usual convention that ᾱ = 〈αn :
n < lg(ᾱ)〉 etc. Sets of ordinals will be denoted by u, v, w (with possible
indexes).

The quantifiers (∀∞n) and (∃∞n) are abbreviations for “for all but
finitely many n ∈ ω” and “for infinitely many n ∈ ω”, respectively.

1. The negative result. For a cardinal χ, the forcing notion Cχ for
adding χ many Cohen reals consists of finite functions p such that for some
w ∈ [χ]<ω, n < ω,

dom(p) = {(ζ, k) : ζ ∈ w & k < n} and rang(p) ⊆ 2

ordered by inclusion.

Theorem 1.1. Assume λ → (ω1 · ω)<ω
2κ , 2κ < λ ≤ χ. Then


Cχ ¬KL(λ, κ) and hence 
Cχ ¬KL(2ℵ0 , 2).

P r o o f. Suppose that Cχ-names F
˜

n (for n ∈ ω) and a condition p ∈ Cχ

are such that

p 
Cχ “〈F
˜

n : n < ω〉 exemplifies KL(λ, κ)”.

For ᾱ ∈ nλ choose a maximal antichain 〈pn
ᾱ,l : l < ω〉 of Cχ deciding the

values of F
˜

n(ᾱ). Thus we have a sequence 〈γn
ᾱ,l : l < ω〉 ⊆ κ such that

pn
ᾱ,l 
Cχ F

˜
n(ᾱ) = γn

ᾱ,l.



Problem of Steve Kalikow 139

Let χ∗ be a sufficiently large regular cardinal. Take an elementary submodel
M of (H(χ∗),∈, <∗

χ∗) such that

• ‖M‖ = χ, χ + 1 ⊆ M ,
• 〈pn

ᾱ,l : l < ω, n ∈ ω, ᾱ ∈ nλ〉, 〈γn
ᾱ,l : l < ω, n ∈ ω, ᾱ ∈ nλ〉 ∈ M .

By λ → (ω1 · ω)<ω
2κ (see [Sh 481, Claim 1.3]), we find a set B ⊆ λ of

indiscernibles in M over

κ ∪ {〈pn
ᾱ,l : l < ω : n ∈ ω, ᾱ ∈ nλ〉, 〈γn

ᾱ,l : l < ω : n ∈ ω, ᾱ ∈ nλ〉, χ, p}

and a system 〈Nu : u ∈ [B]<ω〉 of elementary submodels of M such that

(a) B is of order type ω1 · ω and for u, v ∈ [B]<ω:
(b) κ + 1 ⊆ Nu,
(c) χ, p, 〈pn

ᾱ,l : l < ω, n < ω, ᾱ ∈ nλ〉, 〈γn
ᾱ,l : l < ω, n < ω, ᾱ ∈ nλ〉 ∈ Nu,

(d) |Nu| = κ, Nu ∩B = u,
(e) Nu ∩Nv = Nu∩v,
(f) |u| = |v| ⇒ Nu

∼= Nv, and let πu,v : Nv → Nu be this (unique)
isomorphism,

(g) πv,v = idNv
, πu,v(v) = u, πu0,u1 ◦ πu1,u2 = πu0,u2 ,

(h) if v′ ⊆ v, |v| = |u| and u′ = πu,v(v′) then πu′,v′ ⊆ πu,v.

Note that if u ⊆ B is of order type ω then we may define

Nu =
⋃
{Nv : v is a finite initial segment of u}.

Then the models Nu (for u ⊆ B of order type ≤ ω) have the properties
(b)–(h) too.

Let 〈βζ : ζ < ω1 ·ω〉 be the increasing enumeration of B. For a set u ⊆ B
of order type ≤ ω let β̄u be the increasing enumeration of u (so lg(β̄u) = |u|).
Let u∗ = {βω1·n : n < ω}. For k ≤ ω and a sequence ξ̄ = 〈ξm : m < k〉 ⊆ ω1

we define

u[ξ̄] = {βω1·m+ξm
: m < k} ∪ {βω1·n : n ∈ ω \ k}.

Now, working in VCχ , we say that a sequence ξ̄
˜

is k-strange if

(1) ξ̄
˜

is a sequence of countable ordinals greater than 0, lg(ξ̄
˜

) = k ≤ ω,

(2) (∀m < ω)(F
˜

m(β̄u[ξ̄
˜
]�m) = F

˜
m(β̄u∗�m)).

Claim 1.1.1. In VCχ , if ξ̄
˜

k are k-strange sequences (for k < ω) such
that (∀k < ω)(ξ̄

˜
k C ξ̄

˜
k+1) then the sequence ξ̄

˜
:=

⋃
k<ω ξ̄

˜
k is ω-strange.

P r o o f. Should be clear (note that in this situation we have β̄u[ξ̄
˜
]�m =

β̄u[ξ̄
˜

m]�m).

Claim 1.1.2. p 
Cχ “there are no ω-strange sequences”.
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P r o o f. Assume not. Then we find a name ξ̄
˜

= 〈ξ
˜

m : m < ω〉 for an
ω-sequence and a condition q ≥ p such that

q 
Cχ “(∀m < ω)(0 < ξ
˜

m < ω1 & F
˜

m(β̄u[ξ̄
˜
]�m) = F

˜
m(β̄u∗�m))”.

By the choice of p and F
˜

m we conclude that

q 
Cχ “(∀∞m)(β̄u[ξ̄
˜
](m) = β̄u∗(m))”,

which contradicts the definition of β̄u[ξ̄
˜
], β̄u∗ , Definition 0.1 and the fact

that
q 
Cχ “(∀m < ω)(0 < ξ

˜
m < ω1)”.

By 1.1.1, 1.1.2, any inductive attempt to construct (in VCχ) an ω-strange
sequence ξ̄

˜
has to fail. Consequently, we find a condition p∗ ≥ p, an integer

k < ω and a sequence ξ̄ = 〈ξl : l < k〉 such that

p∗ 
Cχ “ξ̄ is k-strange but ¬(∃ξ < ω1)(ξ̄_〈ξ〉 is (k + 1)-strange)”.

Then in particular

(�) p∗ 
Cχ “(∀m < ω)(F
˜

m(β̄u[ξ̄]�m) = F
˜

m(β̄u∗�m))”.

[It may happen that k = 0, i.e., ξ̄ = 〈〉.]
For ξ < ω1 let uξ = u[ξ̄_〈ξ〉] and wξ = uξ ∪ (u∗ \ {ω1 · k}). Thus

w0 = u[ξ̄] ∪ u∗ and all wξ have order type ω and πwξ1 ,wξ2
is the identity on

Nwξ\{ω1·k+ξ2}. Let q := p∗�Nw0 and qξ = πwξ,w0(q) ∈ Nwξ
(so q0 = q). As

the isomorphism πwξ,w0 is the identity on Nw0 ∩Nwξ
= Nw0∩wξ

(and by the
definition of Cohen forcing), we see that the conditions q, qξ are compatible.
Moreover, as p∗ ≥ p and p ∈ N∅, we find that both q and qξ are stronger
than p.

Now fix ξ0 ∈ (0, ω1) (e.g. ξ0 = 1) and look at the sequences β̄uξ0 and
β̄u∗ . They are eventually equal and hence

p 
Cχ
“(∀∞m)(F

˜
m(β̄uξ0 �m) = F

˜
m(β̄u∗�m))”.

So we find m∗ < ω and a condition q′ξ0
≥ qξ0 , q such that

(⊗ξ0,m∗

q′ξ0
) q′ξ0


Cχ “(∀m ≥ m∗)(F
˜

m(β̄uξ0 �m) = F
˜

m(β̄u∗�m))”

and (as we can increase q′ξ0
)

(⊕ξ0,m∗

q′ξ0
) q′ξ0

decides the values of F
˜

m(β̄uξ0 �m) and F
˜

m(β̄u∗�m) for all
m ≤ m∗.

Note that the condition (⊗ξ0,m∗

q′ξ0
) means that there are NO m ≥ m∗, l0, l1

< ω with γm
β̄

uξ0 �m,l0
6= γm

β̄u∗�m,l1
and the three conditions q′ξ0

, pm
β̄

uξ0 �m,l0

and pm
β̄u∗�m,l1

have a common upper bound in Cχ (remember the choice of

the pn
ᾱ,l’s and γn

ᾱ,l’s). Similarly, the condition (⊕ξ0,m∗

q′ξ0
) means there are
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NO m ≤ m∗, l0, l1 < ω with either γm
β̄

uξ0 �m,l0
6= γm

β̄
uξ0 �m,l1

and both q′ξ0

and pm
β̄

uξ0 �m,l0
, and q′ξ0

and pm
β̄

uξ0 �m,l1
are compatible in Cχ, or γm

β̄u∗�m,l0
6=

γm
β̄u∗�m,l1

and both q′ξ0
and pm

β̄u∗�m,l0
, and q′ξ0

and pm
β̄u∗�m,l1

are compatible
in Cχ.

Consequently, the condition q∗ξ0
:= q′ξ0

�Nw0∪wξ0
has both properties

(⊗ξ0,m∗

q∗ξ0
) and (⊕ξ0,m∗

q∗ξ0
) (and it is stronger than both q and qξ0).

Now, for 0 < ξ < ω1 let

q∗ξ := πw0∪wξ,w0∪wξ0
(q∗ξ0

) ∈ Nw0∪wξ
.

Then (for ξ ∈ (0, ω1)) the condition q∗ξ is stronger than

both q = πw0∪wξ,w0∪wξ0
(q) and qξ = πw0∪wξ,w0∪wξ0

(qξ0)

and it has the properties (⊗ξ,m∗

q∗ξ
) and (⊕ξ,m∗

q∗ξ
). Moreover for all ξ1, ξ2 the

conditions q∗ξ1
, q∗ξ2

are compatible. [Why? By the definition of Cohen forcing,
and πw0∪wξ2 ,w0∪wξ1

(q∗ξ1
) = q∗ξ2

(chasing arrows) and πw0∪wξ2 ,w0∪wξ1
is the

identity on Nw0∪wξ2
∩ Nw0∪wξ1

= N(w0∪wξ2 )∩(w0∪wξ1 ) (see clauses (e), (f),
(h) above).]

Claim 1.1.3. For each ξ1, ξ2 ∈ (0, ω1) the condition q∗ξ1
∪ q∗ξ2

forces in
Cχ that

(∀m < ω)(F
˜

m(β̄uξ1 �m) = F
˜

m(β̄uξ2 �m)).

P r o o f. If m ≥ m∗ then, by (⊗ξ1,m∗

q∗ξ1
) and (⊗ξ2,m∗

q∗ξ2
) (passing through

F
˜

(β̄u∗�m)), we get

q∗ξ1
∪ q∗ξ2


Cχ
“F

˜
m(β̄uξ1 �m) = F

˜
m(β̄uξ2 �m)”.

If m < m∗ then we use (⊕ξ1,m∗

q∗ξ1
) and (⊕ξ1,m∗

q∗ξ2
) and the isomorphism: the

values assigned by q∗ξ1
, q∗ξ2

to F
˜

m(β̄uξ1 �m) and F
˜

m(β̄uξ2 �m) have to be equal
(remember κ ⊆ N∅, so the isomorphism is the identity on κ).

Look at the conditions

qξ1,ξ2 := q∗ξ1
�Nwξ1

∪ q∗ξ2
�Nwξ2

∈ Nwξ1∪wξ2
.

It should be clear that for each ξ1, ξ2 ∈ (0, ω1),

qξ1,ξ2 
Cχ
“(∀m < ω)(F

˜
m(β̄uξ1 �m) = F

˜
m(β̄uξ2 �m))”.

Now choose ξ ∈ (0, ω1) so large that

dom(p∗) ∩ (Nwξ
\Nw0) = ∅

(possible as dom(p∗) is finite, use (e)). Take any 0 < ξ1 < ξ2 < ω1 and put

q∗ := πw0∪wξ,wξ1∪wξ2
(qξ1,ξ2).
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(Note: πw0,wξ1
⊆ πw0∪wξ,wξ1∪wξ2

and πwξ,wξ2
⊆ πw0∪wξ,wξ1∪wξ2

.) By the
isomorphism we get

q∗ 
Cχ “(∀m < ω)(F
˜

m(β̄uξ�m) = F
˜

m(β̄u[ξ̄]�m))”.

Now look back:
q∗ξ1

≥ qξ1 = πw0∪wξ1 ,w0∪wξ0
(qξ0) = πwξ1 ,wξ0

(qξ0)

= πwξ1 ,wξ0
(πwξ0 ,w0(q)) = πwξ1 ,w0(q)

and hence
q∗ξ1

�Nwξ1
≥ πwξ1 ,w0(q)

and thus
q∗�Nw0 ≥ πw0,wξ1

(q∗ξ1
�Nwξ1

) ≥ q = p∗�Nw0 .

Consequently, by the choice of ξ, the conditions q∗ and p∗ are compatible
(remember the definition of qξ1,ξ2 and q∗). Now use (�) to conclude that

q∗ ∪ p∗ 
Cχ “(∀m < ω)(F
˜

m(β̄u∗�m) = F
˜

m(β̄u[ξ̄]�m) = F
˜

m(β̄uξ�m))”,

which implies that q∗∪p∗ 
Cχ “ξ̄_〈ξ〉 is (k +1)-strange”, a contradiction.

Remark 1.2. About the proof of 1.1:

(1) No harm is done by forgetting 0 and replacing it by ξ1, ξ2.
(2) A small modification of the proof shows that in VCχ : If Fn : nλ → κ

(n ∈ ω) are such that

(∀η, ν ∈ ωλ)[(∀∞n)(η(n) = ν(n)) ⇒ (∀∞n)(Fn(η�n) = Fn(ν�n))]

then there are infinite sets Xn ⊆ λ (for n < ω) such that

(∀n < ω)
(
∀ν, η ∈

∏
l<n

Xl

)
(Fn(ν) = Fn(η)).

Say we shall have Xn = {γn,i : i < ω}. Starting we have γ∗0 , . . . , γ∗n, . . .
In the proof at stage n we have determined γl,i (l, i < n) and p ∈ G,
p ∈ N{γl,i:l,i<ω}∪{γ∗n,γ∗n+1,...}. For n = 0, 1, 2 as before. For n + 1 > 2 first
γ0,n, . . . , γn−1,n are easy by transitivity of equalities. Then find γn,0, γn,1 as
before, and then again duplicate.

(3) In the proof it is enough to use {βω·n+l : n < ω, l < ω}. Hence,
by 1.2 of [Sh 481] it is enough to assume λ → (ω3)<ω

2κ . This condition is
compatible with V = L.

(4) We can use only λ → (ω2)<ω
2κ .

Definition 1.3. (1) For a sequence λ̄ = 〈λn : n < ω〉 of cardinals we
define the property (~)λ̄:

(~)λ̄ for every model M of a countable language with universe supn∈ω λn

and Skolem functions (for simplicity) there is a sequence 〈Xn :
n < ω〉 such that
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(a) Xn ∈ [λn]λn (actually Xn ∈ [λn]ω1 suffices)
(b) for every n < ω and ᾱ = 〈αl : l ∈ [n + 1, ω)〉 ∈

∏
l≥n+1 Xl,

letting (for ξ ∈ Xn)

Mξ
ᾱ = Sk

( ⋃
l<n

Xl ∪ {ξ} ∪ {αl : l ∈ [n + 1, ω)}
)

we have:

(
⊕

) the sequence 〈Mξ
ᾱ : ξ ∈ Xn〉 forms a ∆-system with heart

Nᾱ and its elements are pairwise isomorphic over the heart
Nᾱ.

(2) For a cardinal λ the condition (~)λ is:

(~)λ there exists a sequence λ̄ = 〈λn : n < ω〉 such that
∑

n<ω λn = λ
and the condition (~)λ̄ holds true.

In [Sh 76] a condition (∗)λ, weaker than (~)λ, was considered. Now,
[Sh 124] continues [Sh 76] to get stronger indiscernibility. But by the same
proof (using ω-measurable) one can show the consistency of (~)ℵω + GCH.

Note that to carry out the proof of 1.1 we need even less than (~)λ: the⋃
l<n Xl (in (b) of 1.3) is much more than needed; it suffices to have β̄0∪ β̄1

where β̄0, β̄1 ∈
∏

l<n Xl.

Conclusion 1.4. It is consistent that

2ℵ0 = ℵω+1 and
∧

n<ω

¬KL(ℵω,ℵn) so ¬KL(2ℵ0 , 2).

Remark 1.5. Koepke [Ko84] continues [Sh 76] to get equiconsistency.
His refinement of [Sh 76] (for the upper bound) works below too.

2. The positive result. For an algebra M on λ and a set X ⊆ λ the
closure of X under functions of M is denoted by clM (X). Before proving
our result (2.6) we remind the reader of some definitions and propositions.

Proposition 2.1. For an algebra M on λ the following conditions are
equivalent :

(F)0M for each sequence 〈αn : n ∈ ω〉 ⊆ λ we have

(∀∞n)(αn ∈ clM ({αk : n < k < ω})),
(F)1M there is no sequence 〈An : n ∈ ω〉 ⊆ [λ]ℵ0 such that

(∀n ∈ ω)(clM (An+1)  clM (An)),

(F)2M (∀A ∈ [λ]ℵ0)(∃B ∈ [A]ℵ0)(∀C ∈ [B]ℵ0)(clM (B) = clM (C)).

Definition 2.2. We say that a cardinal λ has the (F)-property for κ
(and then we write PrF(λ, κ)) if there is an algebra M on λ with vocabulary
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of cardinality ≤ κ satisfying one (equivalently: all) of the conditions (F)i
M

(i < 3) of 2.1. If κ = ℵ0 we may omit it.

Remember

Proposition 2.3. If V0 ⊆ V1 are universes of set theory and V1 |=
¬PrF(λ) then V0 |= ¬PrF(λ).

P r o o f. By absoluteness of the existence of an ω-branch of a tree.

Remark 2.4. The property ¬PrF(λ) is a kind of large cardinal property.
It was clarified in L (remember that it is inherited from V to L) by Silver
[Si70] to be equiconsistent with “there is a beautiful cardinal” (terminol-
ogy of 2.3 of [Sh 110]), another partition property inherited by L. More in
[Sh 513].

Proposition 2.5. For each n ∈ ω, PrF(ℵn).

P r o o f. This was done in [Sh:b, Chapter XIII], see [Sh:g, Chapter VII]
too, and probably earlier by Silver. However, for the sake of completeness
we will give the proof.

First note that clearly PrF(ℵ0) and thus we have to deal with the case
when n > 0. Let f, g : ℵn → ℵn be two functions such that if m < n,
α ∈ [ℵm,ℵm+1) then f(α, ·)�α : α

1-1→ ℵm, g(α, ·)�ℵm : ℵm
1-1→ α are functions

inverse to each other.
Let M be the following algebra on ℵn:

M = (ℵn, f, g, m)m∈ω.

We want to check the condition (F)1M : assume that a sequence 〈Ak : k < ω〉
⊆ [ℵn]ℵ0 is such that for each k < ω,

clM (Ak+1)  clM (Ak).
For each m < n, the sequence 〈sup(clM (Ak) ∩ ℵm+1) : k < ω〉 is non-
increasing and therefore it is eventually constant. Consequently, we find k∗

such that
(∀m < n)(sup(clM (Ak∗+1) ∩ ℵm+1) = sup(clM (Ak∗) ∩ ℵm+1)).

By the choice of 〈Ak : k < ω〉 we have clM (Ak∗+1)  clM (Ak∗). Let
α0 := min(clM (Ak∗) \ clM (Ak∗+1)).

As the model M contains individual constants m (for m ∈ ω) we know that
ℵ0 ⊆ clM (∅) and hence ℵ0 ≤ α0. Let m < n be such that ℵm ≤ α0 < ℵm+1.
By the choice of k∗ we find β ∈ clM (Ak∗+1)∩ℵm+1 such that α0 ≤ β. Then
necessarily α0 < β. Look at f(β, α0): we know that α0, β ∈ clM (Ak∗) and
therefore f(β, α0) ∈ clM (Ak∗) ∩ ℵm and f(β, α0) < α0. The minimality of
α0 implies that f(β, α0) ∈ clM (Ak∗+1) and hence

α0 = g(β, f(β, α0)) ∈ clM (Ak∗+1),
a contradiction.
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Explanation. Better think of the proof below from the end. Let ᾱ =
〈αn : n < ω〉 ∈ ωλ. So for some n(∗), n(∗) ≤ n < ω ⇒ αn ∈ clM (αl : l > n).
So for some mn > n, {αn(∗), . . . , αn−1} ⊆ clM (αn, . . . , αmm−1) and

(∀l < n(∗))(αl ∈ clM (αk : k > n(∗)) ⇒ αl ∈ clM (αk : k ∈ [n, mn))).

Let w = {l < n(∗) : αl ∈ clM (αn : n ≥ n(∗)). It is natural to aim at:

(∗) for n large enough (say n > mn(∗)), Fn(〈αl : l < n〉) depends just
on {αl : l ∈ [n(∗), n) or l ∈ w} and 〈Fm(ᾱ�m) : m ≥ n〉 codes
ᾱ�(w ∪ [n(∗), ω)).

Of course, we are given an n and we do not know how to compute the real
n(∗), but we can approximate. Then we look at a late enough end segment
where we compute down.

Theorem 2.6. Assume that λ ≤ 2ℵ0 is such that PrF(λ) holds. Then
KL(λ, ω) (and hence KL(λ, 2)).

P r o o f. We have to construct functions Fn :nλ→ω witnessing KL(λ, ω).
For this we will introduce functions k and l such that for ᾱ ∈ nλ the value
of k(ᾱ) will say which initial segment of ᾱ will be irrelevant for Fn(ᾱ)
and l(ᾱ) will be such that (under certain circumstances) elements αi (for
k(ᾱ) ≤ i < l(ᾱ)) will be encoded by 〈αj : j ∈ [l(ᾱ), n)〉.

Fix a sequence 〈ηα : α < λ〉 ⊆ ω2 with no repetitions.
Let M be an algebra on λ such that (F)0M holds true. We may assume

that there are no individual constants in M (so clM (∅) = ∅).
Let 〈τn

l (x0, . . . , xn−1) : l < ω〉 list all n-place terms of the language of
the algebra M (and τ1

0 (x) is x) when 0 < n < ω. For ᾱ ∈ ω≥λ (with αj the
jth element in ᾱ) let

u(ᾱ) = {l < lg(ᾱ) : αl 6∈ clM (ᾱ�(l, lg(ᾱ)))} ∪ {0}
and for l 6∈ u(ᾱ), l < lg(ᾱ) let

fl(ᾱ) = min{j : αl ∈ clM (ᾱ�(l, j))},

gl(ᾱ) = min{i : αl = τ
fl(ᾱ)−l−1
i (ᾱ�(l, fl(ᾱ)))}.

For ᾱ ∈ nλ (1 < n < ω) put

k1(ᾱ) = min((u(ᾱ�(n− 1)) \ u(ᾱ)) ∪ {n− 1}),
k0(ᾱ) = max(u(ᾱ) ∩ k1(ᾱ)).

Note that if (n > 1 and) ᾱ ∈ nλ then n− 1 ∈ u(ᾱ) (as clM (∅) = ∅) and
k1(ᾱ) > 0 (as always 0 ∈ u(β̄)) and k0(ᾱ) is well defined (as 0 ∈ u(ᾱ)∩k1(ᾱ))
and k0(ᾱ)<k1(ᾱ)<n. Moreover, for all l∈(k0(ᾱ), k1(ᾱ)) we have αl 6∈ u(ᾱ)
by the choice of k0(ᾱ), hence αl 6∈ u(ᾱ�(n− 1)) by the choice of k1(ᾱ) and
thus αl ∈ clM (ᾱ�(l, n− 1)). Now, for ᾱ ∈ ω>λ, lg(ᾱ) > 1 we define

l(ᾱ) = max{j ≤ k1(ᾱ) : j > k0(ᾱ) ⇒ (∀i ∈ (k0(ᾱ), j))(gi(ᾱ) ≤ lg(ᾱ))},
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m(ᾱ) = max{j ≤ l(ᾱ) : j > max{1, k0(ᾱ)} ⇒ k0(ᾱ�j) = k0(ᾱ)},

k(ᾱ) = l(ᾱ�m(ᾱ)) (if m(ᾱ) ≤ 1 then put k(ᾱ) = −1).

Clearly k(ᾱ) < m(ᾱ) ≤ l(ᾱ) ≤ k1(ᾱ) < lg(ᾱ).

Claim 2.6.1. For each ᾱ ∈ ωλ, the set u(ᾱ) is finite and :

(1) The sequence 〈k1(ᾱ�n) : n < ω〉 diverges to ∞.
(2) The sequence 〈k0(ᾱ�n) : n < ω & k0(ᾱ�n) 6= max u(ᾱ)〉, if infinite,

diverges to ∞. There are infinitely many n < ω with k0(ᾱ�n) = max u(ᾱ).
(3) The sequence 〈l(ᾱ�n) : n < ω〉 diverges to ∞.
(4) The sequences 〈m(ᾱ�n) : n < ω〉 and 〈k(ᾱ�n) : n < ω〉 diverge to ∞.

P r o o f. Let ᾱ = 〈αn : n < ω〉 ∈ ωλ. By the property (F)0M we find
n∗ < ω such that u(ᾱ) ⊆ n∗. Fix n0 > n∗ and define

n1 = max{fn(ᾱ) + gn(ᾱ) + 2 : n ∈ (n0 + 1) \ u(ᾱ)}
(so as clM (∅) = ∅ we have n1 ≥ fn0(ᾱ)+2 > n0+3 and for l ∈ (n0+1)\u(ᾱ),
αl ∈ clM (αl+1, . . . , αn1−1) is witnessed by τ

fl(ᾱ)−l−1
gl(ᾱ) (αl+1, . . . , αfl(ᾱ)−1)

with fl(ᾱ), gl(ᾱ) < n1 − 1).

(1) Note that u(ᾱ�n) ∩ (n0 + 1) = u(ᾱ) for all n ≥ n1 − 1 and hence for
n ≥ n1,

u(ᾱ�n) ∩ (n0 + 1) = u(ᾱ�(n− 1)) ∩ (n0 + 1).

Consequently, for all n ≥ n1 we have k1(ᾱ�n) > n0. As we could have
chosen n0 arbitrarily large we may conclude that limn→∞ k1(ᾱ�n) = ∞.

(2) Note that for all n ≥ n1,

either k0(ᾱ�n) = max(u(ᾱ)) or k0(ᾱ�n) > n0.

Hence, by the arbitrariness of n0, we get the first part of (2).
Let l∗ = min(u(ᾱ�n1)\u(ᾱ)) (note that n1−1 ∈ u(ᾱ�n1)\u(ᾱ)). Clearly

l∗ > n0 and αl∗ 6∈ u(ᾱ). Consider n = fl∗(ᾱ) (so l∗ ≤ n − 2, n1 ≤ n − 1).
Then l∗ ∈ u(ᾱ�(n− 1)) \ u(ᾱ�n). As

l∗ ∩ u(ᾱ�n1) = l∗ ∩ u(ᾱ�n− 1) = u(ᾱ)

(remember the choice of l∗) we conclude that

l∗ = k1(ᾱ�n) and k0(ᾱ�n) = max u(ᾱ).

Now, since n0 was arbitrarily large, we find that for infinitely many n,
k0(ᾱ�n) = max u(ᾱ).

(3) Suppose that n ≥ n1. Then we know that k1(ᾱ�n) > n0 and either
k0(ᾱ�n) = max u(ᾱ) or k0(ᾱ�n) > n0 (see above). If the first possibility
takes place then, as n ≥ n1, we may use j = n0 +1 to witness that l(ᾱ�n) >
n0 (remember the choice of n1). If k0(ᾱ�n) > n0 then clearly l(ᾱ�n) > n0.
As n0 could be arbitrarily large we are done.
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(4) Suppose we are given m0 < ω. Take m1 > m0 such that for all
n ≥ m1,

either k0(ᾱ�n) = max u(ᾱ) or k0(ᾱ�n) > m0

(possible by (2)) and then choose m2 > m1 such that k0(ᾱ�m2) = max u(ᾱ)
(by (2)). Due to (3) we find m3 > m2 such that for all n ≥ m3, l(ᾱ�n) > m2.
Now suppose that n ≥ m3. If k0(ᾱ�n) = max u(ᾱ) then, as l(ᾱ�n) > m2, we
get m(ᾱ�n) ≥ m2 > m0. Otherwise k0(ᾱ�n) > m0 (as n > m1) and hence
m(ᾱ�n) > m0. This shows that limn→∞m(ᾱ�n) = ∞. Now, immediately
by the definition of k and (3) above we conclude that limn→∞ k(ᾱ�n) = ∞.

Claim 2.6.2. If ᾱ1, ᾱ2 ∈ ωλ are such that (∀∞n)(α1
n = α2

n) then

(∀∞n)(l(ᾱ1�n) = l(ᾱ2�n) & m(ᾱ1�n) = m(ᾱ2�n) & k(ᾱ1�n) = k(ᾱ2�n)).

P r o o f. Let n0 be greater than max(u(ᾱ1) ∪ u(ᾱ2)) and such that

ᾱ1�[n0, ω) = ᾱ2�[n0, ω).

For k = 1, 2, 3 define nk by

nk+1 = max{fn(ᾱi) + gn(ᾱi) + 2 : n ∈ (nk + 1) \ u(ᾱi), i < 2}.
As in the proof of 2.6.1, for i = 1, 2 and j < 3 we have:

(⊗1) (∀n ≥ nj+1)(k0(ᾱi�n) = max u(ᾱi) or k0(ᾱi�n) > nj),
(⊗2) (∀n ≥ nj+1)(k1(ᾱi�n) > nj & l(ᾱi�n) > nj & m(ᾱi�n) > nj &

h(ᾱi�n) > nj),
(⊗3) (∃n′ ∈ (n1, n2))(k0(ᾱ1�n′) = max u(ᾱ1) & k0(ᾱ2�n′) = max u(ᾱ2))

(for (⊗3) repeat arguments from 2.6.1(2) and use the fact that ᾱ1�[n0, ω) =
ᾱ2�[n0, ω)). Clearly

(⊗4) (∀n > n0)(u(ᾱ1�n) \ n0 = u(ᾱ2�n) \ n0).

Hence, applying (⊗4) + (⊗2) + the definition of k1(−), we conclude that

(⊗5) (∀n ≥ n1)(k1(ᾱ1�n) = k1(ᾱ2�n)),

and then applying (⊗4) + (⊗2) + (⊗5) + the definition of k0(−), we get

(⊗6) for all n ≥ n1: either k0(ᾱ1�n) = max u(ᾱ1) and k0(ᾱ2�n) =
max u(ᾱ2), or k0(ᾱ1�n) = k0(ᾱ2�n).

Since
(∀n ≥ n0)(fn(ᾱ1) = fn(ᾱ2) & gn(ᾱ1) = gn(ᾱ2))

and by (⊗2)+(⊗5)+the choice of n0+the definition of l(−), we get (compare
the proof of 2.6.1)

(⊗7) (∀n ≥ n1)(l(ᾱ1�n) = l(ᾱ2�n))

and by (⊗2) + (⊗7) + (⊗6) + the definition of m(−),

(∀n ≥ n3)(m(ᾱ1�n) = m(ᾱ2�n) ≥ n2).
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Moreover, now we easily get

(∀n ≥ n3)(k(ᾱ1�n) = k(ᾱ2�n)).

For integers n0 ≤ n1 ≤ n2 we define functions F 0
n0,n1,n2

: n2λ → H(ℵ0)
by letting F 0

n0,n1,n2
(α0, . . . , αn2−1) (for 〈α0, . . . , αn2−1〉 ∈ n2λ) be the se-

quence consisting of:

(a) 〈n0, n1, n2〉,
(b) the set Tn1,n2 of all terms τn

l such that n ≤ n2−n1 and either l ≤ n2

(we will call it the simple case) or τn
l is a composition of depth at most n2

of such terms,
(c) 〈ηα�n2, n, l, 〈i0, . . . , in−1〉〉 for n ≤ n2−n1, i0, . . . , in−1 ∈ [n1, n2) and

l such that τn
l ∈ Tn1,n2 and α = τn

l (αi0 , . . . , αin−1),
(d) 〈n, l, 〈i0, . . . , in−1〉, i〉 for n ≤ n2 − n1, i0, . . . , in−1 ∈ [n1, n2), i ∈

[n0, n1) and l such that τn
l ∈ Tn1,n2 and αi = τn

l (αi0 , . . . , αin−1),
(e) equalities among appropriate terms, i.e. all tuples

〈n′, l′, n′′, l′′, 〈i′0, . . . , i′n′−1〉, 〈i′′0 , . . . , i′′n′′−1〉〉
such that n1 ≤ i′0 < . . . < i′n′−1 < n2, n1 ≤ i′′0 < . . . < i′′n′′−1 < n2,
n′, n′′ ≤ n2 − n1, l′, l′′ are such that τn′

l′ , τn′′

l′′ ∈ Tn1,n2 and

τn′

l′ (αi′0
, . . . , αi′

n′−1
) = τn′′

l′′ (αi′′0
, . . . , αi′′

n′′−1
).

(Note that the value of F 0
n0,n1,n2

(ᾱ) does not depend on ᾱ�n0.)
Finally we define functions Fn : nλ → H(ℵ0) (for 1 < n < ω) by:

if ᾱ ∈ nλ then Fn(ᾱ) = F 0
k(ᾱ),l(ᾱ),n(ᾱ).

As H(ℵ0) is countable we may think that these functions are into ω. We
are going to show that they witness KL(λ, ω).

Claim 2.6.3. If ᾱ1, ᾱ2 ∈ ωλ are such that (∀∞n)(α1
n = α2

n) then

(∀∞n)(Fn(ᾱ1�n) = Fn(ᾱ2�n)).

P r o o f. Take m0 < ω such that for all n ∈ [m0, ω) we have

α1
n = α2

n, l(ᾱ1�n) = l(ᾱ2�n), k(ᾱ1�n) = k(ᾱ2�n)

(possible by 2.6.2). Let m1 > m0 be such that for all n ≥ m1,

k(ᾱ1�n) = k(ᾱ2�n) > m0

(use 2.6.1). Then, for n ≥ m1, i = 1, 2 we have

Fn(ᾱi�n) = F 0
k(ᾱi�n),l(ᾱi�n),n(ᾱi�n) = F 0

k(ᾱ1�n),l(ᾱ1�n),n(ᾱi�n).

Since the value of F 0
n0,n1,n2

(β̄) does not depend on β̄�n0 and the sequences
ᾱ1�n, ᾱ2�n agree on [m0, ω), we get

F 0
k(ᾱ1�n),l(ᾱ1�n),n(ᾱ1�n)=F 0

k(ᾱ1�n),l(ᾱ1�n),n(ᾱ2�n)=F 0
k(ᾱ2�n),l(ᾱ2�n),n(ᾱ2�n),
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and hence
(∀n ≥ m1)(Fn(ᾱ1�n) = Fn(ᾱ2�n)).

Claim 2.6.4. If ᾱ1, ᾱ2 ∈ ωλ and (∀∞n)(Fn(ᾱ1�n) = Fn(ᾱ2�n)) then
(∀∞n)(α1

n = α2
n).

P r o o f. Take n0 < ω such that

u(ᾱ1) ∪ u(ᾱ2) ⊆ n0 and (∀n ≥ n0)(Fn(ᾱ1�n) = Fn(ᾱ2�n)).

Then for all n ≥ n0 we have (by clause (a) of the definition of F 0
n0,n1,n2

)

l(ᾱ1�n) = l(ᾱ2�n) and k(ᾱ1�n) = k(ᾱ2�n).

Further, let n1 > n0 be such that for all n ≥ n1, k(ᾱ1�n) > n0 and
k0(ᾱ1�n1) = max u(ᾱ1) (exists by 2.6.1) and choose n2 > n1 such that
n ≥ n2 implies m(ᾱ1�n) > n2.

We are going to show that α1
n = α2

n for all n > n1. Assume not. Then
we have n > n1 with α1

n 6= α2
n and thus ηα1

n
6= ηα2

n
. Take n′ > n such that

ηα1
n
�n′ 6= ηα2

n
�n′. Applying 2.6.1(2) and (4) choose n′′ > n′ such that

m(ᾱ1�n′′) > n′ and k0(ᾱ1�n′′) = max u(ᾱ1).

Now define inductively: m0 = n′′, mk+1 = m(ᾱ1�mk). Thus

n′′ = m0 > l(ᾱ1�m0) ≥ m1 > l(ᾱ1�m1) ≥ m2 > . . .

and (by induction on k)

mk > max u(ᾱ1) ⇒ k0(ᾱ1�mk) = max u(ᾱ1)

(see the definition of m). Let k∗ be the first such that n ≥ mk∗ (so k∗ ≥ 2,
exists by the choice of n1). Note that by the choice of n1 above we necessarily
have

mk∗ > l(ᾱ1�mk∗) = k(ᾱ1�mk∗−1) > n0.

Hence for all k < k∗:

Fmk
(ᾱ1�mk) = Fmk

(ᾱ2�mk),
l(ᾱ1�mk+1) = l(ᾱ2�mk+1) = k(ᾱ1�mk) = k(ᾱ2�mk).

By the definition of the functions l,m,k and the choice of m0 (remember
k0(ᾱ1�m0) = max u(ᾱ1)) we know that for each i ∈ [k(ᾱ1�mk), l(ᾱ1�mk))
and k < k∗, for some τm

l ∈ Tl(ᾱ1�mk),mk
and i0, . . . , im−1 ∈ [l(ᾱ1�mk),mk)

we have α1
i = τm

l (α1
i0

, . . . , α1
im−1

). Moreover we may demand that τm
l is a

composition of depth at most l(ᾱ1�mk)− i of simple case terms. Since

F 0
k(ᾱ1�mk),l(ᾱ1�mk),mk

(ᾱ1�mk) = F 0
k(ᾱ2�mk),l(ᾱ2�mk),mk

(ᾱ2�mk)

we conclude that (by clause (d) of the definition of the functions F 0
n0,n1,n2

)

α2
i = τm

l (α2
i0 , . . . , α

2
im−1

).
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Now look at our n. If l(ᾱ1�mk∗−1) > n then k(ᾱ1�mk∗−1) ≤ n <
l(ᾱ1�mk∗−1) and thus we find i0, . . . , im−1 ∈ [l(ᾱ1�mk∗−1),mk∗−1) and τm

l ∈
Tl(ᾱ1�mk∗−1),mk∗−1

such that

α1
n = τm

l (α1
i0 , . . . , α

1
m−1) and α2

n = τm
l (α2

i0 , . . . , α
2
m−1).

If l(ᾱ1�mk∗−1)≤n then n∈ [k(ᾱ1�mk∗−2), l(ᾱ1�mk∗−2)) (as l(ᾱ1�mk∗−1)
= k(ᾱ1�mk∗−2) and n<mk∗−1≤ l(ᾱ1�mk∗−2)). Hence, for some i0, . . . , im−1

∈ [l(ᾱ1�mk∗−2),mk∗−2) and τm
l ∈ Tl(ᾱ1�mk∗−2),mk∗−2

, we have

α1
n = τm

l (α1
i0 , . . . , α

1
m−1) and α2

n = τm
l (α2

i0 , . . . , α
2
m−1).

In both cases we may additionally demand that the term τm
l is a compo-

sition of depth l(ᾱ1�mk∗−1)−n (or l(ᾱ1�mk∗−2)−n, respectively) of terms
of the simple case. Now we proceed inductively (taking care of the depth of
the terms involved) and we find a term τ ∈ Tl(ᾱ1�m0),m0 (which is a com-
position of depth at most l(ᾱ1�m0) − n of terms of the simple case) and
i0, . . . , im−1 ∈ [l(ᾱ1�m0),m0) such that

α1
n = τ(α1

i0 , . . . , α
1
m−1) and α2

n = τ(α2
i0 , . . . , α

2
m−1).

But now applying clause (c) of the definition of the functions F 0
n0,n1,n2

we
conclude that ηα1

n
�m0 = ηα2

n
�m0, contradicting the choice of n′ and the fact

that m0 > n′.

The last two claims finish the proof of the theorem.

Remark 2.7. If the model M has κ < λ functions (so 〈τn
i (x0, . . . , xn−1) :

i < κ〉 lists the n-place terms) we can prove KL(λ, κ) and the proof is similar.

Final Remarks 2.8. (1) Now we phrase exactly what is needed to carry
out the proof of Theorem 1.1 for λ > κ. It is:

(�) for every model M with universe λ and Skolem functions and with
countable vocabulary, we can find pairwise distinct αn,l < λ (for
n < ω, l < ω) such that

(⊗) if m0 < m1 < ω and l′i < l′′i for i < m0 and li < ω for i ∈ [m0,m1)
and k0 < k1 < k2 < ω then the models

(Sk({αi,l′i
, αi,l′′i

: i < m0}∪{αm0,k0 , αm0,k1}∪{αi,li : i ∈ (m0,m1)}),
α0,l′0

, α0,l′′0
, α1,l′1

, α1,l′′1
, . . . , αm0−1,l′m0−1

, αm0−1,l′′m0−1
, αm0,k0 ,

αm0,k1 , αm0+1,lm0+1 , . . . , αm1−1,lm1−1)

and
(Sk({αi,l′i

, αi,l′′i
: i < m0}∪{αm0,k0 , αm0,k2}∪{αi,li : i ∈ (m0,m1)}),

α0,l′0
, α0,l′′0

, α1,l′1
, α1,l′′1

, . . . , αm0−1,l′m0−1
, αm0−1,l′′m0−1

, αm0,k0 ,

αm0,k2 , αm0+1,lm0+1 , . . . , αm1−1,lm1−1)
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are isomorphic and the isomorphism is the identity on their intersec-
tion and they have the same intersection with κ.

For more details and more related results we refer the reader to [Sh:F254].
(2) Together with 1.5, 2.7 this gives a good bound on the consistency

strength of ¬KL(λ, κ).
(3) What if we ask Fn : nλ → ω>κ such that Fn(η) E Fn+1(η) and

η ∈ ωλ ⇒ F (η) =
⋃

Fn(η�n) ∈ ωκ? No real change.
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[Sh 481] —, Was Sierpiński right? III Can continuum-c.c. times c.c.c. be continuum-

c.c.? Ann. Pure Appl. Logic 78 (1996), 259–269.
[Sh:F254] —, More on Kalikow Property of pairs of cardinals.
[Sh 513] —, PCF and infinite free subsets, Arch. Math. Logic, to appear.
[Si70] J. S i lver, A large cardinal in the constructible universe, Fund. Math. 69

(1970), 93–100.

Institute of Mathematics
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
E-mail: shelah@math.huji.ac.il

Department of Mathematics
Rutgers University

New Brunswick, NJ 08854, U.S.A.
URL: http://www.math.rutgers.edu/∼shelah

Received 2 September 1996;
in revised form 9 August 1999


