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Abstract. The Kalikow problem for a pair (A, k) of cardinal numbers, A > « (in
particular k = 2) is whether we can map the family of w-sequences from A to the family of
w-sequences from  in a very continuous manner. Namely, we demand that for n,v € ¥\
we have: 7, v are almost equal if and only if their images are.

We show consistency of the negative answer, e.g., for R, but we prove it for smaller
cardinals. We indicate a close connection with the free subset property and its variants.

0. Introduction. In the present paper we are interested in the following
property of pairs of cardinal numbers:

DEFINITION 0.1. Let A,k be cardinals. We say that the pair (A, k) has
the Kalikow property (and then we write KL(A, k)) if there is a sequence
(F), : n < w) of functions such that

F,:"A\—=r (for n <w)
and if F': ¥\ — “k is given by
(Vn € “A)(Vn € w)(F(n)(n) = Fn(nln))
then for every n,v € “A,
(V>n)(n(n) =v(n)) it (V*n)(F(n)(n) = F(v)(n)).
In particular we answer the following question of Kalikow:

KALIKOW PROBLEM 0.2. Is KCL(2%0,2) provable in ZFC?

The Kalikow property of pairs of cardinals was studied in [Ka90]. Several
results are known already. Let us mention some of them. First, one can
easily notice that

KL E) &N <AN&K >k = KL, K.
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Also (“transitivity”)
K:ﬁ()\z,)\l) & ICE()\l,)\U) = ICE()\Q,)\U)

and
KL K) = X< KN,

Kalikow proved that CH implies KL£(2%0,2) (in fact that KL(Xy,2) holds
true) and he conjectured that CH is equivalent to KL(2%0,2).

The question 0.2 is formulated in [Mi91, Problem 15.15, p. 653].

We shall prove that ICL(),2) is closely tied with some variants of the
free subset property (both positively and negatively). First we present an
answer to problem 0.2 proving the consistency of —~KCL(2%,2) in 1.1 (see 2.8
too). Later we discuss variants of the proof (concerning the cardinal and
the forcing). Then we deal with a positive answer, in particular L(X,,,2),

and we show that the negation of a relative of the free subset property for
A implies KL(A,2).
We thank the participants of the Jerusalem Logic Seminar 1994/95 and

particularly Andrzej Rostanowski for writing it up so nicely.

NoTATION. We will use the Greek letters k, A, x to denote (infinite)
cardinals and the letters a, (3, v, (, £ to denote ordinals. Sequences of
ordinals will be called &, 3, { with the usual convention that & = (o, -
n < lg(@)) etc. Sets of ordinals will be denoted by u, v, w (with possible
indexes).

The quantifiers (V°°n) and (3°°n) are abbreviations for “for all but
finitely many n € w” and “for infinitely many n € w”, respectively.

1. The negative result. For a cardinal x, the forcing notion C, for
adding x many Cohen reals consists of finite functions p such that for some
w e x|, n <w,

dom(p) ={({,k): (€ w & k <n} and rang(p) C2
ordered by inclusion.
THEOREM 1.1. Assume A — (w1 -w)5, 25 < X < x. Then
lFe, =KL\, k) and hence ke, ~KL(2%, 2).

Proof. Suppose that C,-names F,, (for n € w) and a condition p € C,,
are such that

plrc, “(Fyn:n <w) exemplifies LA, k)”.

For & € "\ choose a maximal antichain (pj; : I < w) of Cy deciding the
values of I, (@). Thus we have a sequence (75, : | <w) C & such that

pay lFe, Fn(a) =95,
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Let x* be a sufficiently large regular cardinal. Take an elementary submodel
M of (H(x*), €, <) such that

o [M||=x,x+1<C M,

o (ph il<wnew,a€™\), (g l<wnew,ae”\)eM.

By A — (w1 - w)s (see [Sh 481, Claim 1.3]), we find a set B C A of
indiscernibles in M over

kU{(pg Il <w:inew,a€\), (v l<w:n€waec™\),x,p}
and a system (N, : u € [B]<¥) of elementary submodels of M such that

(a) B is of order type w; - w and for u,v € [B]<%:

(b) k+1C Ny,

(c) x,p, <pg’l l<w,n<w,a€)), <72,l l<w,n<w,a€™N\) EN,,

(d) |[Ny| =k, N, N B = u,

(e) N,NN, = Nuﬁva

(f) |u| = |v| = N, = N,, and let 7, : N, — N, be this (unique)
isomorphism,

(g) Ty = idn,, Wu,v(”) = Uy Tug,uy © Tug,ug = Tug,ugs

(h) if ' C v, |v| = |u] and © = 7y, (V") then 7y o C Ty 0.
Note that if w C B is of order type w then we may define

N, = U {N, : v is a finite initial segment of u}.

Then the models N, (for u C B of order type < w) have the properties
(b)—(h) too.

Let (B¢ : ¢ < wi-w) be the increasing enumeration of B. For a set w C B
of order type < w let 3* be the increasing enumeration of u (so lg(3%) = |ul).
Let u* = {Bu,.n : n <w}. For k <w and a sequence £ = (&, : m < k) C wy
we define

ull] = {Buymten, i m <k}U{LBu,n:new\k}

Now, working in V&x, we say that a sequence §_ is k-strange if

(1) §_ is a sequence of countable ordinals greater than 0, lg(g_) =k <w,

(2) (Vm < w)(Fr(B*E Im) = Fuu (8" Im)).

Cram 1.1.1. In V&, if gk are k-strange sequences (for k < w) such
that (Vk < w)(EF < €1 then the sequence € := U, " is w-strange.

Proof. Should be clear (note that in this situation we have Bu@] Im =
B ). -

Cram 1.1.2. plkc, “there are no w-strange sequences”.
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Proof. Assume not. Then we find a name §_ = (§m : m < w) for an
w-sequence and a condition ¢ > p such that

g e, “(Ym < w)(0 < &y < wy & Frn (3 m) = Fiu (B 1m))”.
By the choice of p and F',,, we conclude that
q ke, “(vm)(B*El (m) = 5" (m))”,

which contradicts the definition of B“[g], (%", Definition 0.1 and the fact
that
qlFe, “(Vm<w)(0<&m <wi)”. =

By 1.1.1, 1.1.2, any inductive attempt to construct (in VEx) an w-strange
sequence § has to fail. Consequently, we find a condition p* > p, an integer

k < w and a sequence & = (¢ : I < k) such that
p* ke, “€ is k-strange but —(3¢ < wy)(£7(€) is (k + 1)-strange)”.
Then in particular
(&) p* ke, “(Vm < w)(Fm (B Im) = Fo (B Im))”.
[It may happen that k =0, i.e., £ = ().]

For § < wy let ug = u[¢(§)] and we = ug U (u* \ {w; - k}). Thus
wo = u[] Uu* and all wg have order type w and 7y, w,, is the identity on
N\ fwr-kté}- Let ¢ 1= p* [Ny, and g¢ = T, wy(q) € Nu, (s0 g0 = q). As
the isomorphism 7, w, is the identity on Ny, N Ny, = Nuygnw, (and by the
definition of Cohen forcing), we see that the conditions ¢, g¢ are compatible.
Moreover, as p* > p and p € Ny, we find that both ¢ and g¢ are stronger
than p. B
~ Now fix & € (0,w1) (e.g. & = 1) and look at the sequences "¢ and
B*". They are eventually equal and hence

p ke, “(Vm)(Em (B0 m) = Fn(5" Im))”.
So we find m* < w and a condition qéo > g¢,,q such that
@™ dy e, S(Ym = m)(F (30 Im) = Fr (5 [m))”

and (as we can increase g, )

(@69’m*) qg, decides the values of F,.(B%0m) and F,, (6" |m) for all
9eq 0
m < m*.
Note that the condition (®§Zm) means that there are NO m > m*, lo, [y
0

< w with 'ygh&or # Vjur 1,1, 8nd the three conditions ey pg‘ugo

m,lo Fm,lo

and pg@* —_ have a common upper bound in C,, (remember the choice of

N
the p2 ,’s and 72 ,’s). Similarly, the condition (@29’7” ) means there are
) k) £0
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NO m < m*, lp,l1 < w with either yghgo —_— # ng‘&o —_— and both qéo

and pgugo 1o’ and qéa and pg are compatible in C,, or 7%1* _— #*

m 0 Im,ly

’yg}ﬁ - and both qéo and pgu* mdo? and qéo and pg‘u* .ty Y€ compatible
in C,.
Consequently, the condition qg‘o = qéo eroUwgo has both properties

(®§ZO7”) and (@gg(’)m*) (and it is stronger than both ¢ and ge,).
Now, for 0 < § < w; let
qz = WwOUwg,’LUoUwgo (qz(o) S NwOUwé'

Then (for £ € (0,w1)) the condition ¢f is stronger than
both q= 7Tw0Uw57w0U1UgO (Q) and ge = Tronwg,wOUwgo (QEO)

and it has the properties (®§’Em*) and (@g;*m*). Moreover for all &;,&, the

conditions ¢ , ¢¢, are compatible. [Why? By the definition of Cohen forcing,
and TuwgUwe, woUwe, (qgl) = q;, (chasing arrows) and TwoUwe, woUwe, 15 the
identity on Nuguwe, N Nwguwe, = N(woUwe, ) (woUwe, ) (see clauses (e), (f),
(h) above).]

Cram 1.1.3. For each &1,&2 € (0,w1) the condition gf U g, forces in
Cy that

(Vm < w)(Fm (8" Im) = Fpp (82 Im)).
Proof. If m > m* then, by (®2£m*) and (®2§;m*) (passing through
F(B" Im)), we get
4, UGG, e, “Fm(B'sm) = Fp (G4 m)".
If m < m* then we use (@g;m) and (69%;”*) and the isomorphism: the

values assigned by ¢; , ¢;, to Fo (B4 'm) and F,,(3"¢2 [m) have to be equal
(remember x C Ny, so the isomorphism is the identity on k). m

Look at the conditions
91,62 *= qgl ersl U qZQ erﬁz € Nug, Uwe, -
It should be clear that for each &1,&2 € (0,w1),
G, &2 IFe, “(Vm < w)(Fn (8" Im) = Fip (82 Im))".
Now choose € € (0,w;) so large that
dom(p™) 1 (N \ Nug) =0
(possible as dom(p*) is finite, use (e)). Take any 0 < & < &3 < w; and put

* P—
q = TwoUwe,we, Uwe, (q51752)'
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(Note: Two,we, © MwoUwe,we, Uwe, A Mg we, S MuwgUuwe we, Uwe, .) By the
isomorphism we get
¢ Ik, “(Ym < w)(Fm(B" Im) = F (59 1m))".
Now look back:
e, = dg1 = TwoUwe, wolwe, (€0) = Tuwe, we, (de0)
= Twe, ,we, (ngo wo(Q)) = Twe, ,wo (9)
and hence
@, [ Nwe, = Tue, wo(q)

and thus

q" [N, > Twg ,we (qgl ergl) > q=p"[Nu,-
Consequently, by the choice of &, the conditions ¢* and p* are compatible
(remember the definition of g¢, ¢, and ¢*). Now use (X)) to conclude that

¢ Up” ke, “(Ym < ) (Fm (B Im) = Fun (B m) = Fpn (8" Im))",
which implies that ¢* Up* IF¢ “€7(¢) is (k+1)-strange”, a contradiction. m
REMARK 1.2. About the proof of 1.1:

(1) No harm is done by forgetting 0 and replacing it by &, .
(2) A small modification of the proof shows that in V&x: If F,, : "\ — &
(n € w) are such that

(Vn,v € “N)[(v*n)(n(n) = v(n)) = (V=n)(Fu(nin) = Fn(vin))]
then there are infinite sets X, C A (for n < w) such that

(Vn < w) (Vu,n eI1 Xl) (Fu(v) = Fu(n).
I<n

Say we shall have X,, = {y,,; : i < w}. Starting we have 7§,..., v, ...
In the proof at stage n we have determined v;; (I,7 < n) and p € G,
pE N{vz,i:l,i<w}u{vz,vz+1,-..}‘ For n = 0,1,2 as before. For n + 1 > 2 first
Yo,n»- -+ Yn—1,n are easy by transitivity of equalities. Then find v, o, 75,1 as
before, and then again duplicate.

(3) In the proof it is enough to use {fBun+i : 1 < w, I < w}. Hence,
by 1.2 of [Sh 481] it is enough to assume A — (w?)5¥. This condition is
compatible with V = L.

(4) We can use only A — (w?)5%.

DEFINITION 1.3. (1) For a sequence A = ()\, : n < w) of cardinals we
define the property (®)x:

(®)5  for every model M of a countable language with universe sup,,c,, An
and Skolem functions (for simplicity) there is a sequence (X, :
n < w) such that
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(a) X, € [M\]* (actually X,, € [\,]** suffices)
(b) for every n < w and a@ = (o : | € [n+ 1,w)) € [[;5n11 X1
letting (for £ € X,,) -

M = Sk( Uxiu{eu{a:len+ 1,w)}>
I<n

we have:

(D) the sequence (M : € € X,,) forms a A-system with heart
Ng and its elements are pairwise isomorphic over the heart

Ns.
(2) For a cardinal \ the condition (®)* is:

(®)*  there exists a sequence A = ()\, : n < w) such that >
and the condition (®)5 holds true.

=A

n<w A”

In [Sh 76] a condition (%), weaker than (®)*, was considered. Now,
[Sh 124] continues [Sh 76] to get stronger indiscernibility. But by the same
proof (using w-measurable) one can show the consistency of (®)%~ + GCH.

Note that to carry out the proof of 1.1 we need even less than (®)*: the
Ui<,, Xi (in (b) of 1.3) is much more than needed; it suffices to have 5°U 3!

where 8°, 8" € [],_,, Xi.
CONCLUSION 1.4. It is consistent that
2% =N,y and  \ SKLR,,R,) so —KL(2%,2).

n<w

REMARK 1.5. Koepke [Ko84] continues [Sh 76] to get equiconsistency.
His refinement of [Sh 76] (for the upper bound) works below too.

2. The positive result. For an algebra M on A and a set X C X\ the
closure of X under functions of M is denoted by cly/(X). Before proving
our result (2.6) we remind the reader of some definitions and propositions.

PROPOSITION 2.1. For an algebra M on X\ the following conditions are
equivalent:

(%)%,  for each sequence (o, : m € w) C X\ we have
(V°n)(a, € clpyr({ak i n < k < w})),
(%)y,  there is no sequence (A, :n € w) C [N]Y° such that
(Vn € w)(cly (Any1) & clu(4n)),
(F)3 (YA€ [A)(3B € [AP*)(VC € [B]™)(cly (B) = el (C)).

DEFINITION 2.2. We say that a cardinal A has the (¥ )-property for
(and then we write Pr* (), %)) if there is an algebra M on X with vocabulary
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of cardinality <  satisfying one (equivalently: all) of the conditions (%)%,
(1 < 3) of 2.1. If Kk = Ny we may omit it.

Remember

PROPOSITION 2.3. If Vo C Vy are universes of set theory and Vi |
—Pr¥()\) then Vo = =Pr¥(\).

Proof. By absoluteness of the existence of an w-branch of a tree. m

REMARK 2.4. The property —|Pr*()\) is a kind of large cardinal property.
It was clarified in L (remember that it is inherited from V to L) by Silver
[Si70] to be equiconsistent with “there is a beautiful cardinal” (terminol-
ogy of 2.3 of [Sh 110]), another partition property inherited by L. More in
[Sh 513].

PROPOSITION 2.5. For each n € w, Pr¥(R,,).

Proof. This was done in [Sh:b, Chapter XIII|, see [Sh:g, Chapter VII]
too, and probably earlier by Silver. However, for the sake of completeness
we will give the proof.

First note that clearly Pr*(Rg) and thus we have to deal with the case
when n > 0. Let f,g : N,, — XN, be two functions such that if m < n,
a € [N, N, 41) then f(a,-)a: « L. gla, )N, 1 Ny, % & are functions
inverse to each other.

Let M be the following algebra on N,,:

M = (Nna fagv m)mew-
We want to check the condition (J)},: assume that a sequence (A : k < w)
C [R,]M is such that for each k < w,

clar(Arg1) & clar(Ar).

For each m < n, the sequence (sup(clys(Ax) N Ryg1) © k < w) is non-
increasing and therefore it is eventually constant. Consequently, we find k*
such that

(Vm < n)(sup(clps (Ags41) N Ryp1) = sup(clas (Ags) N NRpp1)).

By the choice of (A : k < w) we have clpy(Ag+11) & clpr(Ag). Let

ap = min(clp (Age) \ clpr(Ag=41))-
As the model M contains individual constants m (for m € w) we know that
Ng C clps(0) and hence Ry < ag. Let m < n be such that N,,, < ag < Nyq1.
By the choice of k* we find 5 € clps(Ag+1) MRy 41 such that ag < [. Then
necessarily gy < 3. Look at f((,ap): we know that «ag, 5 € clps(Ag~) and
therefore f(3,a0) € clar(Ar+) N Ry, and f(B, @) < ap. The minimality of
ap implies that f(8, ag) € clps(Ag++1) and hence

ag = g(B, f(B,a0)) € cly (Ap=41),

a contradiction. m
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EXPLANATION. Better think of the proof below from the end. Let a =
(a1 n < w) €“A. So for some n(x), n(*x) <n <w= a, € cly(ag: 1 >n).
So for some m,, > n, {Qn)s -1} C cly(an, ..., am,,—1) and

(VI <n(x))(a € cly(ag : k>n(x)) = o €clylag:ken,my))).
Let w = {l < n(x): aq € clyr(aw, : n > n(x)). It is natural to aim at:
(x)  for n large enough (say n > My(y)), Fn({ay : [ < n)) depends just
on {a; : I € [n(x),n)orl € w} and (F,(@lm) : m > n) codes
al(w U [n(x),w)).
Of course, we are given an n and we do not know how to compute the real

n(x), but we can approximate. Then we look at a late enough end segment
where we compute down.

THEOREM 2.6. Assume that A\ < 2% is such that Pr*(\) holds. Then
KL\, w) (and hence KL(A,2)).

Proof. We have to construct functions F}, : " A —w witnessing L(\, w).
For this we will introduce functions k and 1 such that for & € "\ the value
of k(a) will say which initial segment of & will be irrelevant for F, (&)
and 1(@) will be such that (under certain circumstances) elements «; (for
k(a) <i < 1l(a)) will be encoded by («; : j € [I(@),n)).

Fix a sequence (1, : @ < \) C “2 with no repetitions.

Let M be an algebra on A such that (%), holds true. We may assume
that there are no individual constants in M (so clys(0) = 0).

Let (7*(xo,...,Zn—1) : | < w) list all n-place terms of the language of
the algebra M (and 74 (z) is ) when 0 < n < w. For @ € “Z\ (with «; the
jth element in @) let

w(@) = {l <lg(@) : oy & cly(@f(l,1g(a)))} U {0}
and for [ € u(@), | <lg(a) let
filad) =min{j : o € clp(af(l, 7))},
g(@) = minfi : oy = 7"V @l(, fi(a))))-
For a € "\ (1 <n < w) put
ki(a) = min((u(al(n — 1)) \ u(@)) U {n —1}),
ko(a) = max(u(a) Nki(@)).
Note that if (n > 1 and) @ € "\ then n — 1 € u(@) (as cly () = 0) and

k1(a) > 0 (as always 0 € u(3)) and ko (@) is well defined (as 0 € u(a)Nk; (@)
and ko(a) <ki(a)<n. Moreover, for all I € (ko(@), k1(a)) we have a; & u(@)
by the choice of ko(@), hence a; & u(af(n — 1)) by the choice of k(@) and

thus a; € clps(@](l,n —1)). Now, for & € “” ), lg(a) > 1 we define
(@) = max{j < k1(a) : j > ko(@) = (Vi € (ko(a),))(g:(@) <lg(a))},
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m(a) = max{j <1(a) : j > max{1, ko(a)} = ko(alj) = ko(@)},
k(a)=1(a/m(a)) (if m(a) <1 then put k(a) = —1).
Clearly k(a) < m(a) < l(a) < k(@) < lg(a).
CLAIM 2.6.1. For each & € “\, the set u(a) is finite and:
(1) The sequence (ki(a[n):n < w) diverges to oo.
(2) The sequence (ko(@ln) :n < w & ko(afn) # maxu(d)), if infinite,
diverges to co. There are infinitely many n < w with ko(@[n) = maxu(a@).
(3) The sequence (1(a[n) : n < w) diverges to co.
(4) The sequences (m(afn) :n < w) and (k(an) : n < w) diverge to co.
Proof. Let @ = (o, : n < w) € “A. By the property (%)4, we find
n* < w such that u(@) C n*. Fix ny > n* and define
ny = max{f,(&) + gn(@) +2:n € (no+1) \ u(a)}
(so as clp(0) = @ we have ny > f,,(@)+2 > ng+3 and for I € (no+1)\u(a),
ap € cly(apg1,-..,an,—1) is witnessed by Tfll((s)) l_l(O[lJr]_,...,O[fl(&)_l)
with fi(a), gi(@) <ni —1).
(1) Note that w(an) N (ng + 1) = u(@) for all n > ny; — 1 and hence for
n > ng,
u(aln) N (no+ 1) = u(af(n — 1)) N (ng + 1).
Consequently, for all n > n; we have kj(@[n) > ng. As we could have
chosen ng arbitrarily large we may conclude that lim,, . k1 (&[n) = oco.
(2) Note that for all n > nq,
either ko(aln) = max(u(a)) or ko(aln) > ng.
Hence, by the arbitrariness of ng, we get the first part of (2).
Let I* = min(u(a@[nq)\u(@)) (note that ny —1 € u(afng)\u(a@)). Clearly
I* > ng and ag« € u(@). Consider n = fi=(@) (sol* <n—2,n <n-—1).
Then I* € u(af(n —1)) \ u(afn). As
FNu(alng) = Nu(@in—1) = u(a)
(remember the choice of I*) we conclude that
I =ki(aln) and ko(aln) = maxu(a).
Now, since ng was arbitrarily large, we find that for infinitely many n,
ko(aln) = max u(a).
(3) Suppose that n > ny. Then we know that ki(@[n) > ng and either
ko(aln) = maxu(a) or ko(a[n) > ng (see above). If the first possibility
takes place then, as n > ny, we may use j = ng+ 1 to witness that l(a[n) >

no (remember the choice of ny). If ko(a[n) > ng then clearly 1(a[n) > no.
As ng could be arbitrarily large we are done.
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(4) Suppose we are given my < w. Take m; > myg such that for all

n = mi,
either ko(an) = maxu(a) or ko(aln) > mg

(possible by (2)) and then choose mg > m; such that ko(&[mse) = maxu(a@)
(by (2)). Due to (3) we find mg > ms such that for all n > mg, 1(a[n) > mo.
Now suppose that n > mg. If ko(@[n) = maxu(@) then, as 1(a[n) > mq, we
get m(afn) > mq > mg. Otherwise ko(a[n) > mg (as n > mq) and hence
m(aln) > mg. This shows that lim,,_,.o m(a[n) = co. Now, immediately
by the definition of k and (3) above we conclude that lim,, o, k(@[n) = co. =

Cramm 2.6.2. If al,a® € “X are such that (V*°n)(al = a2) then
(+°n)(1(a In) = 1(a*n) & m(a'[n) = m(a1n) & k(@' In) = k(@2 ]n)).
Proof. Let ng be greater than max(u(a') Uu(a?)) and such that
a'[ng,w) = a*[[ng, w).
For k = 1,2, 3 define ni by
Npp1 = max{ f,(&") + g (@) +2:n € (ngp + 1) \ u(@"), i < 2}.
As in the proof of 2.6.1, for i = 1,2 and j < 3 we have:
(@Y (Vn > nji1)(ko(a’In) = maxu(al) or ko(atln) > n;),
(®2*)  (Vn > njp)(ki(@n) > n; & 1(@'n) > n; & m(a‘ln) > n; &
h(a'n) > ny),
(®@3%) (30 € (n1,n2))(ko(a'[n') = maxu(al) & ko(a?[n') = maxu(a?))

(for (®3) repeat arguments from 2.6.1(2) and use the fact that a'|[ng,w) =
a?|[ng,w)). Clearly

(@1 (Yn > no)(u(@tn) \ no = u(@®n) \ no).
Hence, applying (®%) 4+ (®2) + the definition of k;(—), we conclude that
(®°)  (Vnzn1)(ki(@'[n) = k(6% n)),
and then applying (®%) + (®2) + (®°) + the definition of ko(—), we get
(®%)  for all n > nqy: either ko(a'n) = maxu(al) and ko(a?|n) =
max u(a?), or ko(al|n) = ko(a?n).

Since

(v > no)(fu(@') = fu(@?) & gn(a') = gn(a?))
and by (®2)+(®°)+the choice of ng+the definition of 1(—),
the proof of 2.6.1)

(®") (Vn = ni)((a' [n) = 1(a®[n))
and by (®2) + (®7) + (®°) + the definition of m(-),
(Vn > ns)(m(a' [n) = m(a®n) > ny).

we get (compare
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Moreover, now we easily get

(Yn > n3z)(k(a'n) = k(a*[n)). =

For integers ng < ny < ny we define functions F) "X — H(Rg)
by letting FY .. (ao,... an,—1) (for {(ao,...,an,—1) € ")) be the se-

quence consisting of:

(a) <n07 ny, n2>7

(b) the set T}, », of all terms 7 such that n < ny —n; and either [ < ny
(we will call it the simple case) or 7" is a composition of depth at most ng
of such terms,

(c) (NaTna,n,l, (ig, ..., in—1)) forn < ng—ny,ig,...,in—1 € [n1,n2) and
I such that 7" € T}, p, and o = 7" (g, - - -, 04,4 ),
(d) <7’L,l, <i0,...,in_1>,i> for n < ng — N1y 10y---,0lp—1 € [nl,nz), 1 €
[no,n1) and [ such that 7* € T, », and o; = 7" (g, - .., 4,y ),
(e) equalities among appropriate terms, i.e. all tuples
1 1 i) i)
such that ny < i < ... < i, 1 < mn2, ny < i < ... < il ;1 < na,

! 1
n',n"” <ng —mnq, I',1"” are such that 7} , 7)), €T}, n, and
’ 1
n _.n
(g ,ai;/_l) =1 (s - ’O‘iif//_l)'

(Note that the value of F? (&) does not depend on a[nyg.)

no,n1,n2

Finally we define functions F), : "X\ — H(Ry) (for 1 < n < w) by:
if @ €™\ then F,(a) = Fy 4 1ia)n (@)

As H(Rp) is countable we may think that these functions are into w. We
are going to show that they witness KL(\, w).

Cramm 2.6.3. If at,a? € “X are such that (V*°n)(a) = a2) then

(V°n)(Fy(a'In) = Fp(a®In)).
Proof. Take my < w such that for all n € [mg,w) we have
al =a?, 1atn) =1@a%m), k(a'in) =k(a@*In)
(possible by 2.6.2). Let my > mg be such that for all n > my,
k(a'n) = k(a®[n) > mg
(use 2.6.1). Then, for n > my, i = 1,2 we have
Fo(@' 1) = Fai 1t pnyon (@ T1) = Bt 1) 1 pr),n (@7 112).

Since the value of F) . (3) does not depend on 3Ing and the sequences
~1

alln, a?In agree on [mg,w), we get

Bt tmyaat tn)n (@ 11) = Fat 1 16 1y (@7 17) = i 52 1) 132 1y 0 (@2 112),
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and hence
(Yn > mi)(Fp(a'n) = F,(@%n)). =

CLAIM 2.6.4. If at,a? € “X and (V*°n)(F,(atIn) = F,(a?[n)) then
(vVoon) (o, = 7).

Proof. Take ng < w such that

w(@)Uu(@®) Cng and (Vn > ng)(F,(a'n) = F,(a*n)).
Then for all n > ng we have (by clause (a) of the definition of F)) , ...}
1(a'[n) =1(a*n) and k(a'ln) =k(a®n).

Further, let n; > ng be such that for all n > ny, k(a'ln) > no and
ko(allny) = maxu(al) (exists by 2.6.1) and choose ny > ny such that
n > no implies m(atn) > no.
We are going to show that al = a2 for all n > ny. Assume not. Then
we have n > nl with o} # o? and thus 7,1 # 742 . Take n’ > n such that
at [ # naz [0 Applymg 2. 6 1(2) and (4 ) choose n" > n’ such that

m(a'[n”) >n' and ko(a'ln") = maxu(a').
Now define inductively: mg = n”, mp 1 = m(at|my). Thus
n =mgy > (@' mo) >my > 1@t my) >mo > ...
and (by induction on k)
myp > maxu(a') = ko(a'lms) = maxu(al)
(see the definition of m). Let k* be the first such that n > my« (so k* > 2,
exists by the choice of ny). Note that by the choice of n; above we necessarily
have
mye > 1@ fmy-) = k(@ [mg-_1) > ng.
Hence for all k < k*:
ka (071 rmk) = ka (dz fmk),
@t fmps1) = Ua® [myr) = k(at [my) = k(a@?[my,).
By the definition of the functions 1, m,k and the choice of mgy (remember
ko(atImg) = maxu(al)) we know that for each i € [k(a [mk) 1(attmy))

and k < k*, for some 77" € Tya1 1my),m,, and g, ..., im—1 € [(a Limg), my)

we have o} = 7/"(aj, ..., 1) Moreover we may demand that 7/ is a

composition of depth at most 1(a![ms) — i of simple case terms. Since

ot ) (@t ) (O 170) = B2 1) 1062 ) o (O 17708)

we conclude that (by clause (d) of the definition of the functions Fpp ,, )
of =1l .l ).
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Now look at our n. If 1(a'|mg-_1) > n then k(a'lmu-_1) < n <
1(a! Imy=_1) and thus we find ig, . . ., im—1 € [I(@' [mg=_1), mg+_1) and 7™ €
Ti(at tmge _y),mye_, Such that

oy =1"(0g,, .. am,_y) and ol =70, ... a0 ).
If 1(a! [my«—1) <n then ne k(a' [mk* 2), 1(at [mp-_2)) (as L@t [my—_1)
= k(a'mp_2) and n <myp«_1 <1(a@'[my-_2)). Hence, for some ig, ..., %m_1
S [1(641 fmk*,g),mk*,g) and Tlm S Tl(filfmk*72)7mk*727 we have
04711 = Tlm(azlo, .. >04}n71) and afl = Tlm(afo, .. ,ozf,%l).

In both cases we may additionally demand that the term 7™ is a compo-
sition of depth (& [my«_1) —n (or 1(@! [my_o) —n, respectively) of terms
of the simple case. Now we proceed inductively (taking care of the depth of
the terms involved) and we ﬁnd a term 7 € Tya1 pmg),m, (Which is a com-

position of depth at most 1(a![mg) — n of terms of the simple case) and
iy .-y im—1 € [I(@']mg), mo) such that

al = T(allo, covap_q) and  af =T(0d, ... a0 1)
But now applying clause ( ) of the definition of the functions F . . we

conclude that 741 [mo = 142 [Mo, contradicting the choice of n’ and the fact
that mg >n'.

The last two claims finish the proof of the theorem. m

REMARK 2.7. If the model M has k < A functions (so (7" (zo,...,Tn-1) :
i < k) lists the n-place terms) we can prove KL(A, k) and the proof is similar.

FINAL REMARKS 2.8. (1) Now we phrase exactly what is needed to carry
out the proof of Theorem 1.1 for A\ > x. It is:

(X)  for every model M with universe A and Skolem functions and with
countable vocabulary, we can find pairwise distinct ay,; < A (for
n < w, | <w) such that

(®) ifmog<my <wandl] <l fori<mgandl; <w forie [mg,my)
and kg < k1 < ko < w then the models

(Sk({ai’l;,ai,l;r 21 < mo FU{ Qg ko s Wme ey JU{ i, 20 € (Mo, ma)}),

Q0,15 Q0,1 > L1 ALY -+ 5 Omo—1,17, 1 Xmo—1,177, > Ymo ko>
amo,klyamo+1,lm0+17 R 7am1_17lm1—1)

and

(Sk({ai’l;,ai,l;f 21 < mo FU{ Qg ko s Ome ks fU{ i, 27 € (Mo, ma)}),
Q0,15 Q0,1 > L1 ALY - -5 Omo—1,17, 1 Xmo—1,177, > Ymo ko>

Qmo,kas Omo+1lng410 - - - 7am1—1,lm1_1)
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are isomorphic and the isomorphism is the identity on their intersec-
tion and they have the same intersection with k.

For more details and more related results we refer the reader to [Sh:F254].
(2) Together with 1.5, 2.7 this gives a good bound on the consistency
strength of =ICL(A, k).
(3) What if we ask F,, : "\ — “7k such that F,(n) < F,11(n) and
ne“N=F(n)=UF.(nn) € “k? No real change.
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