On a problem of Steve Kalikow

by

Saharon Shelah (Jerusalem and New Brunswick, NJ)

Abstract. The Kalikow problem for a pair (λ, κ) of cardinal numbers, $\lambda > \kappa$ (in particular $\kappa = 2$) is whether we can map the family of ω -sequences from λ to the family of ω -sequences from κ in a very continuous manner. Namely, we demand that for $\eta, \nu \in {}^{\omega}\lambda$ we have: η, ν are almost equal if and only if their images are.

We show consistency of the negative answer, e.g., for \aleph_{ω} but we prove it for smaller cardinals. We indicate a close connection with the free subset property and its variants.

0. Introduction. In the present paper we are interested in the following property of pairs of cardinal numbers:

DEFINITION 0.1. Let λ, κ be cardinals. We say that the pair (λ, κ) has the *Kalikow property* (and then we write $\mathcal{KL}(\lambda, \kappa)$) if there is a sequence $\langle F_n : n < \omega \rangle$ of functions such that

$$F_n: {}^n\lambda \to \kappa \quad \text{(for } n < \omega)$$

and if $F: {}^{\omega}\lambda \to {}^{\omega}\kappa$ is given by

$$(\forall \eta \in {}^{\omega}\lambda)(\forall n \in \omega)(F(\eta)(n) = F_n(\eta \upharpoonright n))$$

then for every $\eta, \nu \in {}^{\omega}\lambda$,

$$(\forall^{\infty} n)(\eta(n) = \nu(n))$$
 iff $(\forall^{\infty} n)(F(\eta)(n) = F(\nu)(n))$.

In particular we answer the following question of Kalikow:

Kalikow Problem 0.2. Is $\mathcal{KL}(2^{\aleph_0}, 2)$ provable in ZFC?

The Kalikow property of pairs of cardinals was studied in [Ka90]. Several results are known already. Let us mention some of them. First, one can easily notice that

$$\mathcal{KL}(\lambda, \kappa) \& \lambda' \leq \lambda \& \kappa' \geq \kappa \implies \mathcal{KL}(\lambda', \kappa').$$

 $^{2000\} Mathematics\ Subject\ Classification:\ 03E35,\ 03E05.$

Key words and phrases: set theory, forcing, continuity, Kalikow, free subset.

The research was partially supported by the Israel Science Foundation. Publication 590.

Also ("transitivity")

$$\mathcal{KL}(\lambda_2, \lambda_1) \& \mathcal{KL}(\lambda_1, \lambda_0) \Rightarrow \mathcal{KL}(\lambda_2, \lambda_0)$$

and

$$\mathcal{KL}(\lambda, \kappa) \Rightarrow \lambda \leq \kappa^{\aleph_0}.$$

Kalikow proved that CH implies $\mathcal{KL}(2^{\aleph_0}, 2)$ (in fact that $\mathcal{KL}(\aleph_1, 2)$ holds true) and he conjectured that CH is equivalent to $\mathcal{KL}(2^{\aleph_0}, 2)$.

The question 0.2 is formulated in [Mi91, Problem 15.15, p. 653].

We shall prove that $\mathcal{KL}(\lambda, 2)$ is closely tied with some variants of the free subset property (both positively and negatively). First we present an answer to problem 0.2 proving the consistency of $\neg \mathcal{KL}(2^{\aleph_0}, 2)$ in 1.1 (see 2.8 too). Later we discuss variants of the proof (concerning the cardinal and the forcing). Then we deal with a positive answer, in particular $\mathcal{KL}(\aleph_n, 2)$, and we show that the negation of a relative of the free subset property for λ implies $\mathcal{KL}(\lambda, 2)$.

We thank the participants of the Jerusalem Logic Seminar 1994/95 and particularly Andrzej Rosłanowski for writing it up so nicely.

NOTATION. We will use the Greek letters κ, λ, χ to denote (infinite) cardinals and the letters $\alpha, \beta, \gamma, \zeta, \xi$ to denote ordinals. Sequences of ordinals will be called $\bar{\alpha}, \bar{\beta}, \bar{\zeta}$ with the usual convention that $\bar{\alpha} = \langle \alpha_n : n < \lg(\bar{\alpha}) \rangle$ etc. Sets of ordinals will be denoted by u, v, w (with possible indexes).

The quantifiers $(\forall^{\infty} n)$ and $(\exists^{\infty} n)$ are abbreviations for "for all but finitely many $n \in \omega$ " and "for infinitely many $n \in \omega$ ", respectively.

1. The negative result. For a cardinal χ , the forcing notion \mathbb{C}_{χ} for adding χ many Cohen reals consists of finite functions p such that for some $w \in [\chi]^{<\omega}$, $n < \omega$,

$$\mathrm{dom}(p) = \{(\zeta, k) : \zeta \in w \ \& \ k < n\} \quad \text{and} \quad \mathrm{rang}(p) \subseteq 2$$

ordered by inclusion.

Theorem 1.1. Assume
$$\lambda \to (\omega_1 \cdot \omega)_{2^{\kappa}}^{<\omega}, \ 2^{\kappa} < \lambda \leq \chi$$
. Then

$$\Vdash_{\mathbb{C}_{\chi}} \neg \mathcal{KL}(\lambda, \kappa)$$
 and hence $\Vdash_{\mathbb{C}_{\chi}} \neg \mathcal{KL}(2^{\aleph_0}, 2)$.

Proof. Suppose that \mathbb{C}_{χ} -names \mathcal{F}_n (for $n \in \omega$) and a condition $p \in \mathbb{C}_{\chi}$ are such that

$$p \Vdash_{\mathbb{C}_{\chi}} "\langle \mathcal{F}_n : n < \omega \rangle \text{ exemplifies } \mathcal{KL}(\lambda, \kappa)".$$

For $\bar{\alpha} \in {}^{n}\lambda$ choose a maximal antichain $\langle p_{\bar{\alpha},l}^{n} : l < \omega \rangle$ of \mathbb{C}_{χ} deciding the values of $\tilde{\mathcal{F}}_{n}(\bar{\alpha})$. Thus we have a sequence $\langle \gamma_{\bar{\alpha},l}^{n} : l < \omega \rangle \subseteq \kappa$ such that

$$p_{\bar{\alpha},l}^n \Vdash_{\mathbb{C}_{\gamma}} \tilde{F}_n(\bar{\alpha}) = \gamma_{\bar{\alpha},l}^n.$$

Let χ^* be a sufficiently large regular cardinal. Take an elementary submodel M of $(\mathcal{H}(\chi^*), \in, <^*_{\chi^*})$ such that

- $||M|| = \chi$, $\chi + 1 \subseteq M$,
- $\langle p_{\bar{\alpha},l}^n : l < \omega, n \in \omega, \bar{\alpha} \in {}^n \lambda \rangle, \langle \gamma_{\bar{\alpha},l}^n : l < \omega, n \in \omega, \bar{\alpha} \in {}^n \lambda \rangle \in M.$

By $\lambda \to (\omega_1 \cdot \omega)_{2^{\kappa}}^{<\omega}$ (see [Sh 481, Claim 1.3]), we find a set $B \subseteq \lambda$ of indiscernibles in M over

$$\kappa \cup \{\langle p_{\bar{\alpha},l}^n : l < \omega : n \in \omega, \bar{\alpha} \in {}^n \lambda \rangle, \langle \gamma_{\bar{\alpha},l}^n : l < \omega : n \in \omega, \bar{\alpha} \in {}^n \lambda \rangle, \chi, p\}$$

and a system $\langle N_u : u \in [B]^{<\omega} \rangle$ of elementary submodels of M such that

- (a) B is of order type $\omega_1 \cdot \omega$ and for $u, v \in [B]^{<\omega}$:
- (b) $\kappa + 1 \subseteq N_u$,
- (c) $\chi, p, \langle p_{\bar{\alpha},l}^n : l < \omega, n < \omega, \bar{\alpha} \in {}^n \lambda \rangle, \langle \gamma_{\bar{\alpha},l}^n : l < \omega, n < \omega, \bar{\alpha} \in {}^n \lambda \rangle \in N_u,$
- (d) $|N_u| = \kappa$, $N_u \cap B = u$,
- (e) $N_u \cap N_v = N_{u \cap v}$,
- (f) $|u| = |v| \Rightarrow N_u \cong N_v$, and let $\pi_{u,v}: N_v \to N_u$ be this (unique) isomorphism,
 - (g) $\pi_{v,v} = \mathrm{id}_{N_v}$, $\pi_{u,v}(v) = u$, $\pi_{u_0,u_1} \circ \pi_{u_1,u_2} = \pi_{u_0,u_2}$,
 - (h) if $v' \subseteq v$, |v| = |u| and $u' = \pi_{u,v}(v')$ then $\pi_{u',v'} \subseteq \pi_{u,v}$.

Note that if $u \subseteq B$ is of order type ω then we may define

$$N_u = \bigcup \{N_v : v \text{ is a finite initial segment of } u\}.$$

Then the models N_u (for $u \subseteq B$ of order type $\leq \omega$) have the properties (b)–(h) too.

Let $\langle \beta_{\zeta} : \zeta < \omega_1 \cdot \omega \rangle$ be the increasing enumeration of B. For a set $u \subseteq B$ of order type $\leq \omega$ let $\bar{\beta}^u$ be the increasing enumeration of u (so $\lg(\bar{\beta}^u) = |u|$). Let $u^* = \{\beta_{\omega_1 \cdot n} : n < \omega\}$. For $k \leq \omega$ and a sequence $\bar{\xi} = \langle \xi_m : m < k \rangle \subseteq \omega_1$ we define

$$u[\bar{\xi}] = \{ \beta_{\omega_1 \cdot m + \xi_m} : m < k \} \cup \{ \beta_{\omega_1 \cdot n} : n \in \omega \setminus k \}.$$

Now, working in $\mathbf{V}^{\mathbb{C}_{\chi}}$, we say that a sequence $\bar{\xi}$ is k-strange if

- (1) $\bar{\xi}$ is a sequence of countable ordinals greater than 0, $\lg(\bar{\xi}) = k \leq \omega$,
- $(2) (\forall m < \omega) (\underline{F}_m(\bar{\beta}^{u[\underline{\xi}]} \upharpoonright m) = \underline{F}_m(\bar{\beta}^{u^*} \upharpoonright m)).$

Claim 1.1.1. In $\mathbf{V}^{\mathbb{C}_{\chi}}$, if $\bar{\xi}^k$ are k-strange sequences (for $k < \omega$) such that $(\forall k < \omega)(\bar{\xi}^k \lhd \bar{\xi}^{k+1})$ then the sequence $\bar{\xi} := \bigcup_{k < \omega} \bar{\xi}^k$ is ω -strange.

Proof. Should be clear (note that in this situation we have $\bar{\beta}^{u[\bar{\xi}]} \upharpoonright m = \bar{\beta}^{u[\bar{\xi}^m]} \upharpoonright m$).

Claim 1.1.2. $p \Vdash_{\mathbb{C}_{\gamma}}$ "there are no ω -strange sequences".

Proof. Assume not. Then we find a name $\bar{\xi} = \langle \bar{\xi}_m : m < \omega \rangle$ for an ω -sequence and a condition $q \geq p$ such that

$$q \Vdash_{\mathbb{C}_{\chi}} "(\forall m < \omega)(0 < \xi_m < \omega_1 \& \bar{\mathcal{F}}_m(\bar{\beta}^{u[\bar{\xi}]} \upharpoonright m) = \bar{\mathcal{F}}_m(\bar{\beta}^{u^*} \upharpoonright m))".$$

By the choice of p and \mathcal{F}_m we conclude that

$$q \Vdash_{\mathbb{C}_{\chi}} "(\forall^{\infty} m)(\bar{\beta}^{u[\bar{\xi}]}(m) = \bar{\beta}^{u^*}(m))",$$

which contradicts the definition of $\bar{\beta}^{u[\bar{\xi}]}$, $\bar{\beta}^{u^*}$, Definition 0.1 and the fact that

$$q \Vdash_{\mathbb{C}_{\gamma}} "(\forall m < \omega)(0 < \xi_m < \omega_1)". \blacksquare$$

By 1.1.1, 1.1.2, any inductive attempt to construct (in $\mathbf{V}^{\mathbb{C}_{\chi}}$) an ω -strange sequence $\bar{\xi}$ has to fail. Consequently, we find a condition $p^* \geq p$, an integer $k < \omega$ and a sequence $\bar{\xi} = \langle \xi_l : l < k \rangle$ such that

$$p^* \Vdash_{\mathbb{C}_{\chi}}$$
 " $\bar{\xi}$ is k-strange but $\neg (\exists \xi < \omega_1)(\bar{\xi} \cap \langle \xi \rangle)$ is $(k+1)$ -strange)".

Then in particular

$$(\boxtimes) \qquad p^* \Vdash_{\mathbb{C}_\chi} "(\forall m < \omega) (\underline{F}_m(\bar{\beta}^{u[\bar{\xi}]} \upharpoonright m) = \underline{F}_m(\bar{\beta}^{u^*} \upharpoonright m))".$$

[It may happen that k = 0, i.e., $\bar{\xi} = \langle \rangle$.]

For $\xi < \omega_1$ let $u_{\xi} = u[\bar{\xi} \cap \langle \xi \rangle]$ and $w_{\xi} = u_{\xi} \cup (u^* \setminus \{\omega_1 \cdot k\})$. Thus $w_0 = u[\bar{\xi}] \cup u^*$ and all w_{ξ} have order type ω and $\pi_{w_{\xi_1}, w_{\xi_2}}$ is the identity on $N_{w_{\xi} \setminus \{\omega_1 \cdot k + \xi_2\}}$. Let $q := p^* \upharpoonright N_{w_0}$ and $q_{\xi} = \pi_{w_{\xi}, w_0}(q) \in N_{w_{\xi}}$ (so $q_0 = q$). As the isomorphism π_{w_{ξ}, w_0} is the identity on $N_{w_0} \cap N_{w_{\xi}} = N_{w_0 \cap w_{\xi}}$ (and by the definition of Cohen forcing), we see that the conditions q, q_{ξ} are compatible. Moreover, as $p^* \geq p$ and $p \in N_{\emptyset}$, we find that both q and q_{ξ} are stronger than p.

Now fix $\xi_0 \in (0, \omega_1)$ (e.g. $\xi_0 = 1$) and look at the sequences $\bar{\beta}^{u_{\xi_0}}$ and $\bar{\beta}^{u^*}$. They are eventually equal and hence

$$p \Vdash_{\mathbb{C}_{\chi}} "(\forall^{\infty} m) (\underline{F}_m(\bar{\beta}^{u_{\xi_0}} \upharpoonright m) = \underline{F}_m(\bar{\beta}^{u^*} \upharpoonright m))".$$

So we find $m^* < \omega$ and a condition $q'_{\xi_0} \ge q_{\xi_0}, q$ such that

$$(\otimes_{q'_{\xi_0}}^{\xi_0,m^*}) \qquad \qquad q'_{\xi_0} \Vdash_{\mathbb{C}_\chi} \text{``}(\forall m \geq m^*)(\bar{F}_m(\bar{\beta}^{u_{\xi_0}} \upharpoonright m) = \bar{F}_m(\bar{\beta}^{u^*} \upharpoonright m))\text{''}$$

and (as we can increase q'_{ε_0})

 $(\bigoplus_{q'_{\xi_0}}^{\xi_0,m^*})$ q'_{ξ_0} decides the values of $\tilde{F}_m(\bar{\beta}^{u_{\xi_0}} \upharpoonright m)$ and $\tilde{F}_m(\bar{\beta}^{u^*} \upharpoonright m)$ for all $m \leq m^*$.

Note that the condition $(\bigotimes_{q'_{\xi_0}}^{\xi_0,m^*})$ means that there are NO $m \geq m^*$, $l_0, l_1 < \omega$ with $\gamma^m_{\bar{\beta}^{u_{\xi_0}} \upharpoonright m, l_0} \neq \gamma^m_{\bar{\beta}^{u^*} \upharpoonright m, l_1}$ and the three conditions q'_{ξ_0} , $p^m_{\bar{\beta}^{u_{\xi_0}} \upharpoonright m, l_0}$ and $p^m_{\bar{\beta}^{u^*} \upharpoonright m, l_1}$ have a common upper bound in \mathbb{C}_{χ} (remember the choice of the $p^n_{\bar{\alpha}, l}$'s and $\gamma^n_{\bar{\alpha}, l}$'s). Similarly, the condition $(\oplus_{q'_{\xi_0}}^{\xi_0, m^*})$ means there are

NO $m \leq m^*$, $l_0, l_1 < \omega$ with either $\gamma^m_{\bar{\beta}^u \xi_0 \upharpoonright m, l_0} \neq \gamma^m_{\bar{\beta}^u \xi_0 \upharpoonright m, l_1}$ and both q'_{ξ_0} and $p^m_{\bar{\beta}^u \xi_0 \upharpoonright m, l_0}$, and q'_{ξ_0} and $p^m_{\bar{\beta}^u \xi_0 \upharpoonright m, l_1}$ are compatible in \mathbb{C}_{χ} , or $\gamma^m_{\bar{\beta}^{u^*} \upharpoonright m, l_0} \neq \gamma^m_{\bar{\beta}^{u^*} \upharpoonright m, l_1}$ and both q'_{ξ_0} and $p^m_{\bar{\beta}^{u^*} \upharpoonright m, l_0}$, and q'_{ξ_0} and $p^m_{\bar{\beta}^{u^*} \upharpoonright m, l_1}$ are compatible in \mathbb{C}_{χ} .

Consequently, the condition $q_{\xi_0}^* := q_{\xi_0}' \upharpoonright N_{w_0 \cup w_{\xi_0}}$ has both properties $(\otimes_{q_{\xi_0}^*}^{\xi_0,m^*})$ and $(\oplus_{q_{\xi_0}^*}^{\xi_0,m^*})$ (and it is stronger than both q and q_{ξ_0}). Now, for $0 < \xi < \omega_1$ let

$$q_{\xi}^* := \pi_{w_0 \cup w_{\xi}, w_0 \cup w_{\xi_0}}(q_{\xi_0}^*) \in N_{w_0 \cup w_{\xi}}.$$

Then (for $\xi \in (0, \omega_1)$) the condition q_{ξ}^* is stronger than

both
$$q = \pi_{w_0 \cup w_{\xi}, w_0 \cup w_{\xi_0}}(q)$$
 and $q_{\xi} = \pi_{w_0 \cup w_{\xi}, w_0 \cup w_{\xi_0}}(q_{\xi_0})$

and it has the properties $(\otimes_{q_{\xi}^*}^{\xi,m^*})$ and $(\oplus_{q_{\xi}^*}^{\xi,m^*})$. Moreover for all ξ_1,ξ_2 the conditions $q_{\xi_1}^*,q_{\xi_2}^*$ are compatible. [Why? By the definition of Cohen forcing, and $\pi_{w_0 \cup w_{\xi_2}, w_0 \cup w_{\xi_1}}(q_{\xi_1}^*) = q_{\xi_2}^*$ (chasing arrows) and $\pi_{w_0 \cup w_{\xi_2}, w_0 \cup w_{\xi_1}}$ is the identity on $N_{w_0 \cup w_{\xi_2}} \cap N_{w_0 \cup w_{\xi_1}} = N_{(w_0 \cup w_{\xi_2}) \cap (w_0 \cup w_{\xi_1})}$ (see clauses (e), (f),

CLAIM 1.1.3. For each $\xi_1, \xi_2 \in (0, \omega_1)$ the condition $q_{\xi_1}^* \cup q_{\xi_2}^*$ forces in \mathbb{C}_{χ} that

$$(\forall m<\omega)(\underline{\mathcal{F}}_m(\bar{\beta}^{u_{\xi_1}}\!\upharpoonright\! m)=\underline{\mathcal{F}}_m(\bar{\beta}^{u_{\xi_2}}\!\upharpoonright\! m)).$$

Proof. If $m \geq m^*$ then, by $(\bigotimes_{q_{\xi_1}^*}^{\xi_1,m^*})$ and $(\bigotimes_{q_{\xi_2}^*}^{\xi_2,m^*})$ (passing through $F(\bar{\beta}^{u^*} \upharpoonright m)$, we get

$$q_{\xi_1}^* \cup q_{\xi_2}^* \Vdash_{\mathbb{C}_\chi} ``\tilde{F}_m(\bar{\beta}^{u_{\xi_1}} \upharpoonright m) = \tilde{F}_m(\bar{\beta}^{u_{\xi_2}} \upharpoonright m)".$$

If $m < m^*$ then we use $(\bigoplus_{q_{\xi_1}^*}^{\xi_1, m^*})$ and $(\bigoplus_{q_{\xi_2}^*}^{\xi_1, m^*})$ and the isomorphism: the values assigned by $q_{\xi_1}^*$, $q_{\xi_2}^*$ to $f_m(\bar{\beta}^{u_{\xi_1}})$ and $f_m(\bar{\beta}^{u_{\xi_2}})$ have to be equal (remember $\kappa \subseteq N_\emptyset$, so the isomorphism is the identity on κ).

Look at the conditions

$$q_{\xi_1,\xi_2} := q_{\xi_1}^* \upharpoonright N_{w_{\xi_1}} \cup q_{\xi_2}^* \upharpoonright N_{w_{\xi_2}} \in N_{w_{\xi_1} \cup w_{\xi_2}}.$$

It should be clear that for each $\xi_1, \xi_2 \in (0, \omega_1)$,

$$q_{\xi_1,\xi_2} \Vdash_{\mathbb{C}_{\chi}} "(\forall m < \omega) (F_m(\bar{\beta}^{u_{\xi_1}} \upharpoonright m) = F_m(\bar{\beta}^{u_{\xi_2}} \upharpoonright m))".$$

Now choose $\xi \in (0, \omega_1)$ so large that

$$dom(p^*) \cap (N_{w_{\varepsilon}} \setminus N_{w_0}) = \emptyset$$

(possible as dom(p^*) is finite, use (e)). Take any $0 < \xi_1 < \xi_2 < \omega_1$ and put

$$q^* := \pi_{w_0 \cup w_{\xi}, w_{\xi_1} \cup w_{\xi_2}}(q_{\xi_1, \xi_2}).$$

(Note: $\pi_{w_0,w_{\xi_1}} \subseteq \pi_{w_0 \cup w_{\xi},w_{\xi_1} \cup w_{\xi_2}}$ and $\pi_{w_{\xi},w_{\xi_2}} \subseteq \pi_{w_0 \cup w_{\xi},w_{\xi_1} \cup w_{\xi_2}}$.) By the isomorphism we get

Now look back:

$$q_{\xi_1}^* \ge q_{\xi_1} = \pi_{w_0 \cup w_{\xi_1}, w_0 \cup w_{\xi_0}}(q_{\xi_0}) = \pi_{w_{\xi_1}, w_{\xi_0}}(q_{\xi_0})$$
$$= \pi_{w_{\xi_1}, w_{\xi_0}}(\pi_{w_{\xi_0}, w_0}(q)) = \pi_{w_{\xi_1}, w_0}(q)$$

and hence

$$q_{\xi_1}^* \upharpoonright N_{w_{\xi_1}} \ge \pi_{w_{\xi_1},w_0}(q)$$

and thus

$$q^* \upharpoonright N_{w_0} \ge \pi_{w_0, w_{\varepsilon_1}} (q_{\varepsilon_1}^* \upharpoonright N_{w_{\varepsilon_1}}) \ge q = p^* \upharpoonright N_{w_0}.$$

Consequently, by the choice of ξ , the conditions q^* and p^* are compatible (remember the definition of q_{ξ_1,ξ_2} and q^*). Now use (\boxtimes) to conclude that

$$q^* \cup p^* \Vdash_{\mathbb{C}_\chi} "(\forall m < \omega) (\underline{F}_m(\bar{\beta}^{u^*} \upharpoonright m) = \underline{F}_m(\bar{\beta}^{u[\bar{\xi}]} \upharpoonright m) = \underline{F}_m(\bar{\beta}^{u_{\xi}} \upharpoonright m))",$$

which implies that $q^* \cup p^* \Vdash_{\mathbb{C}_{\chi}} "\bar{\xi} \cap \langle \xi \rangle$ is (k+1)-strange", a contradiction.

REMARK 1.2. About the proof of 1.1:

- (1) No harm is done by forgetting 0 and replacing it by $\xi_1, \, \xi_2$.
- (2) A small modification of the proof shows that in $\mathbf{V}^{\mathbb{C}_{\chi}}$: If $F_n: {}^n\lambda \to \kappa$ $(n \in \omega)$ are such that

$$(\forall \eta, \nu \in {}^{\omega}\lambda)[(\forall^{\infty}n)(\eta(n) = \nu(n)) \Rightarrow (\forall^{\infty}n)(F_n(\eta \upharpoonright n) = F_n(\nu \upharpoonright n))]$$

then there are infinite sets $X_n \subseteq \lambda$ (for $n < \omega$) such that

$$(\forall n < \omega) \Big(\forall \nu, \eta \in \prod_{l < n} X_l \Big) (F_n(\nu) = F_n(\eta)).$$

Say we shall have $X_n = \{\gamma_{n,i} : i < \omega\}$. Starting we have $\gamma_0^*, \ldots, \gamma_n^*, \ldots$ In the proof at stage n we have determined $\gamma_{l,i}$ (l,i < n) and $p \in G$, $p \in N_{\{\gamma_{l,i}:l,i<\omega\}\cup\{\gamma_n^*,\gamma_{n+1}^*,\ldots\}}$. For n = 0,1,2 as before. For n+1>2 first $\gamma_{0,n},\ldots,\gamma_{n-1,n}$ are easy by transitivity of equalities. Then find $\gamma_{n,0},\gamma_{n,1}$ as before, and then again duplicate.

- (3) In the proof it is enough to use $\{\beta_{\omega \cdot n+l} : n < \omega, l < \omega\}$. Hence, by 1.2 of [Sh 481] it is enough to assume $\lambda \to (\omega^3)_{2^{\kappa}}^{<\omega}$. This condition is compatible with $\mathbf{V} = \mathbf{L}$.
 - (4) We can use only $\lambda \to (\omega^2)_{2^{\kappa}}^{<\omega}$.

DEFINITION 1.3. (1) For a sequence $\bar{\lambda} = \langle \lambda_n : n < \omega \rangle$ of cardinals we define the property $(\circledast)_{\bar{\lambda}}$:

(*) $_{\bar{\lambda}}$ for every model M of a countable language with universe $\sup_{n \in \omega} \lambda_n$ and Skolem functions (for simplicity) there is a sequence $\langle X_n : n < \omega \rangle$ such that

- (a) $X_n \in [\lambda_n]^{\lambda_n}$ (actually $X_n \in [\lambda_n]^{\omega_1}$ suffices)
- (b) for every $n < \omega$ and $\bar{\alpha} = \langle \alpha_l : l \in [n+1,\omega) \rangle \in \prod_{l \geq n+1} X_l$, letting (for $\xi \in X_n$)

$$M_{\bar{\alpha}}^{\xi} = \operatorname{Sk}\left(\bigcup_{l < n} X_l \cup \{\xi\} \cup \{\alpha_l : l \in [n+1, \omega)\}\right)$$

we have:

- (\bigoplus) the sequence $\langle M_{\bar{\alpha}}^{\xi} : \xi \in X_n \rangle$ forms a Δ -system with heart $N_{\bar{\alpha}}$ and its elements are pairwise isomorphic over the heart $N_{\bar{\alpha}}$.
- (2) For a cardinal λ the condition $(\circledast)^{\lambda}$ is:
- (*) $^{\lambda}$ there exists a sequence $\bar{\lambda} = \langle \lambda_n : n < \omega \rangle$ such that $\sum_{n < \omega} \lambda_n = \lambda$ and the condition (*) $_{\bar{\lambda}}$ holds true.

In [Sh 76] a condition $(*)_{\lambda}$, weaker than $(*)^{\lambda}$, was considered. Now, [Sh 124] continues [Sh 76] to get stronger indiscernibility. But by the same proof (using ω -measurable) one can show the consistency of $(*)^{\aleph_{\omega}}$ + GCH.

Note that to carry out the proof of 1.1 we need even less than $(\circledast)^{\lambda}$: the $\bigcup_{l < n} X_l$ (in (b) of 1.3) is much more than needed; it suffices to have $\bar{\beta}^0 \cup \bar{\beta}^1$ where $\bar{\beta}^0, \bar{\beta}^1 \in \prod_{l < n} X_l$.

CONCLUSION 1.4. It is consistent that

$$2^{\aleph_0} = \aleph_{\omega+1}$$
 and $\bigwedge_{n<\omega} \neg \mathcal{KL}(\aleph_\omega, \aleph_n)$ so $\neg \mathcal{KL}(2^{\aleph_0}, 2)$.

Remark 1.5. Koepke [Ko84] continues [Sh 76] to get equiconsistency. His refinement of [Sh 76] (for the upper bound) works below too.

2. The positive result. For an algebra M on λ and a set $X \subseteq \lambda$ the closure of X under functions of M is denoted by $\operatorname{cl}_M(X)$. Before proving our result (2.6) we remind the reader of some definitions and propositions.

Proposition 2.1. For an algebra M on λ the following conditions are equivalent:

 $(\bigstar)_M^0$ for each sequence $\langle \alpha_n : n \in \omega \rangle \subseteq \lambda$ we have

$$(\forall^{\infty} n)(\alpha_n \in \operatorname{cl}_M(\{\alpha_k : n < k < \omega\})),$$

 $(\bigstar)_M^1$ there is no sequence $\langle A_n : n \in \omega \rangle \subseteq [\lambda]^{\aleph_0}$ such that

$$(\forall n \in \omega)(\operatorname{cl}_M(A_{n+1}) \subsetneq \operatorname{cl}_M(A_n)),$$

$$(\bigstar)_M^2 \quad (\forall A \in [\lambda]^{\aleph_0})(\exists B \in [A]^{\aleph_0})(\forall C \in [B]^{\aleph_0})(\operatorname{cl}_M(B) = \operatorname{cl}_M(C)).$$

DEFINITION 2.2. We say that a cardinal λ has the (\bigstar) -property for κ (and then we write $\Pr^{\bigstar}(\lambda, \kappa)$) if there is an algebra M on λ with vocabulary

of cardinality $\leq \kappa$ satisfying one (equivalently: all) of the conditions $(\bigstar)_M^i$ (i < 3) of 2.1. If $\kappa = \aleph_0$ we may omit it.

Remember

PROPOSITION 2.3. If $\mathbf{V}_0 \subseteq \mathbf{V}_1$ are universes of set theory and $\mathbf{V}_1 \models \neg \Pr^{\bigstar}(\lambda)$ then $\mathbf{V}_0 \models \neg \Pr^{\bigstar}(\lambda)$.

Proof. By absoluteness of the existence of an ω -branch of a tree.

REMARK 2.4. The property $\neg \Pr^{\bigstar}(\lambda)$ is a kind of large cardinal property. It was clarified in **L** (remember that it is inherited from **V** to **L**) by Silver [Si70] to be equiconsistent with "there is a beautiful cardinal" (terminology of 2.3 of [Sh 110]), another partition property inherited by **L**. More in [Sh 513].

PROPOSITION 2.5. For each $n \in \omega$, $\Pr^{\bigstar}(\aleph_n)$.

Proof. This was done in [Sh:b, Chapter XIII], see [Sh:g, Chapter VII] too, and probably earlier by Silver. However, for the sake of completeness we will give the proof.

First note that clearly $\Pr^{\bigstar}(\aleph_0)$ and thus we have to deal with the case when n > 0. Let $f, g : \aleph_n \to \aleph_n$ be two functions such that if m < n, $\alpha \in [\aleph_m, \aleph_{m+1})$ then $f(\alpha, \cdot) \upharpoonright \alpha : \alpha \xrightarrow{1-1} \aleph_m, g(\alpha, \cdot) \upharpoonright \aleph_m : \aleph_m \xrightarrow{1-1} \alpha$ are functions inverse to each other.

Let M be the following algebra on \aleph_n :

$$M = (\aleph_n, f, g, m)_{m \in \omega}.$$

We want to check the condition $(\bigstar)_M^1$: assume that a sequence $\langle A_k : k < \omega \rangle$ $\subseteq [\aleph_n]^{\aleph_0}$ is such that for each $k < \omega$,

$$\operatorname{cl}_M(A_{k+1}) \subsetneq \operatorname{cl}_M(A_k).$$

For each m < n, the sequence $\langle \sup(\operatorname{cl}_M(A_k) \cap \aleph_{m+1}) : k < \omega \rangle$ is non-increasing and therefore it is eventually constant. Consequently, we find k^* such that

$$(\forall m < n)(\sup(\operatorname{cl}_M(A_{k^*+1}) \cap \aleph_{m+1}) = \sup(\operatorname{cl}_M(A_{k^*}) \cap \aleph_{m+1})).$$

By the choice of $\langle A_k : k < \omega \rangle$ we have $\operatorname{cl}_M(A_{k^*+1}) \subsetneq \operatorname{cl}_M(A_{k^*})$. Let

$$\alpha_0 := \min(\operatorname{cl}_M(A_{k^*}) \setminus \operatorname{cl}_M(A_{k^*+1})).$$

As the model M contains individual constants m (for $m \in \omega$) we know that $\aleph_0 \subseteq \operatorname{cl}_M(\emptyset)$ and hence $\aleph_0 \le \alpha_0$. Let m < n be such that $\aleph_m \le \alpha_0 < \aleph_{m+1}$. By the choice of k^* we find $\beta \in \operatorname{cl}_M(A_{k^*+1}) \cap \aleph_{m+1}$ such that $\alpha_0 \le \beta$. Then necessarily $\alpha_0 < \beta$. Look at $f(\beta, \alpha_0)$: we know that $\alpha_0, \beta \in \operatorname{cl}_M(A_{k^*})$ and therefore $f(\beta, \alpha_0) \in \operatorname{cl}_M(A_{k^*}) \cap \aleph_m$ and $f(\beta, \alpha_0) < \alpha_0$. The minimality of α_0 implies that $f(\beta, \alpha_0) \in \operatorname{cl}_M(A_{k^*+1})$ and hence

$$\alpha_0 = g(\beta, f(\beta, \alpha_0)) \in \operatorname{cl}_M(A_{k^*+1}),$$

a contradiction.

EXPLANATION. Better think of the proof below from the end. Let $\bar{\alpha} = \langle \alpha_n : n < \omega \rangle \in {}^{\omega}\lambda$. So for some $n(*), n(*) \leq n < \omega \Rightarrow \alpha_n \in \operatorname{cl}_M(\alpha_l : l > n)$. So for some $m_n > n, \{\alpha_{n(*)}, \ldots, \alpha_{n-1}\} \subseteq \operatorname{cl}_M(\alpha_n, \ldots, \alpha_{m_m-1})$ and

$$(\forall l < n(*))(\alpha_l \in \operatorname{cl}_M(\alpha_k : k > n(*)) \quad \Rightarrow \quad \alpha_l \in \operatorname{cl}_M(\alpha_k : k \in [n, m_n))).$$

Let $w = \{l < n(*) : \alpha_l \in \operatorname{cl}_M(\alpha_n : n \ge n(*))\}$. It is natural to aim at:

(*) for n large enough (say $n > m_{n(*)}$), $F_n(\langle \alpha_l : l < n \rangle)$ depends just on $\{\alpha_l : l \in [n(*), n) \text{ or } l \in w\}$ and $\langle F_m(\bar{\alpha} \upharpoonright m) : m \geq n \rangle$ codes $\bar{\alpha} \upharpoonright (w \cup [n(*), \omega))$.

Of course, we are given an n and we do not know how to compute the real n(*), but we can approximate. Then we look at a late enough end segment where we compute down.

THEOREM 2.6. Assume that $\lambda \leq 2^{\aleph_0}$ is such that $\Pr^{\bigstar}(\lambda)$ holds. Then $\mathcal{KL}(\lambda,\omega)$ (and hence $\mathcal{KL}(\lambda,2)$).

Proof. We have to construct functions $F_n: {}^n\lambda \to \omega$ witnessing $\mathcal{KL}(\lambda, \omega)$. For this we will introduce functions \mathbf{k} and \mathbf{l} such that for $\bar{\alpha} \in {}^n\lambda$ the value of $\mathbf{k}(\bar{\alpha})$ will say which initial segment of $\bar{\alpha}$ will be irrelevant for $F_n(\bar{\alpha})$ and $\mathbf{l}(\bar{\alpha})$ will be such that (under certain circumstances) elements α_i (for $\mathbf{k}(\bar{\alpha}) \leq i < \mathbf{l}(\bar{\alpha})$) will be encoded by $\langle \alpha_j : j \in [\mathbf{l}(\bar{\alpha}), n) \rangle$.

Fix a sequence $\langle \eta_{\alpha} : \alpha < \lambda \rangle \subseteq {}^{\omega}2$ with no repetitions.

Let M be an algebra on λ such that $(\bigstar)_M^0$ holds true. We may assume that there are no individual constants in M (so $\operatorname{cl}_M(\emptyset) = \emptyset$).

Let $\langle \tau_l^n(x_0,\ldots,x_{n-1}): l < \omega \rangle$ list all *n*-place terms of the language of the algebra M (and $\tau_0^1(x)$ is x) when $0 < n < \omega$. For $\bar{\alpha} \in {}^{\omega \geq} \lambda$ (with α_j the *j*th element in $\bar{\alpha}$) let

$$u(\bar{\alpha}) = \{l < \lg(\bar{\alpha}) : \alpha_l \not\in \operatorname{cl}_M(\bar{\alpha} \upharpoonright (l, \lg(\bar{\alpha})))\} \cup \{0\}$$

and for $l \notin u(\bar{\alpha})$, $l < \lg(\bar{\alpha})$ let

$$f_l(\bar{\alpha}) = \min\{j : \alpha_l \in \operatorname{cl}_M(\bar{\alpha} \upharpoonright (l,j))\},\$$

$$g_l(\bar{\alpha}) = \min\{i : \alpha_l = \tau_i^{f_l(\bar{\alpha}) - l - 1}(\bar{\alpha} \upharpoonright (l, f_l(\bar{\alpha})))\}.$$

For $\bar{\alpha} \in {}^{n}\lambda$ $(1 < n < \omega)$ put

$$k_1(\bar{\alpha}) = \min((u(\bar{\alpha} \upharpoonright (n-1)) \setminus u(\bar{\alpha})) \cup \{n-1\}),$$

$$k_0(\bar{\alpha}) = \max(u(\bar{\alpha}) \cap k_1(\bar{\alpha})).$$

Note that if (n > 1 and) $\bar{\alpha} \in {}^{n}\lambda$ then $n - 1 \in u(\bar{\alpha})$ (as $\operatorname{cl}_{M}(\emptyset) = \emptyset$) and $k_{1}(\bar{\alpha}) > 0$ (as always $0 \in u(\bar{\beta})$) and $k_{0}(\bar{\alpha})$ is well defined (as $0 \in u(\bar{\alpha}) \cap k_{1}(\bar{\alpha})$) and $k_{0}(\bar{\alpha}) < k_{1}(\bar{\alpha}) < n$. Moreover, for all $l \in (k_{0}(\bar{\alpha}), k_{1}(\bar{\alpha}))$ we have $\alpha_{l} \notin u(\bar{\alpha})$ by the choice of $k_{0}(\bar{\alpha})$, hence $\alpha_{l} \notin u(\bar{\alpha} \upharpoonright (n-1))$ by the choice of $k_{1}(\bar{\alpha})$ and thus $\alpha_{l} \in \operatorname{cl}_{M}(\bar{\alpha} \upharpoonright (l, n-1))$. Now, for $\bar{\alpha} \in {}^{\omega} > \lambda$, $\lg(\bar{\alpha}) > 1$ we define

$$\mathbf{l}(\bar{\alpha}) = \max\{j \le k_1(\bar{\alpha}) : j > k_0(\bar{\alpha}) \Rightarrow (\forall i \in (k_0(\bar{\alpha}), j))(g_i(\bar{\alpha}) \le \lg(\bar{\alpha}))\},\$$

$$\mathbf{m}(\bar{\alpha}) = \max\{j \le \mathbf{l}(\bar{\alpha}) : j > \max\{1, k_0(\bar{\alpha})\} \Rightarrow k_0(\bar{\alpha} \upharpoonright j) = k_0(\bar{\alpha})\},$$

$$\mathbf{k}(\bar{\alpha}) = \mathbf{l}(\bar{\alpha} \upharpoonright \mathbf{m}(\bar{\alpha}))$$
 (if $\mathbf{m}(\bar{\alpha}) \le 1$ then put $\mathbf{k}(\bar{\alpha}) = -1$).

Clearly $\mathbf{k}(\bar{\alpha}) < \mathbf{m}(\bar{\alpha}) \le \mathbf{l}(\bar{\alpha}) \le k_1(\bar{\alpha}) < \lg(\bar{\alpha})$.

CLAIM 2.6.1. For each $\bar{\alpha} \in {}^{\omega}\lambda$, the set $u(\bar{\alpha})$ is finite and:

- (1) The sequence $\langle k_1(\bar{\alpha} \upharpoonright n) : n < \omega \rangle$ diverges to ∞ .
- (2) The sequence $\langle k_0(\bar{\alpha} \upharpoonright n) : n < \omega \& k_0(\bar{\alpha} \upharpoonright n) \neq \max u(\bar{\alpha}) \rangle$, if infinite, diverges to ∞ . There are infinitely many $n < \omega$ with $k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha})$.
 - (3) The sequence $\langle \mathbf{l}(\bar{\alpha} \upharpoonright n) : n < \omega \rangle$ diverges to ∞ .
 - (4) The sequences $\langle \mathbf{m}(\bar{\alpha} \upharpoonright n) : n < \omega \rangle$ and $\langle \mathbf{k}(\bar{\alpha} \upharpoonright n) : n < \omega \rangle$ diverge to ∞ .

Proof. Let $\bar{\alpha} = \langle \alpha_n : n < \omega \rangle \in {}^{\omega}\lambda$. By the property $(\bigstar)_M^0$ we find $n^* < \omega$ such that $u(\bar{\alpha}) \subseteq n^*$. Fix $n_0 > n^*$ and define

$$n_1 = \max\{f_n(\bar{\alpha}) + g_n(\bar{\alpha}) + 2 : n \in (n_0 + 1) \setminus u(\bar{\alpha})\}$$

(so as $\operatorname{cl}_M(\emptyset) = \emptyset$ we have $n_1 \geq f_{n_0}(\bar{\alpha}) + 2 > n_0 + 3$ and for $l \in (n_0 + 1) \setminus u(\bar{\alpha})$, $\alpha_l \in \operatorname{cl}_M(\alpha_{l+1}, \dots, \alpha_{n_1-1})$ is witnessed by $\tau_{g_l(\bar{\alpha})}^{f_l(\bar{\alpha})-l-1}(\alpha_{l+1}, \dots, \alpha_{f_l(\bar{\alpha})-1})$ with $f_l(\bar{\alpha}), g_l(\bar{\alpha}) < n_1 - 1$.

(1) Note that $u(\bar{\alpha} \upharpoonright n) \cap (n_0 + 1) = u(\bar{\alpha})$ for all $n \geq n_1 - 1$ and hence for $n \geq n_1$,

$$u(\bar{\alpha} \upharpoonright n) \cap (n_0 + 1) = u(\bar{\alpha} \upharpoonright (n - 1)) \cap (n_0 + 1).$$

Consequently, for all $n \geq n_1$ we have $k_1(\bar{\alpha} \upharpoonright n) > n_0$. As we could have chosen n_0 arbitrarily large we may conclude that $\lim_{n \to \infty} k_1(\bar{\alpha} \upharpoonright n) = \infty$.

(2) Note that for all $n \geq n_1$,

either
$$k_0(\bar{\alpha} \upharpoonright n) = \max(u(\bar{\alpha}))$$
 or $k_0(\bar{\alpha} \upharpoonright n) > n_0$.

Hence, by the arbitrariness of n_0 , we get the first part of (2).

Let $l^* = \min(u(\bar{\alpha} \upharpoonright n_1) \setminus u(\bar{\alpha}))$ (note that $n_1 - 1 \in u(\bar{\alpha} \upharpoonright n_1) \setminus u(\bar{\alpha})$). Clearly $l^* > n_0$ and $\alpha_{l^*} \notin u(\bar{\alpha})$. Consider $n = f_{l^*}(\bar{\alpha})$ (so $l^* \leq n - 2$, $n_1 \leq n - 1$). Then $l^* \in u(\bar{\alpha} \upharpoonright (n - 1)) \setminus u(\bar{\alpha} \upharpoonright n)$. As

$$l^* \cap u(\bar{\alpha} \upharpoonright n_1) = l^* \cap u(\bar{\alpha} \upharpoonright n - 1) = u(\bar{\alpha})$$

(remember the choice of l^*) we conclude that

$$l^* = k_1(\bar{\alpha} \upharpoonright n)$$
 and $k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha}).$

Now, since n_0 was arbitrarily large, we find that for infinitely many n, $k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha})$.

(3) Suppose that $n \geq n_1$. Then we know that $k_1(\bar{\alpha} \upharpoonright n) > n_0$ and either $k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha})$ or $k_0(\bar{\alpha} \upharpoonright n) > n_0$ (see above). If the first possibility takes place then, as $n \geq n_1$, we may use $j = n_0 + 1$ to witness that $\mathbf{l}(\bar{\alpha} \upharpoonright n) > n_0$ (remember the choice of n_1). If $k_0(\bar{\alpha} \upharpoonright n) > n_0$ then clearly $\mathbf{l}(\bar{\alpha} \upharpoonright n) > n_0$. As n_0 could be arbitrarily large we are done.

(4) Suppose we are given $m_0 < \omega$. Take $m_1 > m_0$ such that for all $n \ge m_1$,

either
$$k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha})$$
 or $k_0(\bar{\alpha} \upharpoonright n) > m_0$

(possible by (2)) and then choose $m_2 > m_1$ such that $k_0(\bar{\alpha} \upharpoonright m_2) = \max u(\bar{\alpha})$ (by (2)). Due to (3) we find $m_3 > m_2$ such that for all $n \ge m_3$, $\mathbf{l}(\bar{\alpha} \upharpoonright n) > m_2$. Now suppose that $n \ge m_3$. If $k_0(\bar{\alpha} \upharpoonright n) = \max u(\bar{\alpha})$ then, as $\mathbf{l}(\bar{\alpha} \upharpoonright n) > m_2$, we get $\mathbf{m}(\bar{\alpha} \upharpoonright n) \ge m_2 > m_0$. Otherwise $k_0(\bar{\alpha} \upharpoonright n) > m_0$ (as $n > m_1$) and hence $\mathbf{m}(\bar{\alpha} \upharpoonright n) > m_0$. This shows that $\lim_{n \to \infty} \mathbf{m}(\bar{\alpha} \upharpoonright n) = \infty$. Now, immediately by the definition of \mathbf{k} and (3) above we conclude that $\lim_{n \to \infty} \mathbf{k}(\bar{\alpha} \upharpoonright n) = \infty$.

CLAIM 2.6.2. If
$$\bar{\alpha}^1, \bar{\alpha}^2 \in {}^{\omega}\lambda$$
 are such that $(\forall^{\infty}n)(\alpha_n^1 = \alpha_n^2)$ then

$$(\forall^{\infty} n)(\mathbf{l}(\bar{\alpha}^{1} \upharpoonright n) = \mathbf{l}(\bar{\alpha}^{2} \upharpoonright n) \& \mathbf{m}(\bar{\alpha}^{1} \upharpoonright n) = \mathbf{m}(\bar{\alpha}^{2} \upharpoonright n) \& \mathbf{k}(\bar{\alpha}^{1} \upharpoonright n) = \mathbf{k}(\bar{\alpha}^{2} \upharpoonright n)).$$

Proof. Let n_0 be greater than $\max(u(\bar{\alpha}^1) \cup u(\bar{\alpha}^2))$ and such that

$$\bar{\alpha}^1 \upharpoonright [n_0, \omega) = \bar{\alpha}^2 \upharpoonright [n_0, \omega).$$

For k = 1, 2, 3 define n_k by

$$n_{k+1} = \max\{f_n(\bar{\alpha}^i) + g_n(\bar{\alpha}^i) + 2 : n \in (n_k + 1) \setminus u(\bar{\alpha}^i), i < 2\}.$$

As in the proof of 2.6.1, for i = 1, 2 and j < 3 we have:

- $(\otimes^1) \quad (\forall n \ge n_{j+1})(k_0(\bar{\alpha}^i \upharpoonright n) = \max u(\bar{\alpha}^i) \text{ or } k_0(\bar{\alpha}^i \upharpoonright n) > n_j),$
- $(\otimes^2) \quad (\forall n \geq n_{j+1})(k_1(\bar{\alpha}^i \upharpoonright n) > n_j \& \mathbf{l}(\bar{\alpha}^i \upharpoonright n) > n_j \& \mathbf{m}(\bar{\alpha}^i \upharpoonright n) > n_j \& \mathbf{h}(\bar{\alpha}^i \upharpoonright n) > n_i).$
- $(\otimes^3) \qquad (\exists n' \in (n_1, n_2))(k_0(\bar{\alpha}^1 \upharpoonright n') = \max u(\bar{\alpha}^1) \& k_0(\bar{\alpha}^2 \upharpoonright n') = \max u(\bar{\alpha}^2))$

(for (\otimes^3) repeat arguments from 2.6.1(2) and use the fact that $\bar{\alpha}^1 \upharpoonright [n_0, \omega) = \bar{\alpha}^2 \upharpoonright [n_0, \omega)$). Clearly

$$(\otimes^4) \qquad (\forall n > n_0)(u(\bar{\alpha}^1 \upharpoonright n) \setminus n_0 = u(\bar{\alpha}^2 \upharpoonright n) \setminus n_0).$$

Hence, applying $(\otimes^4) + (\otimes^2)$ + the definition of $k_1(-)$, we conclude that

$$(\otimes^5) \qquad (\forall n \ge n_1)(k_1(\bar{\alpha}^1 \upharpoonright n) = k_1(\bar{\alpha}^2 \upharpoonright n)),$$

and then applying $(\otimes^4) + (\otimes^2) + (\otimes^5) +$ the definition of $k_0(-)$, we get

(
$$\otimes^6$$
) for all $n \geq n_1$: either $k_0(\bar{\alpha}^1 \upharpoonright n) = \max u(\bar{\alpha}^1)$ and $k_0(\bar{\alpha}^2 \upharpoonright n) = \max u(\bar{\alpha}^2)$, or $k_0(\bar{\alpha}^1 \upharpoonright n) = k_0(\bar{\alpha}^2 \upharpoonright n)$.

Since

$$(\forall n \geq n_0)(f_n(\bar{\alpha}^1) = f_n(\bar{\alpha}^2) \& g_n(\bar{\alpha}^1) = g_n(\bar{\alpha}^2))$$

and by $(\otimes^2)+(\otimes^5)$ +the choice of n_0 +the definition of $\mathbf{l}(-)$, we get (compare the proof of 2.6.1)

$$(\otimes^7) \qquad (\forall n \ge n_1)(\mathbf{l}(\bar{\alpha}^1 \upharpoonright n) = \mathbf{l}(\bar{\alpha}^2 \upharpoonright n))$$

and by $(\otimes^2) + (\otimes^7) + (\otimes^6) +$ the definition of $\mathbf{m}(-)$,

$$(\forall n \geq n_3)(\mathbf{m}(\bar{\alpha}^1 \upharpoonright n) = \mathbf{m}(\bar{\alpha}^2 \upharpoonright n) \geq n_2).$$

Moreover, now we easily get

$$(\forall n \geq n_3)(\mathbf{k}(\bar{\alpha}^1 \upharpoonright n) = \mathbf{k}(\bar{\alpha}^2 \upharpoonright n)). \blacksquare$$

For integers $n_0 \leq n_1 \leq n_2$ we define functions $F_{n_0,n_1,n_2}^0: {}^{n_2}\lambda \to \mathcal{H}(\aleph_0)$ by letting $F_{n_0,n_1,n_2}^0(\alpha_0,\ldots,\alpha_{n_2-1})$ (for $\langle \alpha_0,\ldots,\alpha_{n_2-1}\rangle \in {}^{n_2}\lambda$) be the sequence consisting of:

- (a) $\langle n_0, n_1, n_2 \rangle$,
- (b) the set T_{n_1,n_2} of all terms τ_l^n such that $n \leq n_2 n_1$ and either $l \leq n_2$ (we will call it the simple case) or τ_I^n is a composition of depth at most n_2 of such terms,
- (c) $\langle \eta_{\alpha} | n_2, n, l, \langle i_0, \dots, i_{n-1} \rangle \rangle$ for $n \leq n_2 n_1, i_0, \dots, i_{n-1} \in [n_1, n_2)$ and l such that $\tau_l^n \in T_{n_1,n_2}$ and $\alpha = \tau_l^n(\alpha_{i_0}, \dots, \alpha_{i_{n-1}}),$
- (d) $\langle n, l, \langle i_0, \dots, i_{n-1} \rangle, i \rangle$ for $n \leq n_2 n_1, i_0, \dots, i_{n-1} \in [n_1, n_2), i \in$ $[n_0, n_1)$ and l such that $\tau_l^n \in T_{n_1, n_2}$ and $\alpha_i = \tau_l^n(\alpha_{i_0}, \dots, \alpha_{i_{n-1}}),$
 - (e) equalities among appropriate terms, i.e. all tuples

$$\langle n', l', n'', l'', \langle i'_0, \dots, i'_{n'-1} \rangle, \langle i''_0, \dots, i'''_{n''-1} \rangle \rangle$$

such that $n_1 \leq i'_0 < \ldots < i'_{n'-1} < n_2, \ n_1 \leq i''_0 < \ldots < i''_{n''-1} < n_2, \ n', n'' \leq n_2 - n_1, \ l', l''$ are such that $\tau_{l'}^{n'}, \tau_{l''}^{n''} \in T_{n_1, n_2}$ and

$$\tau_{l'}^{n'}(\alpha_{i'_0},\ldots,\alpha_{i'_{n'-1}})=\tau_{l''}^{n''}(\alpha_{i''_0},\ldots,\alpha_{i''_{n''-1}}).$$

(Note that the value of $F^0_{n_0,n_1,n_2}(\bar{\alpha})$ does not depend on $\bar{\alpha} \upharpoonright n_0$.) Finally we define functions $F_n : {}^n \lambda \to \mathcal{H}(\aleph_0)$ (for $1 < n < \omega$) by:

if
$$\bar{\alpha} \in {}^{n}\lambda$$
 then $F_{n}(\bar{\alpha}) = F_{\mathbf{k}(\bar{\alpha}),\mathbf{l}(\bar{\alpha}),n}^{0}(\bar{\alpha})$.

As $\mathcal{H}(\aleph_0)$ is countable we may think that these functions are into ω . We are going to show that they witness $\mathcal{KL}(\lambda,\omega)$.

CLAIM 2.6.3. If
$$\bar{\alpha}^1, \bar{\alpha}^2 \in {}^{\omega}\lambda$$
 are such that $(\forall^{\infty}n)(\alpha_n^1 = \alpha_n^2)$ then

$$(\forall^{\infty} n)(F_n(\bar{\alpha}^1 \upharpoonright n) = F_n(\bar{\alpha}^2 \upharpoonright n)).$$

Proof. Take $m_0 < \omega$ such that for all $n \in [m_0, \omega)$ we have

$$\alpha_n^1 = \alpha_n^2$$
, $\mathbf{l}(\bar{\alpha}^1 \upharpoonright n) = \mathbf{l}(\bar{\alpha}^2 \upharpoonright n)$, $\mathbf{k}(\bar{\alpha}^1 \upharpoonright n) = \mathbf{k}(\bar{\alpha}^2 \upharpoonright n)$

(possible by 2.6.2). Let $m_1 > m_0$ be such that for all $n \ge m_1$,

$$\mathbf{k}(\bar{\alpha}^1 \upharpoonright n) = \mathbf{k}(\bar{\alpha}^2 \upharpoonright n) > m_0$$

(use 2.6.1). Then, for $n \geq m_1$, i = 1, 2 we have

$$F_n(\bar{\alpha}^i \upharpoonright n) = F^0_{\mathbf{k}(\bar{\alpha}^i \upharpoonright n), \mathbf{l}(\bar{\alpha}^i \upharpoonright n), n}(\bar{\alpha}^i \upharpoonright n) = F^0_{\mathbf{k}(\bar{\alpha}^1 \upharpoonright n), \mathbf{l}(\bar{\alpha}^1 \upharpoonright n), n}(\bar{\alpha}^i \upharpoonright n).$$

Since the value of $F_{n_0,n_1,n_2}^0(\bar{\beta})$ does not depend on $\bar{\beta} \upharpoonright n_0$ and the sequences $\bar{\alpha}^1 \upharpoonright n$, $\bar{\alpha}^2 \upharpoonright n$ agree on $[m_0,\omega)$, we get

$$F^{0}_{\mathbf{k}(\bar{\alpha}^{1} \upharpoonright n), \mathbf{l}(\bar{\alpha}^{1} \upharpoonright n), n}(\bar{\alpha}^{1} \upharpoonright n) = F^{0}_{\mathbf{k}(\bar{\alpha}^{1} \upharpoonright n), \mathbf{l}(\bar{\alpha}^{1} \upharpoonright n), n}(\bar{\alpha}^{2} \upharpoonright n) = F^{0}_{\mathbf{k}(\bar{\alpha}^{2} \upharpoonright n), \mathbf{l}(\bar{\alpha}^{2} \upharpoonright n), n}(\bar{\alpha}^{2} \upharpoonright n),$$

and hence

$$(\forall n \geq m_1)(F_n(\bar{\alpha}^1 \upharpoonright n) = F_n(\bar{\alpha}^2 \upharpoonright n)). \blacksquare$$

Claim 2.6.4. If $\bar{\alpha}^1, \bar{\alpha}^2 \in {}^{\omega}\lambda$ and $(\forall^{\infty}n)(F_n(\bar{\alpha}^1 \upharpoonright n) = F_n(\bar{\alpha}^2 \upharpoonright n))$ then $(\forall^{\infty}n)(\alpha_n^1 = \alpha_n^2)$.

Proof. Take $n_0 < \omega$ such that

$$u(\bar{\alpha}^1) \cup u(\bar{\alpha}^2) \subseteq n_0$$
 and $(\forall n \ge n_0)(F_n(\bar{\alpha}^1 \upharpoonright n) = F_n(\bar{\alpha}^2 \upharpoonright n)).$

Then for all $n \geq n_0$ we have (by clause (a) of the definition of F_{n_0,n_1,n_2}^0)

$$\mathbf{l}(\bar{\alpha}^1 \upharpoonright n) = \mathbf{l}(\bar{\alpha}^2 \upharpoonright n)$$
 and $\mathbf{k}(\bar{\alpha}^1 \upharpoonright n) = \mathbf{k}(\bar{\alpha}^2 \upharpoonright n)$.

Further, let $n_1 > n_0$ be such that for all $n \geq n_1$, $\mathbf{k}(\bar{\alpha}^1 \upharpoonright n) > n_0$ and $k_0(\bar{\alpha}^1 \upharpoonright n_1) = \max u(\bar{\alpha}^1)$ (exists by 2.6.1) and choose $n_2 > n_1$ such that $n \geq n_2$ implies $\mathbf{m}(\bar{\alpha}^1 \upharpoonright n) > n_2$.

We are going to show that $\alpha_n^1 = \alpha_n^2$ for all $n > n_1$. Assume not. Then we have $n > n_1$ with $\alpha_n^1 \neq \alpha_n^2$ and thus $\eta_{\alpha_n^1} \neq \eta_{\alpha_n^2}$. Take n' > n such that $\eta_{\alpha_n^1} \upharpoonright n' \neq \eta_{\alpha_n^2} \upharpoonright n'$. Applying 2.6.1(2) and (4) choose n'' > n' such that

$$\mathbf{m}(\bar{\alpha}^1 \upharpoonright n'') > n'$$
 and $k_0(\bar{\alpha}^1 \upharpoonright n'') = \max u(\bar{\alpha}^1)$.

Now define inductively: $m_0 = n''$, $m_{k+1} = \mathbf{m}(\bar{\alpha}^1 \mid m_k)$. Thus

$$n'' = m_0 > \mathbf{l}(\bar{\alpha}^1 \upharpoonright m_0) \ge m_1 > \mathbf{l}(\bar{\alpha}^1 \upharpoonright m_1) \ge m_2 > \dots$$

and (by induction on k)

$$m_k > \max u(\bar{\alpha}^1) \implies k_0(\bar{\alpha}^1 \upharpoonright m_k) = \max u(\bar{\alpha}^1)$$

(see the definition of **m**). Let k^* be the first such that $n \ge m_{k^*}$ (so $k^* \ge 2$, exists by the choice of n_1). Note that by the choice of n_1 above we necessarily have

$$m_{k^*} > \mathbf{l}(\bar{\alpha}^1 | m_{k^*}) = \mathbf{k}(\bar{\alpha}^1 | m_{k^*-1}) > n_0.$$

Hence for all $k < k^*$:

$$F_{m_k}(\bar{\alpha}^1 \upharpoonright m_k) = F_{m_k}(\bar{\alpha}^2 \upharpoonright m_k),$$

$$\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k+1}) = \mathbf{l}(\bar{\alpha}^2 \upharpoonright m_{k+1}) = \mathbf{k}(\bar{\alpha}^1 \upharpoonright m_k) = \mathbf{k}(\bar{\alpha}^2 \upharpoonright m_k).$$

By the definition of the functions $\mathbf{l}, \mathbf{m}, \mathbf{k}$ and the choice of m_0 (remember $k_0(\bar{\alpha}^1 \upharpoonright m_0) = \max u(\bar{\alpha}^1)$) we know that for each $i \in [\mathbf{k}(\bar{\alpha}^1 \upharpoonright m_k), \mathbf{l}(\bar{\alpha}^1 \upharpoonright m_k))$ and $k < k^*$, for some $\tau_l^m \in T_{\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_k), m_k}$ and $i_0, \ldots, i_{m-1} \in [\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_k), m_k)$ we have $\alpha_i^1 = \tau_l^m(\alpha_{i_0}^1, \ldots, \alpha_{i_{m-1}}^1)$. Moreover we may demand that τ_l^m is a composition of depth at most $\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_k) - i$ of simple case terms. Since

$$F^0_{\mathbf{k}(\bar{\alpha}^1 \upharpoonright m_k), \mathbf{l}(\bar{\alpha}^1 \upharpoonright m_k), m_k}(\bar{\alpha}^1 \upharpoonright m_k) = F^0_{\mathbf{k}(\bar{\alpha}^2 \upharpoonright m_k), \mathbf{l}(\bar{\alpha}^2 \upharpoonright m_k), m_k}(\bar{\alpha}^2 \upharpoonright m_k)$$

we conclude that (by clause (d) of the definition of the functions F_{n_0,n_1,n_2}^0)

$$\alpha_i^2 = \tau_l^m(\alpha_{i_0}^2, \dots, \alpha_{i_{m-1}}^2).$$

Now look at our n. If $\mathbf{l}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-1}) > n$ then $\mathbf{k}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-1}) \leq n < \mathbf{l}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-1})$ and thus we find $i_0, \ldots, i_{m-1} \in [\mathbf{l}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-1}), m_{k^*-1})$ and $\tau_l^m \in T_{\mathbf{l}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-1}), m_{k^*-1}}$ such that

$$\alpha_n^1 = \tau_l^m(\alpha_{i_0}^1, \dots, \alpha_{m-1}^1)$$
 and $\alpha_n^2 = \tau_l^m(\alpha_{i_0}^2, \dots, \alpha_{m-1}^2)$.

If $\mathbf{l}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-1}) \leq n$ then $n \in [\mathbf{k}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-2}), \mathbf{l}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-2}))$ (as $\mathbf{l}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-1})$) = $\mathbf{k}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-2})$ and $n < m_{k^*-1} \leq \mathbf{l}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-2})$). Hence, for some $i_0, \ldots, i_{m-1} \in [\mathbf{l}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-2}), m_{k^*-2})$ and $\tau_l^m \in T_{\mathbf{l}(\bar{\alpha}^1 \! \upharpoonright \! m_{k^*-2}), m_{k^*-2}}$, we have

$$\alpha_n^1 = \tau_l^m(\alpha_{i_0}^1, \dots, \alpha_{m-1}^1) \quad \text{and} \quad \alpha_n^2 = \tau_l^m(\alpha_{i_0}^2, \dots, \alpha_{m-1}^2).$$

In both cases we may additionally demand that the term τ_l^m is a composition of depth $\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-1}) - n$ (or $\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_{k^*-2}) - n$, respectively) of terms of the simple case. Now we proceed inductively (taking care of the depth of the terms involved) and we find a term $\tau \in T_{\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_0), m_0}$ (which is a composition of depth at most $\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_0) - n$ of terms of the simple case) and $i_0, \ldots, i_{m-1} \in [\mathbf{l}(\bar{\alpha}^1 \upharpoonright m_0), m_0)$ such that

$$\alpha_n^1 = \tau(\alpha_{i_0}^1, \dots, \alpha_{m-1}^1)$$
 and $\alpha_n^2 = \tau(\alpha_{i_0}^2, \dots, \alpha_{m-1}^2)$.

But now applying clause (c) of the definition of the functions F_{n_0,n_1,n_2}^0 we conclude that $\eta_{\alpha_n^1} \upharpoonright m_0 = \eta_{\alpha_n^2} \upharpoonright m_0$, contradicting the choice of n' and the fact that $m_0 > n'$.

The last two claims finish the proof of the theorem.

REMARK 2.7. If the model M has $\kappa < \lambda$ functions (so $\langle \tau_i^n(x_0, \dots, x_{n-1}) : i < \kappa \rangle$ lists the n-place terms) we can prove $\mathcal{KL}(\lambda, \kappa)$ and the proof is similar.

FINAL REMARKS 2.8. (1) Now we phrase exactly what is needed to carry out the proof of Theorem 1.1 for $\lambda > \kappa$. It is:

- (\boxtimes) for every model M with universe λ and Skolem functions and with countable vocabulary, we can find pairwise distinct $\alpha_{n,l} < \lambda$ (for $n < \omega$, $l < \omega$) such that
- (\otimes) if $m_0 < m_1 < \omega$ and $l_i' < l_i''$ for $i < m_0$ and $l_i < \omega$ for $i \in [m_0, m_1)$ and $k_0 < k_1 < k_2 < \omega$ then the models

$$(\operatorname{Sk}(\{\alpha_{i,l'_{i}},\alpha_{i,l''_{i}}:i < m_{0}\} \cup \{\alpha_{m_{0},k_{0}},\alpha_{m_{0},k_{1}}\} \cup \{\alpha_{i,l_{i}}:i \in (m_{0},m_{1})\}),$$

$$\alpha_{0,l'_{0}},\alpha_{0,l''_{0}},\alpha_{1,l'_{1}},\alpha_{1,l''_{1}},\ldots,\alpha_{m_{0}-1,l'_{m_{0}-1}},\alpha_{m_{0}-1,l''_{m_{0}-1}},\alpha_{m_{0},k_{0}},$$

$$\alpha_{m_{0},k_{1}},\alpha_{m_{0}+1,l_{m_{0}+1}},\ldots,\alpha_{m_{1}-1,l_{m_{1}-1}})$$

and

$$(\operatorname{Sk}(\{\alpha_{i,l'_{i}},\alpha_{i,l''_{i}}:i < m_{0}\} \cup \{\alpha_{m_{0},k_{0}},\alpha_{m_{0},k_{2}}\} \cup \{\alpha_{i,l_{i}}:i \in (m_{0},m_{1})\}),$$

$$\alpha_{0,l'_{0}},\alpha_{0,l''_{0}},\alpha_{1,l'_{1}},\alpha_{1,l''_{1}},\ldots,\alpha_{m_{0}-1,l'_{m_{0}-1}},\alpha_{m_{0}-1,l''_{m_{0}-1}},\alpha_{m_{0},k_{0}},$$

$$\alpha_{m_{0},k_{2}},\alpha_{m_{0}+1,l_{m_{0}+1}},\ldots,\alpha_{m_{1}-1,l_{m_{1}-1}})$$

are isomorphic and the isomorphism is the identity on their intersection and they have the same intersection with κ .

For more details and more related results we refer the reader to [Sh:F254].

- (2) Together with 1.5, 2.7 this gives a good bound on the consistency strength of $\neg \mathcal{KL}(\lambda, \kappa)$.
- (3) What if we ask $F_n: {}^n\lambda \to {}^{\omega>}\kappa$ such that $F_n(\eta) \leq F_{n+1}(\eta)$ and $\eta \in {}^{\omega}\lambda \Rightarrow F(\eta) = \bigcup F_n(\eta \upharpoonright n) \in {}^{\omega}\kappa$? No real change.

References

- [Ka90] S. Kalikow, Sequences of reals to sequences of zeros and ones, Proc. Amer. Math. Soc. 108 (1990), 833–837.
- [Ko84] P. Koepke, The consistency strength of the free-subset property for ω_{ω} , J. Symbolic Logic 49 (1984), 1198–1204.
- [Mi91] A. W. Miller, Arnie Miller's problem list, in: H. Judah (ed.), Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 645–654.
- [Sh 76] S. Shelah, Independence of strong partition relation for small cardinals, and the free-subset problem, J. Symbolic Logic 45 (1980), 505–509.
- [Sh 124] —, ℵ_ω may have a strong partition relation, Israel J. Math. 38 (1981), 283–288
- [Sh 110] —, Better quasi-orders for uncountable cardinals, ibid. 42 (1982), 177–226.
 - [Sh:b] —, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.
 - [Sh:g] —, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994.
- [Sh 481] —, Was Sierpiński right? III Can continuum-c.c. times c.c.c. be continuum-c.c.? Ann. Pure Appl. Logic 78 (1996), 259–269.
- [Sh:F254] —, More on Kalikow Property of pairs of cardinals.
- [Sh 513] —, PCF and infinite free subsets, Arch. Math. Logic, to appear.
- [Si70] J. Silver, A large cardinal in the constructible universe, Fund. Math. 69 (1970), 93–100.

Institute of Mathematics The Hebrew University of Jerusalem 91904 Jerusalem, Israel E-mail: shelah@math.huji.ac.il

 $\label{eq:continuous_problem} \begin{tabular}{ll} Department of Mathematics \\ Rutgers University \\ New Brunswick, NJ 08854, U.S.A. \\ URL: http://www.math.rutgers.edu/~shelah \\ \end{tabular}$

Received 2 September 1996; in revised form 9 August 1999