On a problem of Steve Kalikow

by
Saharon Shelah (Jerusalem and New Brunswick, NJ)

Abstract. The Kalikow problem for a pair (λ, κ) of cardinal numbers, $\lambda>\kappa$ (in particular $\kappa=2$) is whether we can map the family of ω-sequences from λ to the family of ω-sequences from κ in a very continuous manner. Namely, we demand that for $\eta, \nu \in{ }^{\omega} \lambda$ we have: η, ν are almost equal if and only if their images are.

We show consistency of the negative answer, e.g., for \aleph_{ω} but we prove it for smaller cardinals. We indicate a close connection with the free subset property and its variants.
0. Introduction. In the present paper we are interested in the following property of pairs of cardinal numbers:

Definition 0.1. Let λ, κ be cardinals. We say that the pair (λ, κ) has the Kalikow property (and then we write $\mathcal{K} \mathcal{L}(\lambda, \kappa)$) if there is a sequence $\left\langle F_{n}: n<\omega\right\rangle$ of functions such that

$$
F_{n}:{ }^{n} \lambda \rightarrow \kappa \quad(\text { for } n<\omega)
$$

and if $F:{ }^{\omega} \lambda \rightarrow{ }^{\omega} \kappa$ is given by

$$
\left(\forall \eta \in^{\omega} \lambda\right)(\forall n \in \omega)\left(F(\eta)(n)=F_{n}(\eta \upharpoonright n)\right)
$$

then for every $\eta, \nu \in{ }^{\omega} \lambda$,

$$
\left(\forall^{\infty} n\right)(\eta(n)=\nu(n)) \quad \text { iff } \quad\left(\forall^{\infty} n\right)(F(\eta)(n)=F(\nu)(n)) .
$$

In particular we answer the following question of Kalikow:
Kalikow Problem 0.2. Is $\mathcal{K} \mathcal{L}\left(2^{\aleph_{0}}, 2\right)$ provable in ZFC?
The Kalikow property of pairs of cardinals was studied in [Ka90]. Several results are known already. Let us mention some of them. First, one can easily notice that

$$
\mathcal{K} \mathcal{L}(\lambda, \kappa) \& \lambda^{\prime} \leq \lambda \& \kappa^{\prime} \geq \kappa \Rightarrow \mathcal{K} \mathcal{L}\left(\lambda^{\prime}, \kappa^{\prime}\right)
$$

[^0]Also ("transitivity")

$$
\mathcal{K} \mathcal{L}\left(\lambda_{2}, \lambda_{1}\right) \& \mathcal{K} \mathcal{L}\left(\lambda_{1}, \lambda_{0}\right) \Rightarrow \mathcal{K} \mathcal{L}\left(\lambda_{2}, \lambda_{0}\right)
$$

and

$$
\mathcal{K} \mathcal{L}(\lambda, \kappa) \Rightarrow \lambda \leq \kappa^{\aleph_{0}}
$$

Kalikow proved that CH implies $\mathcal{K} \mathcal{L}\left(2^{\aleph_{0}}, 2\right)$ (in fact that $\mathcal{K} \mathcal{L}\left(\aleph_{1}, 2\right)$ holds true) and he conjectured that CH is equivalent to $\mathcal{K} \mathcal{L}\left(2^{\aleph_{0}}, 2\right)$.

The question 0.2 is formulated in [Mi91, Problem 15.15, p. 653].
We shall prove that $\operatorname{K} \mathcal{L}(\lambda, 2)$ is closely tied with some variants of the free subset property (both positively and negatively). First we present an answer to problem 0.2 proving the consistency of $\neg \mathcal{K} \mathcal{L}\left(2^{\aleph_{0}}, 2\right)$ in 1.1 (see 2.8 too). Later we discuss variants of the proof (concerning the cardinal and the forcing). Then we deal with a positive answer, in particular $\mathcal{K} \mathcal{L}\left(\aleph_{n}, 2\right)$, and we show that the negation of a relative of the free subset property for λ implies $\mathcal{K} \mathcal{L}(\lambda, 2)$.

We thank the participants of the Jerusalem Logic Seminar 1994/95 and particularly Andrzej Rosłanowski for writing it up so nicely.

Notation. We will use the Greek letters κ, λ, χ to denote (infinite) cardinals and the letters $\alpha, \beta, \gamma, \zeta, \xi$ to denote ordinals. Sequences of ordinals will be called $\bar{\alpha}, \bar{\beta}, \bar{\zeta}$ with the usual convention that $\bar{\alpha}=\left\langle\alpha_{n}\right.$: $n<\lg (\bar{\alpha})\rangle$ etc. Sets of ordinals will be denoted by u, v, w (with possible indexes).

The quantifiers $\left(\forall^{\infty} n\right)$ and $\left(\exists^{\infty} n\right)$ are abbreviations for "for all but finitely many $n \in \omega$ " and "for infinitely many $n \in \omega$ ", respectively.

1. The negative result. For a cardinal χ, the forcing notion \mathbb{C}_{χ} for adding χ many Cohen reals consists of finite functions p such that for some $w \in[\chi]^{<\omega}, n<\omega$,

$$
\operatorname{dom}(p)=\{(\zeta, k): \zeta \in w \& k<n\} \quad \text { and } \quad \operatorname{rang}(p) \subseteq 2
$$

ordered by inclusion.
Theorem 1.1. Assume $\lambda \rightarrow\left(\omega_{1} \cdot \omega\right)_{2^{\kappa}}^{<\omega}, 2^{\kappa}<\lambda \leq \chi$. Then

$$
\Vdash_{\mathbb{C}_{\chi}} \neg \mathcal{K} \mathcal{L}(\lambda, \kappa) \quad \text { and hence } \quad \Vdash_{\mathbb{C}_{\chi}} \neg \mathcal{K} \mathcal{L}\left(2^{\aleph_{0}}, 2\right)
$$

Proof. Suppose that \mathbb{C}_{χ}-names $\underset{\sim}{F}{ }_{n}($ for $n \in \omega)$ and a condition $p \in \mathbb{C}_{\chi}$ are such that

$$
p \Vdash_{\mathbb{C}_{\chi}} "\left\langle\underset{\sim}{F}{ }_{n}: n<\omega\right\rangle \text { exemplifies } \mathcal{K} \mathcal{L}(\lambda, \kappa) " .
$$

For $\bar{\alpha} \in{ }^{n} \lambda$ choose a maximal antichain $\left\langle p_{\bar{\alpha}, l}^{n}: l<\omega\right\rangle$ of \mathbb{C}_{χ} deciding the values of $\underset{\sim}{F} n_{n}(\bar{\alpha})$. Thus we have a sequence $\left\langle\gamma_{\bar{\alpha}, l}^{n}: l\langle\omega\rangle \subseteq \kappa\right.$ such that

$$
p_{\bar{\alpha}, l}^{n} \Vdash_{\mathbb{C}_{\chi}} \underset{\sim}{F}{ }_{n}(\bar{\alpha})=\gamma_{\bar{\alpha}, l}^{n} .
$$

Let χ^{*} be a sufficiently large regular cardinal. Take an elementary submodel M of $\left(\mathcal{H}\left(\chi^{*}\right), \in,<_{\chi^{*}}^{*}\right)$ such that

- $\|M\|=\chi, \chi+1 \subseteq M$,
- $\left\langle p_{\bar{\alpha}, l}^{n}: l<\omega, n \in \omega, \bar{\alpha} \in{ }^{n} \lambda\right\rangle,\left\langle\gamma_{\bar{\alpha}, l}^{n}: l<\omega, n \in \omega, \bar{\alpha} \in{ }^{n} \lambda\right\rangle \in M$.

By $\lambda \rightarrow\left(\omega_{1} \cdot \omega\right)_{2^{\kappa}}^{<\omega}$ (see [Sh 481, Claim 1.3]), we find a set $B \subseteq \lambda$ of indiscernibles in M over

$$
\kappa \cup\left\{\left\langle p_{\bar{\alpha}, l}^{n}: l<\omega: n \in \omega, \bar{\alpha} \in{ }^{n} \lambda\right\rangle,\left\langle\gamma_{\bar{\alpha}, l}^{n}: l<\omega: n \in \omega, \bar{\alpha} \in{ }^{n} \lambda\right\rangle, \chi, p\right\}
$$

and a system $\left\langle N_{u}: u \in[B]^{<\omega}\right\rangle$ of elementary submodels of M such that
(a) B is of order type $\omega_{1} \cdot \omega$ and for $u, v \in[B]^{<\omega}$:
(b) $\kappa+1 \subseteq N_{u}$,
(c) $\chi, p,\left\langle p_{\bar{\alpha}, l}^{n}: l<\omega, n<\omega, \bar{\alpha} \in{ }^{n} \lambda\right\rangle,\left\langle\gamma_{\bar{\alpha}, l}^{n}: l<\omega, n<\omega, \bar{\alpha} \in{ }^{n} \lambda\right\rangle \in N_{u}$,
(d) $\left|N_{u}\right|=\kappa, N_{u} \cap B=u$,
(e) $N_{u} \cap N_{v}=N_{u \cap v}$,
(f) $|u|=|v| \Rightarrow N_{u} \cong N_{v}$, and let $\pi_{u, v}: N_{v} \rightarrow N_{u}$ be this (unique) isomorphism,
(g) $\pi_{v, v}=\operatorname{id}_{N_{v}}, \pi_{u, v}(v)=u, \pi_{u_{0}, u_{1}} \circ \pi_{u_{1}, u_{2}}=\pi_{u_{0}, u_{2}}$,
(h) if $v^{\prime} \subseteq v,|v|=|u|$ and $u^{\prime}=\pi_{u, v}\left(v^{\prime}\right)$ then $\pi_{u^{\prime}, v^{\prime}} \subseteq \pi_{u, v}$.

Note that if $u \subseteq B$ is of order type ω then we may define

$$
N_{u}=\bigcup\left\{N_{v}: v \text { is a finite initial segment of } u\right\} .
$$

Then the models N_{u} (for $u \subseteq B$ of order type $\leq \omega$) have the properties (b) $-(\mathrm{h})$ too.

Let $\left\langle\beta_{\zeta}: \zeta<\omega_{1} \cdot \omega\right\rangle$ be the increasing enumeration of B. For a set $u \subseteq B$ of order type $\leq \omega$ let $\bar{\beta}^{u}$ be the increasing enumeration of $u\left(\right.$ so $\left.\lg \left(\bar{\beta}^{u}\right)=|u|\right)$. Let $u^{*}=\left\{\beta_{\omega_{1} \cdot n}: n<\omega\right\}$. For $k \leq \omega$ and a sequence $\bar{\xi}=\left\langle\xi_{m}: m<k\right\rangle \subseteq \omega_{1}$ we define

$$
u[\bar{\xi}]=\left\{\beta_{\omega_{1} \cdot m+\xi_{m}}: m<k\right\} \cup\left\{\beta_{\omega_{1} \cdot n}: n \in \omega \backslash k\right\} .
$$

Now, working in $\mathbf{V}^{\mathbb{C}_{\chi}}$, we say that a sequence $\bar{\xi}$ is k-strange if
(1) $\bar{\xi}$ is a sequence of countable ordinals greater than $0, \lg (\underset{\sim}{\xi})=k \leq \omega$,
(2) $(\forall m<\omega)\left(\underset{\sim}{F} m\left(\bar{\beta}^{u[\bar{\xi}]} \upharpoonright m\right)=\underset{\sim}{F} m\left(\bar{\beta}^{u^{*}} \upharpoonright m\right)\right)$.

Claim 1.1.1. In $\mathbf{V}^{\mathbb{C}_{x}}$, if $\bar{\xi}^{k}$ are k-strange sequences (for $k<\omega$) such that $(\forall k<\omega)\left(\overline{\mathcal{\xi}}^{k} \triangleleft \bar{\xi}^{k+1}\right)$ then the sequence $\bar{\sim}:=\bigcup_{k<\omega} \bar{\xi}_{\sim}^{k}$ is ω-strange.

Proof. Should be clear (note that in this situation we have $\bar{\beta}^{u[\bar{\xi}]} \upharpoonright m=$ $\left.\bar{\beta}^{u\left[\bar{\xi}^{m}\right]} \upharpoonright m\right)$.

Claim 1.1.2. $p \Vdash_{\mathbb{C}_{\chi}}$ "there are no ω-strange sequences".

Proof. Assume not. Then we find a name $\underset{\sim}{\bar{\xi}}=\left\langle{\underset{\sim}{m}}_{m}: m<\omega\right\rangle$ for an ω-sequence and a condition $q \geq p$ such that

$$
q \Vdash_{\mathbb{C}_{x}} "(\forall m<\omega)\left(0<\xi_{m}<\omega_{1} \& \underset{\sim}{F} m\left(\bar{\beta}^{u[\bar{\xi}]} \upharpoonright m\right)=\underset{\sim}{F}{ }_{m}\left(\bar{\beta}^{u^{*}} \upharpoonright m\right)\right) " .
$$

By the choice of p and $\underset{\sim}{F}{ }_{m}$ we conclude that

$$
q \Vdash_{\mathbb{C}_{\chi}} "\left(\forall^{\infty} m\right)\left(\bar{\beta}^{u[\bar{\xi}]}(m)=\bar{\beta}^{u^{*}}(m)\right) ",
$$

which contradicts the definition of $\bar{\beta}^{u[\bar{\xi}]}, \bar{\beta}^{u^{*}}$, Definition 0.1 and the fact that

$$
q \Vdash_{\mathbb{C}_{\chi}} "(\forall m<\omega)\left(0<\xi_{m}<\omega_{1}\right) " .
$$

By 1.1.1, 1.1.2, any inductive attempt to construct (in $\mathbf{V}^{\mathbb{C}_{\chi}}$) an ω-strange sequence $\bar{\xi}$ has to fail. Consequently, we find a condition $p^{*} \geq p$, an integer $k<\omega$ and a sequence $\bar{\xi}=\left\langle\xi_{l}: l<k\right\rangle$ such that

$$
p^{*} \vdash_{\mathbb{C}_{\chi}} \text { " } \bar{\xi} \text { is } k \text {-strange but } \neg\left(\exists \xi<\omega_{1}\right)(\bar{\xi} \frown\langle\xi\rangle \text { is }(k+1) \text {-strange }) \text { ". }
$$

Then in particular

$$
\begin{equation*}
p^{*} \Vdash_{\mathbb{C}_{\chi}} "(\forall m<\omega)\left(\underset { \sim } { F } { } _ { m } \left(\bar{\beta}^{u[\bar{\xi}]}\lceil m)=\underset{\sim}{F}{ }_{m}\left(\bar{\beta}^{u^{*}}\lceil m)\right) " .\right.\right. \tag{凹}
\end{equation*}
$$

[It may happen that $k=0$, i.e., $\bar{\xi}=\langle \rangle$.]
For $\underline{\xi}<\omega_{1}$ let $u_{\xi}=u[\bar{\xi} \prec\langle\xi\rangle]$ and $w_{\xi}=u_{\xi} \cup\left(u^{*} \backslash\left\{\omega_{1} \cdot k\right\}\right)$. Thus $w_{0}=u[\bar{\xi}] \cup u^{*}$ and all w_{ξ} have order type ω and $\pi_{w_{\xi_{1}}, w_{\xi_{2}}}$ is the identity on $N_{w_{\xi} \backslash\left\{\omega_{1} \cdot k+\xi_{2}\right\}}$. Let $q:=p^{*} \upharpoonright N_{w_{0}}$ and $q_{\xi}=\pi_{w_{\xi}, w_{0}}(q) \in N_{w_{\xi}}\left(\right.$ so $\left.q_{0}=q\right)$. As the isomorphism $\pi_{w_{\xi}, w_{0}}$ is the identity on $N_{w_{0}} \cap N_{w_{\xi}}=N_{w_{0} \cap w_{\xi}}$ (and by the definition of Cohen forcing), we see that the conditions q, q_{ξ} are compatible. Moreover, as $p^{*} \geq p$ and $p \in N_{\emptyset}$, we find that both q and q_{ξ} are stronger than p.

Now fix $\xi_{0} \in\left(0, \omega_{1}\right)$ (e.g. $\xi_{0}=1$) and look at the sequences $\bar{\beta}^{u_{\xi_{0}}}$ and $\bar{\beta}^{u^{*}}$. They are eventually equal and hence

$$
p \Vdash_{\mathbb{C}_{\chi}} "\left(\forall^{\infty} m\right)\left(\underset{\sim}{F}{ }_{m}\left(\bar{\beta}^{u \xi_{0}} \upharpoonright m\right)=\underset{\sim}{F} \underset{m}{ }\left(\bar{\beta}^{u^{*}} \upharpoonright m\right)\right) " .
$$

So we find $m^{*}<\omega$ and a condition $q_{\xi_{0}}^{\prime} \geq q_{\xi_{0}}, q$ such that
$\left(\otimes_{q_{\xi_{0}}}^{\xi_{0}, m^{*}}\right) \quad q_{\xi_{0}}^{\prime} \Vdash_{\mathbb{C}_{\chi}} "\left(\forall m \geq m^{*}\right)\left(\underset{\sim}{F}{\underset{m}{m}}\left(\bar{\beta}^{u_{\xi_{0}}} \upharpoonright m\right)=\underset{\sim}{F}{ }_{m}\left(\bar{\beta}^{u^{*}} \upharpoonright m\right)\right) "$
and (as we can increase $q_{\xi_{0}}^{\prime}$)
$\left(\oplus_{q_{\xi_{0}}^{\prime}}^{\xi_{0}, m^{*}}\right) \quad q_{\xi_{0}}^{\prime}$ decides the values of $\underset{\sim}{\underset{\sim}{F}}\left(\bar{\beta}^{u \xi_{0}} \upharpoonright m\right)$ and $\underset{\sim}{\underset{\sim}{F}} \underset{m}{ }\left(\bar{\beta}^{u^{*}} \upharpoonright m\right)$ for all $m \leq m^{*}$.
Note that the condition $\left(\otimes_{q_{\xi_{0}}^{\prime}}^{\xi_{0}, m^{*}}\right)$ means that there are NO $m \geq m^{*}, l_{0}, l_{1}$ $<\omega$ with $\gamma_{\bar{\beta}^{u} \xi_{0} \upharpoonright m, l_{0}}^{m} \neq \gamma_{\bar{\beta}^{u^{*}} \mid m, l_{1}}^{m}$ and the three conditions $q_{\xi_{0}}^{\prime}, p_{\bar{\beta}^{u} \xi_{0} \upharpoonright m, l_{0}}^{m}$ and $p_{\bar{\beta} u^{*} \mid m, l_{1}}^{m}$ have a common upper bound in \mathbb{C}_{χ} (remember the choice of the $p_{\bar{\alpha}, l}^{n}$'s and $\gamma_{\bar{\alpha}, l}^{n}$'s $)$. Similarly, the condition $\left(\oplus_{q_{\xi_{0}}^{\prime}}^{\xi_{0}, m^{*}}\right)$ means there are

NO $m \leq m^{*}, l_{0}, l_{1}<\omega$ with either $\gamma_{\bar{\beta}^{u} \xi_{0} \upharpoonright m, l_{0}}^{m} \neq \gamma_{\bar{\beta}^{u} \xi_{0} \upharpoonright m, l_{1}}^{m}$ and both $q_{\xi_{0}}^{\prime}$ and $p_{\bar{\beta}^{u} \xi_{0} \upharpoonright m, l_{0}}^{m}$, and $q_{\xi_{0}}^{\prime}$ and $p_{\bar{\beta}^{u} \xi_{0} \upharpoonright m, l_{1}}^{m}$ are compatible in \mathbb{C}_{χ}, or $\gamma_{\bar{\beta}^{u} \mid m, l_{0}}^{m} \neq$ $\gamma_{\bar{\beta}^{u^{*}} \mid m, l_{1}}^{m}$ and both $q_{\xi_{0}}^{\prime}$ and $p_{\bar{\beta}^{u^{*}} \mid m, l_{0}}^{m}$, and $q_{\xi_{0}}^{\prime}$ and $p_{\overline{\beta^{u}} \mid m, l_{1}}^{m}$ are compatible in \mathbb{C}_{χ}.

Consequently, the condition $q_{\xi_{0}}^{*}:=q_{\xi_{0}}^{\prime} \upharpoonright N_{w_{0} \cup w_{\xi_{0}}}$ has both properties $\left(\otimes_{q_{\xi_{0}}^{*}}^{\xi_{0}, m^{*}}\right)$ and $\left(\oplus_{q_{\xi_{0}}^{*}}^{\xi_{0}, m^{*}}\right)$ (and it is stronger than both q and $\left.q_{\xi_{0}}\right)$.

Now, for $0<\xi<\omega_{1}$ let

$$
q_{\xi}^{*}:=\pi_{w_{0} \cup w_{\xi}, w_{0} \cup w_{\xi_{0}}}\left(q_{\xi_{0}}^{*}\right) \in N_{w_{0} \cup w_{\xi}} .
$$

Then (for $\xi \in\left(0, \omega_{1}\right)$) the condition q_{ξ}^{*} is stronger than

$$
\text { both } \quad q=\pi_{w_{0} \cup w_{\xi}, w_{0} \cup w_{\xi_{0}}}(q) \quad \text { and } \quad q_{\xi}=\pi_{w_{0} \cup w_{\xi}, w_{0} \cup w_{\xi_{0}}}\left(q_{\xi_{0}}\right)
$$

and it has the properties $\left(\otimes_{q_{\xi}^{*}}^{\xi, m^{*}}\right)$ and $\left(\oplus_{q_{\xi}^{*}}^{\xi, m^{*}}\right)$. Moreover for all ξ_{1}, ξ_{2} the conditions $q_{\xi_{1}}^{*}, q_{\xi_{2}}^{*}$ are compatible. [Why? By the definition of Cohen forcing, and $\pi_{w_{0} \cup w_{\xi_{2}}, w_{0} \cup w_{\xi_{1}}}\left(q_{\xi_{1}}^{*}\right)=q_{\xi_{2}}^{*}$ (chasing arrows) and $\pi_{w_{0} \cup w_{\xi_{2}}, w_{0} \cup w_{\xi_{1}}}$ is the identity on $N_{w_{0} \cup w_{\xi_{2}}} \cap N_{w_{0} \cup w_{\xi_{1}}}=N_{\left(w_{0} \cup w_{\xi_{2}}\right) \cap\left(w_{0} \cup w_{\xi_{1}}\right)}$ (see clauses (e), (f), (h) above).]

CLAIM 1.1.3. For each $\xi_{1}, \xi_{2} \in\left(0, \omega_{1}\right)$ the condition $q_{\xi_{1}}^{*} \cup q_{\xi_{2}}^{*}$ forces in \mathbb{C}_{χ} that

$$
(\forall m<\omega)\left(\underset{\sim}{F}{ }_{m}\left(\bar{\beta}^{u \xi_{1}} \upharpoonright m\right)=\underset{\sim}{F}{ }_{m}\left(\bar{\beta}^{u \xi_{2} \upharpoonright m}\right)\right) .
$$

Proof. If $m \geq m^{*}$ then, by $\left(\otimes_{q_{\xi_{1}}}^{\xi_{1}, m^{*}}\right)$ and $\left(\otimes_{q_{\xi_{2}}}^{\xi_{2}, m^{*}}\right)$ (passing through $\underset{\sim}{F}\left(\bar{\beta}^{u^{*}} \upharpoonright m\right)$), we get

$$
q_{\xi_{1}}^{*} \cup q_{\xi_{2}}^{*} \Vdash_{\mathbb{C}_{\chi}} " \underset{\sim}{F}\left(\bar{\beta}^{u \xi_{1}} \upharpoonright m\right)=\underset{\sim}{F}{ }_{m}\left(\bar{\beta}^{\left.u_{\xi_{2}} \upharpoonright m\right)} " .\right.
$$

If $m<m^{*}$ then we use $\left(\oplus_{q_{\xi_{1}}}^{\xi_{1}, m^{*}}\right)$ and $\left(\oplus_{q_{\xi_{2}}^{*}}^{\xi_{1}, m^{*}}\right)$ and the isomorphism: the values assigned by $q_{\xi_{1}}^{*}, q_{\xi_{2}}^{*}$ to $\underset{\sim}{F}{ }_{m}\left(\bar{\beta}^{u_{\xi_{1}}} \upharpoonright m\right)$ and $\underset{\sim}{F}\left(\bar{\beta}^{u_{\xi_{2}}} \upharpoonright m\right)$ have to be equal (remember $\kappa \subseteq N_{\emptyset}$, so the isomorphism is the identity on κ).

Look at the conditions

$$
q_{\xi_{1}, \xi_{2}}:=q_{\xi_{1}}^{*} \upharpoonright N_{w_{\xi_{1}}} \cup q_{\xi_{2}}^{*} \upharpoonright N_{w_{\xi_{2}}} \in N_{w_{\xi_{1}} \cup w_{\xi_{2}}}
$$

It should be clear that for each $\xi_{1}, \xi_{2} \in\left(0, \omega_{1}\right)$,

$$
q_{\xi_{1}, \xi_{2}} \Vdash_{\mathbb{C}_{\chi}} "(\forall m<\omega)\left(\underset{\sim}{F}\left(\bar{\beta}^{u \xi_{1}} \upharpoonright m\right)=\underset{\sim}{F} \underset{m}{ }\left(\bar{\beta}^{u \xi_{2} \upharpoonright m}\right)\right) " .
$$

Now choose $\xi \in\left(0, \omega_{1}\right)$ so large that

$$
\operatorname{dom}\left(p^{*}\right) \cap\left(N_{w_{\xi}} \backslash N_{w_{0}}\right)=\emptyset
$$

(possible as $\operatorname{dom}\left(p^{*}\right)$ is finite, use (e)). Take any $0<\xi_{1}<\xi_{2}<\omega_{1}$ and put

$$
q^{*}:=\pi_{w_{0} \cup w_{\xi}, w_{\xi_{1}} \cup w_{\xi_{2}}}\left(q_{\xi_{1}, \xi_{2}}\right)
$$

(Note: $\pi_{w_{0}, w_{\xi_{1}}} \subseteq \pi_{w_{0} \cup w_{\xi}, w_{\xi_{1}} \cup w_{\xi_{2}}}$ and $\left.\pi_{w_{\xi}, w_{\xi_{2}}} \subseteq \pi_{w_{0} \cup w_{\xi}, w_{\xi_{1}} \cup w_{\xi_{2}}}.\right)$ By the isomorphism we get

$$
q^{*} \vdash_{\mathbb{C}_{x}} "(\forall m<\omega)\left(\underset{\sim}{F}{ }_{m}\left(\bar{\beta}^{u \xi} \upharpoonright m\right)=\underset{\sim}{F}{ }_{m}\left(\bar{\beta}^{u[\bar{\xi}]} \upharpoonright m\right)\right) "
$$

Now look back:

$$
\begin{aligned}
q_{\xi_{1}}^{*} \geq q_{\xi_{1}} & =\pi_{w_{0} \cup w_{\xi_{1}}, w_{0} \cup w_{\xi_{0}}}\left(q_{\xi_{0}}\right)=\pi_{w_{\xi_{1}}, w_{\xi_{0}}}\left(q_{\xi_{0}}\right) \\
& =\pi_{w_{\xi_{1}}, w_{\xi_{0}}}\left(\pi_{w_{\xi_{0}}, w_{0}}(q)\right)=\pi_{w_{\xi_{1}}, w_{0}}(q)
\end{aligned}
$$

and hence

$$
q_{\xi_{1}}^{*} \upharpoonright N_{w_{\xi_{1}}} \geq \pi_{w_{\xi_{1}}, w_{0}}(q)
$$

and thus

$$
q^{*} \upharpoonright N_{w_{0}} \geq \pi_{w_{0}, w_{\xi_{1}}}\left(q_{\xi_{1}}^{*} \upharpoonright N_{w_{\xi_{1}}}\right) \geq q=p^{*} \upharpoonright N_{w_{0}}
$$

Consequently, by the choice of ξ, the conditions q^{*} and p^{*} are compatible (remember the definition of $q_{\xi_{1}, \xi_{2}}$ and q^{*}). Now use (\boxtimes) to conclude that

$$
q^{*} \cup p^{*} \vdash_{\mathbb{C}_{x}} "(\forall m<\omega)\left(\underset{\sim}{F} m\left(\bar{\beta}^{u^{*}} \upharpoonright m\right)=\underset{\sim}{F} m\left(\bar{\beta}^{u[\bar{\xi}]} \upharpoonright m\right)=\underset{\sim}{F} m\left(\bar{\beta}^{u_{\xi}} \upharpoonright m\right)\right) "
$$

which implies that $q^{*} \cup p^{*} \vdash_{\mathbb{C}_{\chi}}$ " $\bar{\xi} \smile\langle\xi\rangle$ is $(k+1)$-strange", a contradiction.
REmARK 1.2. About the proof of 1.1:
(1) No harm is done by forgetting 0 and replacing it by ξ_{1}, ξ_{2}.
(2) A small modification of the proof shows that in $\mathbf{V}^{\mathbb{C}_{\chi}}:$ If $F_{n}:{ }^{n} \lambda \rightarrow \kappa$ $(n \in \omega)$ are such that

$$
\left(\forall \eta, \nu \in{ }^{\omega} \lambda\right)\left[\left(\forall^{\infty} n\right)(\eta(n)=\nu(n)) \Rightarrow\left(\forall^{\infty} n\right)\left(F_{n}(\eta \upharpoonright n)=F_{n}(\nu\lceil n))\right]\right.
$$

then there are infinite sets $X_{n} \subseteq \lambda($ for $n<\omega)$ such that

$$
(\forall n<\omega)\left(\forall \nu, \eta \in \prod_{l<n} X_{l}\right)\left(F_{n}(\nu)=F_{n}(\eta)\right)
$$

Say we shall have $X_{n}=\left\{\gamma_{n, i}: i<\omega\right\}$. Starting we have $\gamma_{0}^{*}, \ldots, \gamma_{n}^{*}, \ldots$ In the proof at stage n we have determined $\gamma_{l, i}(l, i<n)$ and $p \in G$, $p \in N_{\left\{\gamma_{l, i}: l, i<\omega\right\} \cup\left\{\gamma_{n}^{*}, \gamma_{n+1}^{*}, \ldots\right\}}$. For $n=0,1,2$ as before. For $n+1>2$ first $\gamma_{0, n}, \ldots, \gamma_{n-1, n}$ are easy by transitivity of equalities. Then find $\gamma_{n, 0}, \gamma_{n, 1}$ as before, and then again duplicate.
(3) In the proof it is enough to use $\left\{\beta_{\omega \cdot n+l}: n<\omega, l<\omega\right\}$. Hence, by 1.2 of [Sh 481] it is enough to assume $\lambda \rightarrow\left(\omega^{3}\right)_{2^{\kappa}}^{<\omega}$. This condition is compatible with $\mathbf{V}=\mathbf{L}$
(4) We can use only $\lambda \rightarrow\left(\omega^{2}\right)_{2^{\kappa}}^{<\omega}$.

Definition 1.3. (1) For a sequence $\bar{\lambda}=\left\langle\lambda_{n}: n<\omega\right\rangle$ of cardinals we define the property $(*)_{\bar{\lambda}}$:
$(\circledast)_{\bar{\lambda}} \quad$ for every model M of a countable language with universe $\sup _{n \in \omega} \lambda_{n}$ and Skolem functions (for simplicity) there is a sequence $\left\langle X_{n}\right.$: $n<\omega\rangle$ such that
(a) $X_{n} \in\left[\lambda_{n}\right]^{\lambda_{n}}$ (actually $X_{n} \in\left[\lambda_{n}\right]^{\omega_{1}}$ suffices)
(b) for every $n<\omega$ and $\bar{\alpha}=\left\langle\alpha_{l}: l \in[n+1, \omega)\right\rangle \in \prod_{l \geq n+1} X_{l}$, letting (for $\xi \in X_{n}$)

$$
M_{\bar{\alpha}}^{\xi}=\operatorname{Sk}\left(\bigcup_{l<n} X_{l} \cup\{\xi\} \cup\left\{\alpha_{l}: l \in[n+1, \omega)\right\}\right)
$$

we have:
(\bigoplus) the sequence $\left\langle M_{\bar{\alpha}}^{\xi}: \xi \in X_{n}\right\rangle$ forms a Δ-system with heart $N_{\bar{\alpha}}$ and its elements are pairwise isomorphic over the heart $N_{\bar{\alpha}}$.
(2) For a cardinal λ the condition $(\circledast)^{\lambda}$ is:
$(\circledast)^{\lambda} \quad$ there exists a sequence $\bar{\lambda}=\left\langle\lambda_{n}: n<\omega\right\rangle$ such that $\sum_{n<\omega} \lambda_{n}=\lambda$ and the condition $(\circledast)_{\bar{\lambda}}$ holds true.
In $[\operatorname{Sh} 76]$ a condition $(*)_{\lambda}$, weaker than $(\circledast)^{\lambda}$, was considered. Now, [Sh 124] continues [Sh 76] to get stronger indiscernibility. But by the same proof (using ω-measurable) one can show the consistency of $(\circledast)^{\aleph_{\omega}}+\mathrm{GCH}$.

Note that to carry out the proof of 1.1 we need even less than $(\circledast)^{\lambda}$: the $\bigcup_{l<n} X_{l}$ (in (b) of 1.3) is much more than needed; it suffices to have $\bar{\beta}^{0} \cup \bar{\beta}^{1}$ where $\bar{\beta}^{0}, \bar{\beta}^{1} \in \prod_{l<n} X_{l}$.

Conclusion 1.4. It is consistent that

$$
2^{\aleph_{0}}=\aleph_{\omega+1} \quad \text { and } \quad \bigwedge_{n<\omega} \neg \mathcal{K} \mathcal{L}\left(\aleph_{\omega}, \aleph_{n}\right) \quad \text { so } \quad \neg \mathcal{K} \mathcal{L}\left(2^{\aleph_{0}}, 2\right)
$$

Remark 1.5. Koepke [Ko84] continues [Sh 76] to get equiconsistency. His refinement of [Sh 76] (for the upper bound) works below too.
2. The positive result. For an algebra M on λ and a set $X \subseteq \lambda$ the closure of X under functions of M is denoted by $\mathrm{cl}_{M}(X)$. Before proving our result (2.6) we remind the reader of some definitions and propositions.

Proposition 2.1. For an algebra M on λ the following conditions are equivalent:
$(\star)_{M}^{0} \quad$ for each sequence $\left\langle\alpha_{n}: n \in \omega\right\rangle \subseteq \lambda$ we have

$$
\left(\forall^{\infty} n\right)\left(\alpha_{n} \in \operatorname{cl}_{M}\left(\left\{\alpha_{k}: n<k<\omega\right\}\right)\right)
$$

$(\star)_{M}^{1} \quad$ there is no sequence $\left\langle A_{n}: n \in \omega\right\rangle \subseteq[\lambda]^{\aleph_{0}}$ such that

$$
(\forall n \in \omega)\left(\operatorname{cl}_{M}\left(A_{n+1}\right) \varsubsetneqq \operatorname{cl}_{M}\left(A_{n}\right)\right),
$$

$(\star)_{M}^{2} \quad\left(\forall A \in[\lambda]^{\aleph_{0}}\right)\left(\exists B \in[A]^{\aleph_{0}}\right)\left(\forall C \in[B]^{\aleph_{0}}\right)\left(\mathrm{cl}_{M}(B)=\mathrm{cl}_{M}(C)\right)$.
Definition 2.2. We say that a cardinal λ has the (\star)-property for κ (and then we write $\left.\operatorname{Pr}^{\star}(\lambda, \kappa)\right)$ if there is an algebra M on λ with vocabulary
of cardinality $\leq \kappa$ satisfying one (equivalently: all) of the conditions $(\boldsymbol{\star}){ }_{M}^{i}$ $(i<3)$ of 2.1. If $\kappa=\aleph_{0}$ we may omit it.

Remember
Proposition 2.3. If $\mathbf{V}_{0} \subseteq \mathbf{V}_{1}$ are universes of set theory and $\mathbf{V}_{1} \models$ $\neg \operatorname{Pr}^{\star}(\lambda)$ then $\mathbf{V}_{0}=\neg \operatorname{Pr}^{\star}(\lambda)$.

Proof. By absoluteness of the existence of an ω-branch of a tree.
Remark 2.4. The property $\neg \operatorname{Pr}^{\star}(\lambda)$ is a kind of large cardinal property. It was clarified in \mathbf{L} (remember that it is inherited from \mathbf{V} to \mathbf{L}) by Silver [Si70] to be equiconsistent with "there is a beautiful cardinal" (terminology of 2.3 of [Sh 110]), another partition property inherited by \mathbf{L}. More in [Sh 513].

Proposition 2.5. For each $n \in \omega, \operatorname{Pr}^{\star}\left(\aleph_{n}\right)$.
Proof. This was done in [Sh:b, Chapter XIII], see [Sh:g, Chapter VII] too, and probably earlier by Silver. However, for the sake of completeness we will give the proof.

First note that clearly $\operatorname{Pr}^{\star}\left(\aleph_{0}\right)$ and thus we have to deal with the case when $n>0$. Let $f, g: \aleph_{n} \rightarrow \aleph_{n}$ be two functions such that if $m<n$, $\alpha \in\left[\aleph_{m}, \aleph_{m+1}\right)$ then $f(\alpha, \cdot)\left\lceil\alpha: \alpha \xrightarrow{1-1} \aleph_{m}, g(\alpha, \cdot) \mid \aleph_{m}: \aleph_{m} \xrightarrow{1-1} \alpha\right.$ are functions inverse to each other.

Let M be the following algebra on \aleph_{n} :

$$
M=\left(\aleph_{n}, f, g, m\right)_{m \in \omega}
$$

We want to check the condition $(\star)_{M}^{1}$: assume that a sequence $\left\langle A_{k}: k<\omega\right\rangle$ $\subseteq\left[\aleph_{n}\right]^{\aleph_{0}}$ is such that for each $k<\omega$,

$$
\mathrm{cl}_{M}\left(A_{k+1}\right) \nsubseteq \mathrm{cl}_{M}\left(A_{k}\right)
$$

For each $m<n$, the sequence $\left\langle\sup \left(\operatorname{cl}_{M}\left(A_{k}\right) \cap \aleph_{m+1}\right): k<\omega\right\rangle$ is nonincreasing and therefore it is eventually constant. Consequently, we find k^{*} such that

$$
(\forall m<n)\left(\sup \left(\operatorname{cl}_{M}\left(A_{k^{*}+1}\right) \cap \aleph_{m+1}\right)=\sup \left(\operatorname{cl}_{M}\left(A_{k^{*}}\right) \cap \aleph_{m+1}\right)\right)
$$

By the choice of $\left\langle A_{k}: k<\omega\right\rangle$ we have $\operatorname{cl}_{M}\left(A_{k^{*}+1}\right) \nsubseteq \operatorname{cl}_{M}\left(A_{k^{*}}\right)$. Let

$$
\alpha_{0}:=\min \left(\operatorname{cl}_{M}\left(A_{k^{*}}\right) \backslash \mathrm{cl}_{M}\left(A_{k^{*}+1}\right)\right)
$$

As the model M contains individual constants m (for $m \in \omega$) we know that $\aleph_{0} \subseteq \operatorname{cl}_{M}(\emptyset)$ and hence $\aleph_{0} \leq \alpha_{0}$. Let $m<n$ be such that $\aleph_{m} \leq \alpha_{0}<\aleph_{m+1}$. By the choice of k^{*} we find $\beta \in \operatorname{cl}_{M}\left(A_{k^{*}+1}\right) \cap \aleph_{m+1}$ such that $\alpha_{0} \leq \beta$. Then necessarily $\alpha_{0}<\beta$. Look at $f\left(\beta, \alpha_{0}\right)$: we know that $\alpha_{0}, \beta \in \operatorname{cl}_{M}\left(A_{k^{*}}\right)$ and therefore $f\left(\beta, \alpha_{0}\right) \in \operatorname{cl}_{M}\left(A_{k^{*}}\right) \cap \aleph_{m}$ and $f\left(\beta, \alpha_{0}\right)<\alpha_{0}$. The minimality of α_{0} implies that $f\left(\beta, \alpha_{0}\right) \in \operatorname{cl}_{M}\left(A_{k^{*}+1}\right)$ and hence

$$
\alpha_{0}=g\left(\beta, f\left(\beta, \alpha_{0}\right)\right) \in \operatorname{cl}_{M}\left(A_{k^{*}+1}\right),
$$

a contradiction.

Explanation. Better think of the proof below from the end. Let $\bar{\alpha}=$ $\left\langle\alpha_{n}: n<\omega\right\rangle \in{ }^{\omega} \lambda$. So for some $n(*), n(*) \leq n<\omega \Rightarrow \alpha_{n} \in \operatorname{cl}_{M}\left(\alpha_{l}: l>n\right)$. So for some $m_{n}>n,\left\{\alpha_{n(*)}, \ldots, \alpha_{n-1}\right\} \subseteq \operatorname{cl}_{M}\left(\alpha_{n}, \ldots, \alpha_{m_{m}-1}\right)$ and

$$
(\forall l<n(*))\left(\alpha_{l} \in \operatorname{cl}_{M}\left(\alpha_{k}: k>n(*)\right) \quad \Rightarrow \quad \alpha_{l} \in \operatorname{cl}_{M}\left(\alpha_{k}: k \in\left[n, m_{n}\right)\right)\right)
$$

Let $w=\left\{l<n(*): \alpha_{l} \in \mathrm{cl}_{M}\left(\alpha_{n}: n \geq n(*)\right)\right.$. It is natural to aim at:
$(*) \quad$ for n large enough (say $\left.n>m_{n(*)}\right), F_{n}\left(\left\langle\alpha_{l}: l<n\right\rangle\right)$ depends just on $\left\{\alpha_{l}: l \in[n(*), n)\right.$ or $\left.l \in w\right\}$ and $\left\langle F_{m}(\bar{\alpha} \mid m): m \geq n\right\rangle$ codes $\bar{\alpha} \upharpoonright(w \cup[n(*), \omega))$.
Of course, we are given an n and we do not know how to compute the real $n(*)$, but we can approximate. Then we look at a late enough end segment where we compute down.

Theorem 2.6. Assume that $\lambda \leq 2^{\aleph_{0}}$ is such that $\operatorname{Pr}{ }^{\star}(\lambda)$ holds. Then $\mathcal{K} \mathcal{L}(\lambda, \omega)$ (and hence $\mathcal{K} \mathcal{L}(\lambda, 2)$).

Proof. We have to construct functions $F_{n}:{ }^{n} \lambda \rightarrow \omega$ witnessing $\mathcal{K} \mathcal{L}(\lambda, \omega)$. For this we will introduce functions \mathbf{k} and \mathbf{l} such that for $\bar{\alpha} \in{ }^{n} \lambda$ the value of $\mathbf{k}(\bar{\alpha})$ will say which initial segment of $\bar{\alpha}$ will be irrelevant for $F_{n}(\bar{\alpha})$ and $\mathbf{l}(\bar{\alpha})$ will be such that (under certain circumstances) elements α_{i} (for $\mathbf{k}(\bar{\alpha}) \leq i<\mathbf{l}(\bar{\alpha}))$ will be encoded by $\left\langle\alpha_{j}: j \in[\mathbf{l}(\bar{\alpha}), n)\right\rangle$.

Fix a sequence $\left\langle\eta_{\alpha}: \alpha<\lambda\right\rangle \subseteq{ }^{\omega} 2$ with no repetitions.
Let M be an algebra on λ such that $(\star)_{M}^{0}$ holds true. We may assume that there are no individual constants in M ($\left.\operatorname{so~cl}_{M}(\emptyset)=\emptyset\right)$.

Let $\left\langle\tau_{l}^{n}\left(x_{0}, \ldots, x_{n-1}\right): l<\omega\right\rangle$ list all n-place terms of the language of the algebra M (and $\tau_{0}^{1}(x)$ is x) when $0<n<\omega$. For $\bar{\alpha} \in{ }^{\omega} \geq \lambda$ (with α_{j} the j th element in $\bar{\alpha}$) let

$$
u(\bar{\alpha})=\left\{l<\lg (\bar{\alpha}): \alpha_{l} \notin \operatorname{cl}_{M}(\bar{\alpha} \upharpoonright(l, \lg (\bar{\alpha})))\right\} \cup\{0\}
$$

and for $l \notin u(\bar{\alpha}), l<\lg (\bar{\alpha})$ let

$$
\begin{aligned}
f_{l}(\bar{\alpha}) & =\min \left\{j: \alpha_{l} \in \operatorname{cl}_{M}(\bar{\alpha} \upharpoonright(l, j))\right\} \\
g_{l}(\bar{\alpha}) & =\min \left\{i: \alpha_{l}=\tau_{i}^{f_{l}(\bar{\alpha})-l-1}\left(\bar{\alpha} \upharpoonright\left(l, f_{l}(\bar{\alpha})\right)\right)\right\}
\end{aligned}
$$

For $\bar{\alpha} \in{ }^{n} \lambda(1<n<\omega)$ put

$$
\begin{aligned}
& k_{1}(\bar{\alpha})=\min ((u(\bar{\alpha} \upharpoonright(n-1)) \backslash u(\bar{\alpha})) \cup\{n-1\}), \\
& k_{0}(\bar{\alpha})=\max \left(u(\bar{\alpha}) \cap k_{1}(\bar{\alpha})\right) .
\end{aligned}
$$

Note that if $\left(n>1\right.$ and) $\bar{\alpha} \in{ }^{n} \lambda$ then $n-1 \in u(\bar{\alpha})\left(\operatorname{as~cl}_{M}(\emptyset)=\emptyset\right)$ and $k_{1}(\bar{\alpha})>0$ (as always $0 \in u(\bar{\beta})$) and $k_{0}(\bar{\alpha})$ is well defined (as $\left.0 \in u(\bar{\alpha}) \cap k_{1}(\bar{\alpha})\right)$ and $k_{0}(\bar{\alpha})<k_{1}(\bar{\alpha})<n$. Moreover, for all $l \in\left(k_{0}(\bar{\alpha}), k_{1}(\bar{\alpha})\right)$ we have $\alpha_{l} \notin u(\bar{\alpha})$ by the choice of $k_{0}(\bar{\alpha})$, hence $\alpha_{l} \notin u(\bar{\alpha} \upharpoonright(n-1))$ by the choice of $k_{1}(\bar{\alpha})$ and thus $\alpha_{l} \in \operatorname{cl}_{M}(\bar{\alpha} \upharpoonright(l, n-1))$. Now, for $\bar{\alpha} \in{ }^{\omega>} \lambda, \lg (\bar{\alpha})>1$ we define

$$
\mathbf{l}(\bar{\alpha})=\max \left\{j \leq k_{1}(\bar{\alpha}): j>k_{0}(\bar{\alpha}) \Rightarrow\left(\forall i \in\left(k_{0}(\bar{\alpha}), j\right)\right)\left(g_{i}(\bar{\alpha}) \leq \lg (\bar{\alpha})\right)\right\}
$$

$$
\begin{aligned}
\mathbf{m}(\bar{\alpha}) & =\max \left\{j \leq \mathbf{l}(\bar{\alpha}): j>\max \left\{1, k_{0}(\bar{\alpha})\right\} \Rightarrow k_{0}(\bar{\alpha} \upharpoonright j)=k_{0}(\bar{\alpha})\right\}, \\
\mathbf{k}(\bar{\alpha}) & =\mathbf{l}(\bar{\alpha} \backslash \mathbf{m}(\bar{\alpha})) \quad(\text { if } \mathbf{m}(\bar{\alpha}) \leq 1 \text { then put } \mathbf{k}(\bar{\alpha})=-1) .
\end{aligned}
$$

Clearly $\mathbf{k}(\bar{\alpha})<\mathbf{m}(\bar{\alpha}) \leq \mathbf{l}(\bar{\alpha}) \leq k_{1}(\bar{\alpha})<\lg (\bar{\alpha})$.
Claim 2.6.1. For each $\bar{\alpha} \in{ }^{\omega} \lambda$, the set $u(\bar{\alpha})$ is finite and:
(1) The sequence $\left\langle k_{1}(\bar{\alpha} \upharpoonright n): n<\omega\right\rangle$ diverges to ∞.
(2) The sequence $\left\langle k_{0}(\bar{\alpha} \upharpoonright n): n<\omega \& k_{0}(\bar{\alpha} \upharpoonright n) \neq \max u(\bar{\alpha})\right\rangle$, if infinite, diverges to ∞. There are infinitely many $n<\omega$ with $k_{0}(\bar{\alpha} \upharpoonright n)=\max u(\bar{\alpha})$.
(3) The sequence $\langle\mathbf{l}(\bar{\alpha} \upharpoonright n): n<\omega\rangle$ diverges to ∞.
(4) The sequences $\langle\mathbf{m}(\bar{\alpha}\lceil n): n<\omega\rangle$ and $\langle\mathbf{k}(\bar{\alpha} \upharpoonright n): n<\omega\rangle$ diverge to ∞.

Proof. Let $\bar{\alpha}=\left\langle\alpha_{n}: n\langle\omega\rangle \in{ }^{\omega} \lambda\right.$. By the property $(\star)_{M}^{0}$ we find $n^{*}<\omega$ such that $u(\bar{\alpha}) \subseteq n^{*}$. Fix $n_{0}>n^{*}$ and define

$$
n_{1}=\max \left\{f_{n}(\bar{\alpha})+g_{n}(\bar{\alpha})+2: n \in\left(n_{0}+1\right) \backslash u(\bar{\alpha})\right\}
$$

(so as $\operatorname{cl}_{M}(\emptyset)=\emptyset$ we have $n_{1} \geq f_{n_{0}}(\bar{\alpha})+2>n_{0}+3$ and for $l \in\left(n_{0}+1\right) \backslash u(\bar{\alpha})$, $\alpha_{l} \in \operatorname{cl}_{M}\left(\alpha_{l+1}, \ldots, \alpha_{n_{1}-1}\right)$ is witnessed by $\tau_{g_{l}(\bar{\alpha})}^{f_{l}(\bar{\alpha})-l-1}\left(\alpha_{l+1}, \ldots, \alpha_{f_{l}(\bar{\alpha})-1}\right)$ with $\left.f_{l}(\bar{\alpha}), g_{l}(\bar{\alpha})<n_{1}-1\right)$.
(1) Note that $u(\bar{\alpha} \upharpoonright n) \cap\left(n_{0}+1\right)=u(\bar{\alpha})$ for all $n \geq n_{1}-1$ and hence for $n \geq n_{1}$,

$$
u(\bar{\alpha} \upharpoonright n) \cap\left(n_{0}+1\right)=u(\bar{\alpha} \upharpoonright(n-1)) \cap\left(n_{0}+1\right) .
$$

Consequently, for all $n \geq n_{1}$ we have $k_{1}(\bar{\alpha} \mid n)>n_{0}$. As we could have chosen n_{0} arbitrarily large we may conclude that $\lim _{n \rightarrow \infty} k_{1}(\bar{\alpha} \upharpoonright n)=\infty$.
(2) Note that for all $n \geq n_{1}$,

$$
\text { either } \quad k_{0}(\bar{\alpha} \upharpoonright n)=\max (u(\bar{\alpha})) \quad \text { or } \quad k_{0}(\bar{\alpha} \upharpoonright n)>n_{0} .
$$

Hence, by the arbitrariness of n_{0}, we get the first part of (2).
Let $l^{*}=\min \left(u\left(\bar{\alpha} \upharpoonright n_{1}\right) \backslash u(\bar{\alpha})\right)$ (note that $n_{1}-1 \in u\left(\bar{\alpha} \upharpoonright n_{1}\right) \backslash u(\bar{\alpha})$). Clearly $l^{*}>n_{0}$ and $\alpha_{l^{*}} \notin u(\bar{\alpha})$. Consider $n=f_{l^{*}}(\bar{\alpha})\left(\right.$ so $\left.l^{*} \leq n-2, n_{1} \leq n-1\right)$. Then $l^{*} \in u(\bar{\alpha}\lceil(n-1)) \backslash u(\bar{\alpha} \upharpoonright n)$. As

$$
l^{*} \cap u\left(\bar{\alpha} \upharpoonright n_{1}\right)=l^{*} \cap u(\bar{\alpha} \upharpoonright n-1)=u(\bar{\alpha})
$$

(remember the choice of l^{*}) we conclude that

$$
l^{*}=k_{1}(\bar{\alpha} \upharpoonright n) \quad \text { and } \quad k_{0}(\bar{\alpha} \upharpoonright n)=\max u(\bar{\alpha}) .
$$

Now, since n_{0} was arbitrarily large, we find that for infinitely many n, $k_{0}(\bar{\alpha} \upharpoonright n)=\max u(\bar{\alpha})$.
(3) Suppose that $n \geq n_{1}$. Then we know that $k_{1}\left(\bar{\alpha}\lceil n)>n_{0}\right.$ and either $k_{0}(\bar{\alpha} \upharpoonright n)=\max u(\bar{\alpha})$ or $k_{0}(\bar{\alpha} \upharpoonright n)>n_{0}$ (see above). If the first possibility takes place then, as $n \geq n_{1}$, we may use $j=n_{0}+1$ to witness that $\mathbf{l}(\bar{\alpha}\lceil n)>$ $n_{0}\left(\right.$ remember the choice of $\left.n_{1}\right)$. If $k_{0}(\bar{\alpha} \upharpoonright n)>n_{0}$ then clearly $\mathbf{l}(\bar{\alpha} \upharpoonright n)>n_{0}$. As n_{0} could be arbitrarily large we are done.
(4) Suppose we are given $m_{0}<\omega$. Take $m_{1}>m_{0}$ such that for all $n \geq m_{1}$,

$$
\text { either } \quad k_{0}(\bar{\alpha} \upharpoonright n)=\max u(\bar{\alpha}) \quad \text { or } \quad k_{0}(\bar{\alpha} \upharpoonright n)>m_{0}
$$

(possible by (2)) and then choose $m_{2}>m_{1}$ such that $k_{0}\left(\bar{\alpha} \upharpoonright m_{2}\right)=\max u(\bar{\alpha})$ (by (2)). Due to (3) we find $m_{3}>m_{2}$ such that for all $n \geq m_{3}, \mathbf{l}(\bar{\alpha} \mid n)>m_{2}$. Now suppose that $n \geq m_{3}$. If $k_{0}\left(\bar{\alpha}\lceil n)=\max u(\bar{\alpha})\right.$ then, as $\mathbf{l}(\bar{\alpha} \upharpoonright n)>m_{2}$, we get $\mathbf{m}(\bar{\alpha} \upharpoonright n) \geq m_{2}>m_{0}$. Otherwise $k_{0}(\bar{\alpha} \upharpoonright n)>m_{0}$ (as $\left.n>m_{1}\right)$ and hence $\mathbf{m}(\bar{\alpha} \upharpoonright n)>m_{0}$. This shows that $\lim _{n \rightarrow \infty} \mathbf{m}(\bar{\alpha} \upharpoonright n)=\infty$. Now, immediately by the definition of \mathbf{k} and (3) above we conclude that $\lim _{n \rightarrow \infty} \mathbf{k}(\bar{\alpha}\lceil n)=\infty$.

CLAim 2.6.2. If $\bar{\alpha}^{1}, \bar{\alpha}^{2} \in{ }^{\omega} \lambda$ are such that $\left(\forall^{\infty} n\right)\left(\alpha_{n}^{1}=\alpha_{n}^{2}\right)$ then $\left(\forall^{\infty} n\right)\left(\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\mathbf{l}\left(\bar{\alpha}^{2} \upharpoonright n\right) \& \mathbf{m}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\mathbf{m}\left(\bar{\alpha}^{2} \upharpoonright n\right) \& \mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\mathbf{k}\left(\bar{\alpha}^{2} \upharpoonright n\right)\right)$.

Proof. Let n_{0} be greater than $\max \left(u\left(\bar{\alpha}^{1}\right) \cup u\left(\bar{\alpha}^{2}\right)\right)$ and such that

$$
\bar{\alpha}^{1} \upharpoonright\left[n_{0}, \omega\right)=\bar{\alpha}^{2} \upharpoonright\left[n_{0}, \omega\right) .
$$

For $k=1,2,3$ define n_{k} by

$$
n_{k+1}=\max \left\{f_{n}\left(\bar{\alpha}^{i}\right)+g_{n}\left(\bar{\alpha}^{i}\right)+2: n \in\left(n_{k}+1\right) \backslash u\left(\bar{\alpha}^{i}\right), i<2\right\} .
$$

As in the proof of 2.6.1, for $i=1,2$ and $j<3$ we have:
$\left(\otimes^{1}\right) \quad\left(\forall n \geq n_{j+1}\right)\left(k_{0}\left(\bar{\alpha}^{i} \mid n\right)=\max u\left(\bar{\alpha}^{i}\right)\right.$ or $\left.k_{0}\left(\bar{\alpha}^{i} \mid n\right)>n_{j}\right)$,
$\left(\otimes^{2}\right) \quad\left(\forall n \geq n_{j+1}\right)\left(k_{1}\left(\bar{\alpha}^{i} \upharpoonright n\right)>n_{j} \& \mathbf{l}\left(\bar{\alpha}^{i} \upharpoonright n\right)>n_{j} \& \mathbf{m}\left(\bar{\alpha}^{i} \upharpoonright n\right)>n_{j} \&\right.$ $\left.\mathbf{h}\left(\bar{\alpha}^{i} \upharpoonright n\right)>n_{j}\right)$,
$\left(\otimes^{3}\right) \quad\left(\exists n^{\prime} \in\left(n_{1}, n_{2}\right)\right)\left(k_{0}\left(\bar{\alpha}^{1} \upharpoonright n^{\prime}\right)=\max u\left(\bar{\alpha}^{1}\right) \& k_{0}\left(\bar{\alpha}^{2} \upharpoonright n^{\prime}\right)=\max u\left(\bar{\alpha}^{2}\right)\right)$ (for $\left(\otimes^{3}\right)$ repeat arguments from 2.6.1(2) and use the fact that $\bar{\alpha}^{1} \upharpoonright\left[n_{0}, \omega\right)=$ $\left.\bar{\alpha}^{2} \upharpoonright\left[n_{0}, \omega\right)\right)$. Clearly
$\left(\otimes^{4}\right) \quad\left(\forall n>n_{0}\right)\left(u\left(\bar{\alpha}^{1} \upharpoonright n\right) \backslash n_{0}=u\left(\bar{\alpha}^{2} \upharpoonright n\right) \backslash n_{0}\right)$.
Hence, applying $\left(\otimes^{4}\right)+\left(\otimes^{2}\right)+$ the definition of $k_{1}(-)$, we conclude that
$\left(\otimes^{5}\right) \quad\left(\forall n \geq n_{1}\right)\left(k_{1}\left(\bar{\alpha}^{1} \upharpoonright n\right)=k_{1}\left(\bar{\alpha}^{2} \upharpoonright n\right)\right)$,
and then applying $\left(\otimes^{4}\right)+\left(\otimes^{2}\right)+\left(\otimes^{5}\right)+$ the definition of $k_{0}(-)$, we get
$\left(\otimes^{6}\right) \quad$ for all $n \geq n_{1}$: either $k_{0}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\max u\left(\bar{\alpha}^{1}\right)$ and $k_{0}\left(\bar{\alpha}^{2} \upharpoonright n\right)=$ $\max u\left(\bar{\alpha}^{2}\right)$, or $k_{0}\left(\bar{\alpha}^{1} \upharpoonright n\right)=k_{0}\left(\bar{\alpha}^{2} \upharpoonright n\right)$.
Since

$$
\left(\forall n \geq n_{0}\right)\left(f_{n}\left(\bar{\alpha}^{1}\right)=f_{n}\left(\bar{\alpha}^{2}\right) \& g_{n}\left(\bar{\alpha}^{1}\right)=g_{n}\left(\bar{\alpha}^{2}\right)\right)
$$

and by $\left(\otimes^{2}\right)+\left(\otimes^{5}\right)+$ the choice of $n_{0}+$ the definition of $\mathbf{l}(-)$, we get (compare the proof of 2.6.1)

$$
\begin{equation*}
\left(\forall n \geq n_{1}\right)\left(\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\mathbf{l}\left(\bar{\alpha}^{2} \upharpoonright n\right)\right) \tag{7}
\end{equation*}
$$

and by $\left(\otimes^{2}\right)+\left(\otimes^{7}\right)+\left(\otimes^{6}\right)+$ the definition of $\mathbf{m}(-)$,

$$
\left(\forall n \geq n_{3}\right)\left(\mathbf{m}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\mathbf{m}\left(\bar{\alpha}^{2} \upharpoonright n\right) \geq n_{2}\right)
$$

Moreover, now we easily get

$$
\left(\forall n \geq n_{3}\right)\left(\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\mathbf{k}\left(\bar{\alpha}^{2} \upharpoonright n\right)\right)
$$

For integers $n_{0} \leq n_{1} \leq n_{2}$ we define functions $F_{n_{0}, n_{1}, n_{2}}^{0}:{ }^{n_{2}} \lambda \rightarrow \mathcal{H}\left(\aleph_{0}\right)$ by letting $F_{n_{0}, n_{1}, n_{2}}^{0}\left(\alpha_{0}, \ldots, \alpha_{n_{2}-1}\right)$ (for $\left\langle\alpha_{0}, \ldots, \alpha_{n_{2}-1}\right\rangle \in{ }^{n_{2}} \lambda$) be the sequence consisting of:
(a) $\left\langle n_{0}, n_{1}, n_{2}\right\rangle$,
(b) the set $T_{n_{1}, n_{2}}$ of all terms τ_{l}^{n} such that $n \leq n_{2}-n_{1}$ and either $l \leq n_{2}$ (we will call it the simple case) or τ_{l}^{n} is a composition of depth at most n_{2} of such terms,
(c) $\left\langle\eta_{\alpha}\left\lceil n_{2}, n, l,\left\langle i_{0}, \ldots, i_{n-1}\right\rangle\right\rangle\right.$ for $n \leq n_{2}-n_{1}, i_{0}, \ldots, i_{n-1} \in\left[n_{1}, n_{2}\right)$ and l such that $\tau_{l}^{n} \in T_{n_{1}, n_{2}}$ and $\alpha=\tau_{l}^{n}\left(\alpha_{i_{0}}, \ldots, \alpha_{i_{n-1}}\right)$,
(d) $\left\langle n, l,\left\langle i_{0}, \ldots, i_{n-1}\right\rangle, i\right\rangle$ for $n \leq n_{2}-n_{1}, i_{0}, \ldots, i_{n-1} \in\left[n_{1}, n_{2}\right), i \in$ $\left[n_{0}, n_{1}\right)$ and l such that $\tau_{l}^{n} \in T_{n_{1}, n_{2}}$ and $\alpha_{i}=\tau_{l}^{n}\left(\alpha_{i_{0}}, \ldots, \alpha_{i_{n-1}}\right)$,
(e) equalities among appropriate terms, i.e. all tuples

$$
\left\langle n^{\prime}, l^{\prime}, n^{\prime \prime}, l^{\prime \prime},\left\langle i_{0}^{\prime}, \ldots, i_{n^{\prime}-1}^{\prime}\right\rangle,\left\langle i_{0}^{\prime \prime}, \ldots, i_{n^{\prime \prime}-1}^{\prime \prime}\right\rangle\right\rangle
$$

such that $n_{1} \leq i_{0}^{\prime}<\ldots<i_{n^{\prime}-1}^{\prime}<n_{2}, n_{1} \leq i_{0}^{\prime \prime}<\ldots<i_{n^{\prime \prime}-1}^{\prime \prime}<n_{2}$, $n^{\prime}, n^{\prime \prime} \leq n_{2}-n_{1}, l^{\prime}, l^{\prime \prime}$ are such that $\tau_{l^{\prime}}^{n^{\prime}}, \tau_{l^{\prime \prime}}^{n^{\prime \prime}} \in T_{n_{1}, n_{2}}$ and

$$
\tau_{l^{\prime}}^{n^{\prime}}\left(\alpha_{i_{0}^{\prime}}, \ldots, \alpha_{i_{n^{\prime}-1}^{\prime}}^{\prime}\right)=\tau_{l^{\prime \prime}}^{n^{\prime \prime}}\left(\alpha_{i_{0}^{\prime \prime}}, \ldots, \alpha_{i_{n^{\prime \prime}-1}^{\prime \prime}}\right) .
$$

(Note that the value of $F_{n_{0}, n_{1}, n_{2}}^{0}(\bar{\alpha})$ does not depend on $\bar{\alpha} \upharpoonright n_{0}$.)
Finally we define functions $F_{n}:{ }^{n} \lambda \rightarrow \mathcal{H}\left(\aleph_{0}\right)$ (for $1<n<\omega$) by:

$$
\text { if } \bar{\alpha} \in{ }^{n} \lambda \quad \text { then } \quad F_{n}(\bar{\alpha})=F_{\mathbf{k}(\bar{\alpha}), \mathbf{l}(\bar{\alpha}), n}^{0}(\bar{\alpha})
$$

As $\mathcal{H}\left(\aleph_{0}\right)$ is countable we may think that these functions are into ω. We are going to show that they witness $\mathcal{K} \mathcal{L}(\lambda, \omega)$.

CLAIM 2.6.3. If $\bar{\alpha}^{1}, \bar{\alpha}^{2} \in{ }^{\omega} \lambda$ are such that $\left(\forall^{\infty} n\right)\left(\alpha_{n}^{1}=\alpha_{n}^{2}\right)$ then

$$
\left(\forall^{\infty} n\right)\left(F_{n}\left(\bar{\alpha}^{1} \upharpoonright n\right)=F_{n}\left(\bar{\alpha}^{2} \upharpoonright n\right)\right)
$$

Proof. Take $m_{0}<\omega$ such that for all $n \in\left[m_{0}, \omega\right)$ we have

$$
\alpha_{n}^{1}=\alpha_{n}^{2}, \quad \mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\mathbf{l}\left(\bar{\alpha}^{2} \upharpoonright n\right), \quad \mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\mathbf{k}\left(\bar{\alpha}^{2} \upharpoonright n\right)
$$

(possible by 2.6.2). Let $m_{1}>m_{0}$ be such that for all $n \geq m_{1}$,

$$
\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\mathbf{k}\left(\bar{\alpha}^{2} \upharpoonright n\right)>m_{0}
$$

(use 2.6.1). Then, for $n \geq m_{1}, i=1,2$ we have

$$
F_{n}\left(\bar{\alpha}^{i} \upharpoonright n\right)=F_{\mathbf{k}\left(\bar{\alpha}^{i} \upharpoonright n\right), \mathbf{l}\left(\bar{\alpha}^{i} \upharpoonright n\right), n}^{0}\left(\bar{\alpha}^{i} \upharpoonright n\right)=F_{\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright n\right), \mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright n\right), n}^{0}\left(\bar{\alpha}^{i} \upharpoonright n\right) .
$$

Since the value of $F_{n_{0}, n_{1}, n_{2}}^{0}(\bar{\beta})$ does not depend on $\bar{\beta} \upharpoonright n_{0}$ and the sequences $\bar{\alpha}^{1} \upharpoonright n, \bar{\alpha}^{2} \upharpoonright n$ agree on $\left[m_{0}, \omega\right)$, we get
$F_{\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright n\right), \mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright n\right), n}^{0}\left(\bar{\alpha}^{1} \upharpoonright n\right)=F_{\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright n\right), \mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright n\right), n}^{0}\left(\bar{\alpha}^{2} \upharpoonright n\right)=F_{\mathbf{k}\left(\bar{\alpha}^{2} \upharpoonright n\right), \mathbf{l}\left(\bar{\alpha}^{2} \upharpoonright n\right), n}^{0}\left(\bar{\alpha}^{2} \upharpoonright n\right)$,
and hence

$$
\left(\forall n \geq m_{1}\right)\left(F_{n}\left(\bar{\alpha}^{1} \upharpoonright n\right)=F_{n}\left(\bar{\alpha}^{2} \upharpoonright n\right)\right) .
$$

CLAIM 2.6.4. If $\bar{\alpha}^{1}, \bar{\alpha}^{2} \in{ }^{\omega} \lambda$ and $\left(\forall^{\infty} n\right)\left(F_{n}\left(\bar{\alpha}^{1} \upharpoonright n\right)=F_{n}\left(\bar{\alpha}^{2} \upharpoonright n\right)\right)$ then $\left(\forall^{\infty} n\right)\left(\alpha_{n}^{1}=\alpha_{n}^{2}\right)$.

Proof. Take $n_{0}<\omega$ such that

$$
u\left(\bar{\alpha}^{1}\right) \cup u\left(\bar{\alpha}^{2}\right) \subseteq n_{0} \quad \text { and } \quad\left(\forall n \geq n_{0}\right)\left(F_{n}\left(\bar{\alpha}^{1} \upharpoonright n\right)=F_{n}\left(\bar{\alpha}^{2} \upharpoonright n\right)\right)
$$

Then for all $n \geq n_{0}$ we have (by clause (a) of the definition of $F_{n_{0}, n_{1}, n_{2}}^{0}$)

$$
\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\mathbf{l}\left(\bar{\alpha}^{2} \upharpoonright n\right) \quad \text { and } \quad \mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright n\right)=\mathbf{k}\left(\bar{\alpha}^{2} \upharpoonright n\right)
$$

Further, let $n_{1}>n_{0}$ be such that for all $n \geq n_{1}, \mathbf{k}\left(\bar{\alpha}^{1} \mid n\right)>n_{0}$ and $k_{0}\left(\bar{\alpha}^{1} \upharpoonright n_{1}\right)=\max u\left(\bar{\alpha}^{1}\right)$ (exists by 2.6.1) and choose $n_{2}>n_{1}$ such that $n \geq n_{2}$ implies $\mathbf{m}\left(\bar{\alpha}^{1} \upharpoonright n\right)>n_{2}$.

We are going to show that $\alpha_{n}^{1}=\alpha_{n}^{2}$ for all $n>n_{1}$. Assume not. Then we have $n>n_{1}$ with $\alpha_{n}^{1} \neq \alpha_{n}^{2}$ and thus $\eta_{\alpha_{n}^{1}} \neq \eta_{\alpha_{n}^{2}}$. Take $n^{\prime}>n$ such that $\eta_{\alpha_{n}^{1}}\left\lceil n^{\prime} \neq \eta_{\alpha_{n}^{2}}\left\lceil n^{\prime}\right.\right.$. Applying 2.6.1(2) and (4) choose $n^{\prime \prime}>n^{\prime}$ such that

$$
\mathbf{m}\left(\bar{\alpha}^{1} \upharpoonright n^{\prime \prime}\right)>n^{\prime} \quad \text { and } \quad k_{0}\left(\bar{\alpha}^{1} \upharpoonright n^{\prime \prime}\right)=\max u\left(\bar{\alpha}^{1}\right)
$$

Now define inductively: $m_{0}=n^{\prime \prime}, m_{k+1}=\mathbf{m}\left(\bar{\alpha}^{1} \upharpoonright m_{k}\right)$. Thus

$$
n^{\prime \prime}=m_{0}>\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{0}\right) \geq m_{1}>\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{1}\right) \geq m_{2}>\ldots
$$

and (by induction on k)

$$
m_{k}>\max u\left(\bar{\alpha}^{1}\right) \Rightarrow k_{0}\left(\bar{\alpha}^{1} \upharpoonright m_{k}\right)=\max u\left(\bar{\alpha}^{1}\right)
$$

(see the definition of \mathbf{m}). Let k^{*} be the first such that $n \geq m_{k^{*}}$ (so $k^{*} \geq 2$, exists by the choice of n_{1}). Note that by the choice of n_{1} above we necessarily have

$$
m_{k^{*}}>\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}}\right)=\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-1}\right)>n_{0}
$$

Hence for all $k<k^{*}$:

$$
\begin{gathered}
F_{m_{k}}\left(\bar{\alpha}^{1} \upharpoonright m_{k}\right)=F_{m_{k}}\left(\bar{\alpha}^{2} \upharpoonright m_{k}\right), \\
\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k+1}\right)=\mathbf{l}\left(\bar{\alpha}^{2} \upharpoonright m_{k+1}\right)=\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright m_{k}\right)=\mathbf{k}\left(\bar{\alpha}^{2} \upharpoonright m_{k}\right) .
\end{gathered}
$$

By the definition of the functions $\mathbf{l}, \mathbf{m}, \mathbf{k}$ and the choice of m_{0} (remember $\left.k_{0}\left(\bar{\alpha}^{1} \upharpoonright m_{0}\right)=\max u\left(\bar{\alpha}^{1}\right)\right)$ we know that for each $i \in\left[\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright m_{k}\right), \mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k}\right)\right)$ and $k<k^{*}$, for some $\tau_{l}^{m} \in T_{\mathbf{l}\left(\bar{\alpha}^{1} \mid m_{k}\right), m_{k}}$ and $i_{0}, \ldots, i_{m-1} \in\left[\mathbf{l}\left(\bar{\alpha}^{1} \mid m_{k}\right), m_{k}\right)$ we have $\alpha_{i}^{1}=\tau_{l}^{m}\left(\alpha_{i_{0}}^{1}, \ldots, \alpha_{i_{m-1}}^{1}\right)$. Moreover we may demand that τ_{l}^{m} is a composition of depth at most $\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k}\right)-i$ of simple case terms. Since

$$
F_{\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright m_{k}\right), \mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k}\right), m_{k}}^{0}\left(\bar{\alpha}^{1} \upharpoonright m_{k}\right)=F_{\mathbf{k}\left(\bar{\alpha}^{2} \upharpoonright m_{k}\right), \mathbf{l}\left(\bar{\alpha}^{2} \upharpoonright m_{k}\right), m_{k}}^{0}\left(\bar{\alpha}^{2} \upharpoonright m_{k}\right)
$$

we conclude that (by clause (d) of the definition of the functions $F_{n_{0}, n_{1}, n_{2}}^{0}$)

$$
\alpha_{i}^{2}=\tau_{l}^{m}\left(\alpha_{i_{0}}^{2}, \ldots, \alpha_{i_{m-1}}^{2}\right)
$$

Now look at our n. If $\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-1}\right)>n$ then $\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-1}\right) \leq n<$ $\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-1}\right)$ and thus we find $i_{0}, \ldots, i_{m-1} \in\left[\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-1}\right), m_{k^{*}-1}\right)$ and $\tau_{l}^{m} \in$ $T_{1\left(\bar{\alpha}^{1} \mid m_{k^{*}-1}\right), m_{k^{*}-1}}$ such that

$$
\alpha_{n}^{1}=\tau_{l}^{m}\left(\alpha_{i_{0}}^{1}, \ldots, \alpha_{m-1}^{1}\right) \quad \text { and } \quad \alpha_{n}^{2}=\tau_{l}^{m}\left(\alpha_{i_{0}}^{2}, \ldots, \alpha_{m-1}^{2}\right)
$$

If $\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-1}\right) \leq n$ then $n \in\left[\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-2}\right), \mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-2}\right)\right)\left(\operatorname{as} \mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-1}\right)\right.$ $=\mathbf{k}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-2}\right)$ and $\left.n<m_{k^{*}-1} \leq \mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-2}\right)\right)$. Hence, for some i_{0}, \ldots, i_{m-1} $\in\left[\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-2}\right), m_{k^{*}-2}\right)$ and $\tau_{l}^{m} \in T_{\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-2}\right), m_{k^{*}-2}}$, we have

$$
\alpha_{n}^{1}=\tau_{l}^{m}\left(\alpha_{i_{0}}^{1}, \ldots, \alpha_{m-1}^{1}\right) \quad \text { and } \quad \alpha_{n}^{2}=\tau_{l}^{m}\left(\alpha_{i_{0}}^{2}, \ldots, \alpha_{m-1}^{2}\right) .
$$

In both cases we may additionally demand that the term τ_{l}^{m} is a composition of depth $\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-1}\right)-n$ (or $\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{k^{*}-2}\right)$ - n, respectively) of terms of the simple case. Now we proceed inductively (taking care of the depth of the terms involved) and we find a term $\tau \in T_{1\left(\bar{\alpha}^{1} \upharpoonright m_{0}\right), m_{0}}$ (which is a composition of depth at most $\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{0}\right)-n$ of terms of the simple case) and $i_{0}, \ldots, i_{m-1} \in\left[\mathbf{l}\left(\bar{\alpha}^{1} \upharpoonright m_{0}\right), m_{0}\right)$ such that

$$
\alpha_{n}^{1}=\tau\left(\alpha_{i_{0}}^{1}, \ldots, \alpha_{m-1}^{1}\right) \quad \text { and } \quad \alpha_{n}^{2}=\tau\left(\alpha_{i_{0}}^{2}, \ldots, \alpha_{m-1}^{2}\right) .
$$

But now applying clause (c) of the definition of the functions $F_{n_{0}, n_{1}, n_{2}}^{0}$ we conclude that $\eta_{\alpha_{n}^{1}}\left\lceil m_{0}=\eta_{\alpha_{n}^{2}}\left\lceil m_{0}\right.\right.$, contradicting the choice of n^{\prime} and the fact that $m_{0}>n^{\prime}$.

The last two claims finish the proof of the theorem.
REmark 2.7. If the model M has $\kappa<\lambda$ functions (so $\left\langle\tau_{i}^{n}\left(x_{0}, \ldots, x_{n-1}\right)\right.$: $i<\kappa\rangle$ lists the n-place terms) we can prove $\mathcal{K} \mathcal{L}(\lambda, \kappa)$ and the proof is similar.

Final Remarks 2.8. (1) Now we phrase exactly what is needed to carry out the proof of Theorem 1.1 for $\lambda>\kappa$. It is:
$(\boxtimes) \quad$ for every model M with universe λ and Skolem functions and with countable vocabulary, we can find pairwise distinct $\alpha_{n, l}<\lambda$ (for $n<\omega, l<\omega)$ such that
$(\otimes) \quad$ if $m_{0}<m_{1}<\omega$ and $l_{i}^{\prime}<l_{i}^{\prime \prime}$ for $i<m_{0}$ and $l_{i}<\omega$ for $i \in\left[m_{0}, m_{1}\right)$ and $k_{0}<k_{1}<k_{2}<\omega$ then the models

$$
\begin{aligned}
& \left(\operatorname{Sk}\left(\left\{\alpha_{i, l_{i}^{\prime}}, \alpha_{i, l_{i}^{\prime \prime}}: i<m_{0}\right\} \cup\left\{\alpha_{m_{0}, k_{0}}, \alpha_{m_{0}, k_{1}}\right\} \cup\left\{\alpha_{i, l_{i}}: i \in\left(m_{0}, m_{1}\right)\right\}\right),\right. \\
& \quad \alpha_{0, l_{0}^{\prime}}, \alpha_{0, l_{0}^{\prime \prime}}, \alpha_{1, l_{1}^{\prime}}, \alpha_{1, l_{1}^{\prime \prime}}, \ldots, \alpha_{m_{0}-1, l_{m_{0}-1}^{\prime}}, \alpha_{m_{0}-1, l_{m_{0}-1}^{\prime \prime}}, \alpha_{m_{0}, k_{0}}, \\
& \left.\quad \alpha_{m_{0}, k_{1}}, \alpha_{m_{0}+1, l_{m_{0}+1}}, \ldots, \alpha_{m_{1}-1, l_{m_{1}-1}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\operatorname{Sk}\left(\left\{\alpha_{i, l_{i}^{\prime}}, \alpha_{i, l_{i}^{\prime \prime}}: i<m_{0}\right\} \cup\left\{\alpha_{m_{0}, k_{0}}, \alpha_{m_{0}, k_{2}}\right\} \cup\left\{\alpha_{i, l_{i}}: i \in\left(m_{0}, m_{1}\right)\right\}\right),\right. \\
& \quad \alpha_{0, l_{0}^{\prime}}, \alpha_{0, l_{0}^{\prime \prime}}, \alpha_{1, l_{1}^{\prime}}, \alpha_{1, l_{1}^{\prime \prime}}, \ldots, \alpha_{m_{0}-1, l_{m_{0}-1}^{\prime}}, \alpha_{m_{0}-1, l_{m_{0}-1}^{\prime \prime}}, \alpha_{m_{0}, k_{0}}, \\
& \left.\quad \alpha_{m_{0}, k_{2}}, \alpha_{m_{0}+1, l_{m_{0}+1}}, \ldots, \alpha_{m_{1}-1, l_{m_{1}-1}}\right)
\end{aligned}
$$

are isomorphic and the isomorphism is the identity on their intersection and they have the same intersection with κ.
For more details and more related results we refer the reader to [Sh:F254].
(2) Together with $1.5,2.7$ this gives a good bound on the consistency strength of $\neg \mathcal{K} \mathcal{L}(\lambda, \kappa)$.
(3) What if we ask $F_{n}:{ }^{n} \lambda \rightarrow{ }^{\omega>} \kappa$ such that $F_{n}(\eta) \unlhd F_{n+1}(\eta)$ and $\eta \in{ }^{\omega} \lambda \Rightarrow F(\eta)=\bigcup F_{n}(\eta \upharpoonright n) \in{ }^{\omega} \kappa$? No real change.

References

[Ka90] S. Kalikow, Sequences of reals to sequences of zeros and ones, Proc. Amer. Math. Soc. 108 (1990), 833-837.
[Ko84] P. Koepke, The consistency strength of the free-subset property for ω_{ω}, J. Symbolic Logic 49 (1984), 1198-1204.
[Mi91] A. W. Miller, Arnie Miller's problem list, in: H. Judah (ed.), Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 645-654.
[Sh 76] S. Shelah, Independence of strong partition relation for small cardinals, and the free-subset problem, J. Symbolic Logic 45 (1980), 505-509.
[Sh 124] -, \aleph_{ω} may have a strong partition relation, Israel J. Math. 38 (1981), 283288.
[Sh 110] -, Better quasi-orders for uncountable cardinals, ibid. 42 (1982), 177-226.
[Sh:b] -, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.
[Sh:g] —, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994.
[Sh 481] -, Was Sierpiński right? III Can continuum-c.c. times c.c.c. be continuumc.c.? Ann. Pure Appl. Logic 78 (1996), 259-269.
[Sh:F254] -, More on Kalikow Property of pairs of cardinals.
[Sh 513] -, PCF and infinite free subsets, Arch. Math. Logic, to appear.
[Si70] J. Silver, A large cardinal in the constructible universe, Fund. Math. 69 (1970), 93-100.

Institute of Mathematics
The Hebrew University of Jerusalem 91904 Jerusalem, Israel
E-mail: shelah@math.huji.ac.il

Department of Mathematics
Rutgers University
New Brunswick, NJ 08854, U.S.A.
URL: http://www.math.rutgers.edu/~shelah

Received 2 September 1996;
in revised form 9 August 1999

[^0]: 2000 Mathematics Subject Classification: 03E35, 03E05.
 Key words and phrases: set theory, forcing, continuity, Kalikow, free subset. The research was partially supported by the Israel Science Foundation. Publication 590.

