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Cellularity of free products of Boolean
algebras (or topologies)

by

Saharon She l ah (Jerusalem and New Brunswick, NJ)

Abstract. The aim this paper is to present an answer to Problem 1 of Monk [10],
[11]. We do this by proving in particular that if µ is a strong limit singular cardinal,
θ = (2cf(µ))+ and 2µ = µ+ then there are Boolean algebras B1,B2 such that

c(B1) = µ, c(B2) < θ but c(B1 ∗ B2) = µ+.

Further we improve this result, deal with the method and the necessity of the assumptions.
In particular we prove that if B is a ccc Boolean algebra and µiω ≤ λ = cf(λ) ≤ 2µ then
B satisfies the λ-Knaster condition (using the “revised GCH theorem”).

0. Introduction

Notation 0.1. (1) In the present paper all cardinals are infinite so we
will not repeat this additional demand. Cardinals will be denoted by λ, µ,
θ (with possible indices) while ordinal numbers will be called α, β, ζ, ξ, ε,
i, j. Usually δ will stand for a limit ordinal (we may forget to repeat this
assumption).

(2) Sequences of ordinals will be called η, ν, % (with possible indices). For
sequences η1, η2 their longest common initial segment is denoted by η1 ∧ η2.
The length of the sequence η is lg(η).

(3) Ideals are supposed to be proper and contain all singletons. For a
limit ordinal δ the ideal of bounded subsets of δ is denoted by Jbd

δ . If I is
an ideal on a set X then I+ is the family of I-large sets, i.e.

a ∈ I+ if and only if a ⊆ X & a 6∈ I,
and Ic is the dual filter of sets with the complements in I.
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Notation 0.2. (1) In a Boolean algebra we denote the Boolean opera-
tions by ∩ (and

⋂
), ∪ (and

⋃
), −. The distinguished elements are 0 and 1.

In the cases which may be confusing we will add indices to underline in which
Boolean algebra the operation (or element) is considered, but generally we
will not do it.

(2) For a Boolean algebra B and an element x ∈ B we write

x0 = x and x1 = −x.
(3) The free product of Boolean algebras B1, B2 is denoted by B1 ∗ B2.

We will use F to denote the free product of a family of Boolean algebras.

Definition 0.3. (1) A Boolean algebra B satisfies the λ-cc if there is no
family F ⊆ B+ := B \ {0} such that |F| = λ and any two members of F are
disjoint (i.e., their meet in B is 0).

(2) The cellularity of the algebra B is

c(B) = sup{|F| : F ⊆ B+ & (∀x, y ∈ F)(x 6= y ⇒ x ∩ y = 0)},
c+(B) = sup{|F|+ : F ⊆ B+ & (∀x, y ∈ F)(x 6= y ⇒ x ∩ y = 0)}.

(3) For a topological space (X, τ),

c(X, τ) = sup{|U| : U is a family of pairwise disjoint
non-empty open sets}.

The problem can be posed in each of the three ways (λ-cc is the way
of forcing, the cellularity of Boolean algebras is the approach of Boolean
algebraists, and the cellularity of a topological space is the way of general
topologists). It is well known that the three are equivalent, though (1)
makes the attainment problem more explicit. We use the second approach.

A stronger property than λ-cc is the λ-Knaster property. This property
behaves nicely in free products—it is productive. We will use it in our
construction.

Definition 0.4. A Boolean algebra B has the λ-Knaster property if for
every sequence 〈zε : ε < λ〉 ⊆ B+ there is A ∈ [λ]λ such that

ε1, ε2 ∈ A ⇒ zε1 ∩ zε2 6= 0.

We are interested in the behaviour of the cellularity of Boolean algebras
when their free product is considered.

Thema 0.5. When, for Boolean algebras B1, B2,

c+(B1) ≤ λ1 & c+(B2) ≤ λ2 ⇒ c+(B1 ∗ B2) ≤ λ1 + λ2 ?

There are a lot of results about it, particularly if λ1 = λ2 (see [22] or
[10], more [24]). It is well known that if

(λ+
1 + λ+

2 ) → (λ+
1 , λ

+
2 )2
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then the answer is “yes”. These are exactly the cases for which the “yes”
answer is known. Under GCH the only problem which remained open was
the one presented below:

The Problem We Adddress 0.6 (posed by D. Monk as Problem 1 in
[10], [11] under GCH). Are there Boolean algebras B1, B2 and cardinals µ, θ
such that:

(1) λ1 = µ is singular, µ > λ2 = θ > cf(µ) and
(2) c(B1) = µ, c(B2) ≤ θ but c(B1 ∗ B2) > µ?

We will answer this question proving in particular the following result (see
4.4):

• If µ is a strong limit singular cardinal, θ = (2cf(µ))+ and 2µ = µ+ then
there are Boolean algebras B1,B2 such that

c(B1) = µ, c(B2) < θ but c(B1 ∗ B2) = µ+.

Later we deal with better results by refining the method.

Remark 0.7. On products of many Boolean algebras and square bracket
arrows see [17, 1.2A, 1.3B].

If λ→ [µ]2θ, is the cardinal θ is possibly finite, Bi (for i < θ) are Boolean
algebras such that for each j < θ the free product Fi∈θ\{j} Bi satisfies the
µ-cc then the algebra B = Fi<θ Bi satisfies the λ-cc.

[Why? Assume 〈aζ
i : i < θ〉 ∈

∏
i<θ B+

i (for ζ < λ) such that for every
ζ < ξ < λ, for some i = i(ζ, ξ), Bi |=“aζ

i ∩ a
ξ
i = 0”. We can find A ∈ [λ]µ

and i∗ < θ such that i(ζ, ξ) 6= i∗ for ζ < ξ from A. Then 〈aζ
i : i < θ, i 6= i∗〉

for ζ ∈ A exemplifies that Fi∈θ\{i∗} Bi fails the µ-cc. We can also deal with
ultraproducts and other products similarly.]

1. Preliminaries: products of ideals

Notation 1.1. For an ideal J on δ the quantifier (∀J i < δ) means “for
all i < δ except a set from the ideal J”, i.e.,

(∀J i < δ)ϕ(i) ≡ {i < δ : ¬ϕ(i)} ∈ J.

The dual quantifier (∃J i < δ) means “for a J-positive set of i < δ”.

Proposition 1.2. Assume that λ0 > λ1 > . . . > λn−1 are cardinals, I l

are ideals on λl (for l < n) and B ⊆
∏

l<n λ
l. Further suppose that :

(α) (∃I0
γ0) . . . (∃In−1

γn−1)(〈γl : l < n〉 ∈ B),
(β) the ideal I l is (2λl+1

)+-complete (for l + 1 < n).

Then there are sets Xl ⊆ λl, Xl 6∈ I l such that
∏

l<nXl ⊆ B.
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[Note that this translates the situation to arity 1; it is a kind of polarized
(1, . . . , 1)-partition with ideals.]

P r o o f. We show it by induction on n. Define

E0 := {(γ′, γ′′) : γ′, γ′′ < λ0 and for all γ1 < λ1, . . . , γn−1 < λn−1,

(〈γ′, γ1, . . . , γn−1〉 ∈ B ⇔ 〈γ′′, γ1, . . . , γn−1〉 ∈ B)}.

Clearly E0 is an equivalence relation on λ0 with ≤ 2
∏

0<m<n λm

= 2λ1
equiv-

alence classes. Hence the set

A0 :=
⋃
{A : A is an E0-equivalence class, A ∈ I0}

is in the ideal I0. Let

A∗
0 := {γ0 < λ0 : (∃I1

γ1) . . . (∃In−1
γn−1)(〈γ0, γ1, . . . , γn−1〉 ∈ B)}.

The assumption (α) implies that A∗
0 6∈ I0 and hence we may choose γ∗0 ∈

A∗
0 \A0. Let

B1 := {γ̄ ∈
∏n−1

k=1λ
k : 〈γ∗0 〉_γ̄ ∈ B}.

Since γ∗0 ∈ A∗
0 we are sure that

(∃I1
γ1) . . . (∃In−1

γn−1)(〈γ1, . . . , γn−1〉 ∈ B1).

Hence we may apply the inductive hypothesis for n− 1 and B1 to find sets
X1 ∈ (I1)+, . . . , Xn−1 ∈ (In−1)+ such that

∏n−1
l=1 Xl ⊆ B1, so then

(∀γ1 ∈ X1) . . . (∀γn−1 ∈ Xn−1)(〈γ∗0 , γ1, . . . , γn−1〉 ∈ B).

Take X0 to be the E0-equivalence class of γ∗0 (so X0 ∈ (I0)+ as γ∗0 6∈ A0).
By the definition of the relation E0 and the choice of the sets Xl we see that
for each γ0 ∈ X0,

(∀γ1 ∈ X1) . . . (∀γn−1 ∈ Xn−1)(〈γ0, γ1, . . . , γn−1〉 ∈ B),

which means that
∏

l<nXl ⊆ B.

Proposition 1.3. Assume that λ0 > λ1 > . . . > λn−1 ≥ σ are cardinals,
Il are ideals on λl (for l < n) and B ⊆

∏
l<n λl. Further suppose that :

(α) (∃I0γ0) . . . (∃In−1γn−1)(〈γl : l < n〉 ∈ B),
(β) Il is ((λl+1)σ)+-complete for each l < n− 1, and [λn−1]<σ ⊆ In−1.

Then there are sets Xl ∈ [λl]σ such that
∏

l<nXl ⊆ B.

P r o o f. The proof is by induction on n. If n = 1 then there is nothing
to do as In−1 contains all subsets of λn−1 of size < σ and λn1 ≥ σ so every
A ∈ I+

n1
has cardinality ≥ σ.

Let n > 1 and let

a0 := {γ ∈ λ0 : (∃I1γ1) . . . (∃In−1γn−1)(〈γ, γ1, . . . , γn−1〉 ∈ B)}.
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By our assumptions we know that a0 ∈ (I0)+. For each γ ∈ a0 we may
apply the inductive hypothesis to the set

Bγ := {〈γ1, . . . , γn−1〉 ∈
∏

0<l<nλl : 〈γ, γ1, . . . , γn−1〉 ∈ B}

and get sets Xγ
1 ∈ [λ1]σ, . . . , X

γ
n−1 ∈ [λn−1]σ such that∏

0<l<n

Xγ
l ⊆ Bγ .

There are at most (λ1)σ possible sequences 〈Xγ
1 , . . . , X

γ
n−1〉, and the ideal

I0 is ((λ1)σ)+-complete, so for some sequence 〈X1, . . . , Xn−1〉 and a set
a∗ ⊆ a0, a∗ ∈ (I0)+ we have

(∀γ ∈ a∗)(Xγ
1 = X1 & . . . & Xγ

n−1 = Xn−1).

Choose X0 ∈ [a∗]σ (remember that I0 contains singletons and it is complete
enough to make sure that σ ≤ |a∗|). Clearly

∏
l<nXl ⊆ B.

Remark 1.4. We can use σ0 ≥ σ1 ≥ . . . ≥ σn−1, Il is (λσl+1
l+1 )+-

complete, [λl]<σl ⊆ Il.

Proposition 1.5. Assume that n < ω and λm
l , χm

l , Pm
l , Im

l , Im and B
are such that for l,m ≤ n:

(α) Im
l is a χm

l -complete ideal on λm
l (for l,m ≤ n),

(β) Pm
l ⊆ P(λm

l ) is a family dense in (Im
l )+ in the sense that

(∀X ∈ (Im
l )+)(∃a ∈ Pm

l )(a ⊆ X),

(γ) Im = {X⊆
∏

l≤n λ
m
l : ¬(∃Im

0 γ0) . . . (∃Im
n γn)(〈γ0, . . . , γn〉 ∈ X)} [thus

Im is the ideal on
∏

l≤n λ
m
l such that the dual filter (Im)c is the Fubini

product of the filters (Im
0 )c, . . . , (Im

n )c],
(δ) χm

n−m >
∑n

l=m+1(|P l
n−l|+

∑n−l
k=0 λ

l
k),

(ε) B ⊆
∏

m≤n

∏
l≤n λ

m
l is a set satisfying

(∃I0
η0)(∃I1

η1) . . . (∃In

ηn)(〈η0, η1, . . . , ηn〉 ∈ B).

Then there are sets X0, . . . , Xn such that for m ≤ n:

(a) Xm ⊆
∏

l≤n−m λm
l ,

(b) if η, ν ∈ Xm, η 6= ν then

(i) η�(n−m) = ν�(n−m),
(ii) η(n−m) 6= ν(n−m),

(c) {η(n−m) : η ∈ Xm} ∈ Pm
n−m,

(d) for each 〈η0, . . . , ηn〉 ∈
∏

m≤nXm there is 〈η∗0 , . . . , η∗n〉 ∈ B such that
(∀m ≤ n)(ηm E η∗m).
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Remark 1.5.A. (1) Note that the sets Xm in the assertion of 1.5 may
be thought of as sets of the form Xm = {νm

_〈α〉 : α ∈ am} for some
νm ∈

∏
l<n−m λm

l and am ∈ Pm
n−m.

(2) We will apply this proposition with λm
l = λl, Im

l = Il and λl > χl >∑
k<l λk.
(3) In the assumption (δ) of 1.5 we may assume that the last sum on the

right hand side ranges from k = 0 to n − l − 1. We did not formulate that
assumption in this way as with n− l it is easier to handle the induction step
and this change is not important for our applications.

(4) In the assertion (d) of 1.5 we can have η∗l depending on 〈η0, . . . , ηl〉
only.

P r o o f (of Proposition 1.5). The proof is by induction on n. For n = 0
there is nothing to do. Let us describe the induction step.

Suppose 0 < n < ω and λm
l , χm

l , Pm
l , Im

l , Im (for l,m ≤ n) and B
satisfy the assumptions (α)–(ε). Let

B∗ := {〈η0, η1�n, . . . , ηn�n〉 : ηm ∈
∏

l≤nλ
m
l (for m ≤ n) and

〈η0, η1, . . . , ηn〉 ∈ B},
and for η0 ∈

∏
l≤n λ

0
l let

B∗
η0

:= {〈ν1, . . . , νn〉 ∈
∏n

m=1

∏n−1
l=0 λ

m
l : 〈η0, ν1, . . . , νn〉 ∈ B∗}.

Let Jm (for 1 ≤ m ≤ n) be the ideal on
∏n−1

l=0 λ
m
l coming from the ideals

Im
l , i.e., a set X ⊆

∏
l<n λ

m
l is in Jm if and only if

¬(∃Im
0 γ0) . . . (∃Im

n−1γn−1)(〈γ0, . . . , γn−1〉 ∈ X).

Let us call the set B∗
η0

big if

(∃J1
ν1) . . . (∃Jn

νn)(〈ν1, . . . , νn〉 ∈ B∗
η0

).

We may write more explicitly what the bigness means: the above condition
is equivalent to

(∃I1
0γ1

0) . . . (∃I1
n−1γ1

n−1) . . .

. . . (∃In
0 γn

0 ) . . . (∃In
n−1γn

n−1)(〈〈γ1
0 , . . . , γ

1
n−1〉, . . . 〈γn

0 , . . . , γ
n
n−1〉〉 ∈ B∗

η0
),

which means

(∃I1
0γ1

0) . . . . . . (∃In
n−1γn

n−1)

(∃γ1
n) . . . (∃γn

n)(〈η0, 〈γ1
0 , . . . , γ

1
n〉, . . . , 〈γn

0 , . . . , γ
n
n〉〉 ∈ B).

By the assumptions (γ) and (ε) we know that

(∃I0
0γ0

0) . . . (∃I0
nγ0

n)(∃I1
0γ1

0) . . . (∃I1
nγ1

n) . . .

. . . (∃In
0 γn

0 ) . . . (∃In
nγn

n)(〈〈γ0
0 , . . . , γ

0
n〉, 〈γ1

0 , . . . , γ
1
n〉, . . . , 〈γn

0 , . . . , γ
n
n〉〉 ∈B).
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Obviously any quantifier (∃Im
l γm

l ) above may be replaced by (∃γm
l ) and

then “moved” right as for as we want. Consequently, we get

(∃γ0
0) . . . (∃γ0

n−1)(∃I0
nγ0

n)(∃I1
0γ1

0) . . . (∃I1
n−1γ1

n−1) . . . (∃In
0 γn

0 ) . . . (∃In
n−1γn

n−1)

(∃γ1
n) . . . (∃γn

n)(〈〈γ0
0 , . . . , γ

0
n〉, 〈γ1

0 , . . . , γ
1
n〉, . . . , 〈γn

0 , . . . , γ
n
n〉〉 ∈ B),

which means that

(∃γ0
0) . . . (∃γ0

n−1)(∃I0
nγ0

n)(B∗
〈γ0

0 ,...,γn
n〉

is big).

Hence we find γ0
0 , . . . , γ

0
n−1 and a set a ∈ (I0

n)+ such that

(∀γ ∈ a)(B∗
〈γ0

0 ,...,γn
n〉

is big).

Note that the assumptions of the proposition are such that if we know
that B∗

η0
is big then we may apply the inductive hypothesis to λm

l , χ
m
l , P

m
l ,

Im
l , J

m (for 1 ≤ m ≤ n, l ≤ n − 1) and B∗
η0

. Consequently, for each γ ∈ a
we find sets Xγ

1 , . . . , X
γ
n such that for 1 ≤ m ≤ n:

(a)∗ Xγ
m ⊆

∏
l≤n−m λm

l ,

(b)∗ if η, ν ∈ Xγ
m, η 6= ν then

(i) η�(n−m) = ν�(n−m), and
(ii) η(n−m) 6= ν(n−m),

(c)∗ {η(n−m) : η ∈ Xγ
m} ∈ Pm

n−m,
(d)∗ for all 〈η0, . . . , ηn〉 ∈

∏
m≤nX

γ
m we have

(∃〈η∗0 , . . . , η∗n〉 ∈ B∗
〈γ0

0 ,...,γ0
n−1,γ〉)(∀1 ≤ m ≤ n)(νm E ν∗m).

Now we may ask how many possibilities for Xγ
m we have: not too many.

If we fix the common initial segment (see (b)∗) the only freedom we have is
in choosing an element of Pm

n−m (see (c)∗). Consequently, there are at most
|Pm

n−m|+
∑

l≤n−m λm
l possible values for Xγ

m and hence there are at most
n∑

m=1

(
|Pm

n−m|+
∑

l≤n−m

λm
l

)
< χ0

n

possible values for the sequence 〈Xγ
1 , . . . , X

γ
n〉. Since the ideal I0

n is χ0
n-

complete we find 〈X1, . . . , Xn〉 and a set b ⊆ a, b ∈ (I0
n)+, such that

(∀γ ∈ b)(〈Xγ
1 , . . . , X

γ
n〉 = 〈X1, . . . , Xn〉).

Next choose b0n ∈ P 0
n such that b0n ⊆ b and put

X0 = {〈γ0
0 , . . . , γ

0
n−1, γ〉 : γ ∈ b0n}.

Now it is a routine to check that the sets X0, X1, . . . , Xn are as required
(i.e., they satisfy clauses (a)–(d)).
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2. Cofinal sequences in trees

Notation 2.1. For a tree T ⊆ δ>µ the set of δ-branches through T is

limδ(T ) := {η ∈ δµ : (∀α < δ)(η�α ∈ T )}.
The ith level (for i < δ) of the tree T is

Ti := T ∩ iµ

and T<i :=
⋃

j<i Tj .
If η ∈ T then the set of immediate successors of η in T is

succT := {ν ∈ T : η C ν & lg(ν) = lg(η) + 1}.
We shall not distinguish strictly between succT (η) and {α : η_〈α〉 ∈ T}.

Definition 2.2. (1) Kµ,δ is the family of all pairs (T, λ̄) such that
T ⊆ δ>µ is a tree with δ levels and λ̄ = 〈λη : η ∈ T 〉 is a sequence of
cardinals such that for each η ∈ T we have succT (η) = λη (compare the
previous remark about not distinguishing succT (η) and {α : η_〈α〉 ∈ T}).

(2) For a limit ordinal δ and a cardinal µ we let

Kid
µ,δ := {(T, λ̄, Ī) : (T, λ̄) ∈ Kµ,δ, Ī = 〈Iη : η ∈ T 〉,

each Iη is an ideal on λη = succT (η)}.
Let (T, λ̄, Ī) ∈ Kid

µ,δ and let J be an ideal on δ (including Jbd
δ if we do not

say otherwise). Further let η̄ = 〈ηα : α < λ〉 ⊆ limδ(T ) be a sequence of
δ-branches through T .

(3) We say that η̄ is J-cofinal in (T, λ̄, Ī) if

(a) ηα 6= ηβ for distinct α, β < λ,
(b) for every sequence Ā=〈Aη : η ∈ T 〉 ∈

∏
η∈T Iη there is α∗ < λ

such that

α∗ ≤ α < λ ⇒ (∀J i < δ)(ηα�(i+ 1) 6∈ Aηα�i).

(4) If I is an ideal on λ then we say that (η̄, I) is a J-cofinal pair for
(T, λ̄, Ī) if

(a) ηα 6= ηβ for distinct α, β < λ,
(b) for every sequence Ā = 〈Aη : η ∈ T 〉 ∈

∏
η∈T Iη there is A ∈ I

such that

α ∈ λ \A ⇒ (∀J i < δ)(ηα�(i+ 1) 6∈ Aηα�i).

(5) The sequence η̄ is strongly J-cofinal in (T, λ̄, Ī) if

(a) ηα 6= ηβ for distinct α, β < λ,
(b) for every n < ω and functions F0, . . . , Fn there is α∗ < λ such

that if m ≤ n, α0 < . . . < αn < λ, α∗ ≤ αm then the set of i < δ
such that:
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(i) (∀l < m)(ληαl
�i < ληαm�i) and

(ii) Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i) ∈ Iηαm�i

(and well defined) but

ηαm�(i+1) ∈ Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i),

is in the ideal J .

[Note: in (b) above we may have α∗ < α0, this causes no real change.]
(6) The sequence η̄ is stronger J-cofinal in (T, λ̄, Ī) if

(a) ηα 6= ηβ for distinct α, β < λ,
(b) for every n < ω and functions F0, . . . , Fn there is α∗ < λ such

that if m ≤ n, α0 < . . . < αn < λ, α∗ ≤ αm then the set of i < δ
such that:

(ii) Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i) ∈ Iηαm�i

(and well defined) but

ηαm�(i+1) ∈ Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i),

is in the ideal J .

(7) The sequence η̄ is strongest J-cofinal in (T, λ̄, Ī) if

(a) ηα 6= ηβ for distinct α, β < λ,
(b) for every n < ω and functions F0, . . . , Fn there is α∗ < λ such

that if m ≤ n, α0 < . . . < αn < λ, α∗ ≤ αm then the set of i < δ
such that:

(i′) (∃l < m)(ληαl
�i ≥ ληαm�i) or

(ii′) Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i) ∈ Iηαm�i

(and well defined) but

ηαm�(i+1) ∈ Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i),

is in the ideal J .

(8) The sequence η̄ is big J-cofinal in (T, λ̄, Ī) if

(a) ηα 6= ηβ for distinct α, β < λ,
(b) for every n < ω and functions F0, . . . , Fn there is α∗ such that

if α0 < . . . < αn and α∗ ≤ αm, m ≤ n then the set

{i < δ : ηαm(i) ∈ Fm(νl)l≤n ∈ Iηαm�i}
is in the ideal J , where

νl =

 ηαl
�(i+1) if ληαl

�i < ληαm�i or
ληαl

�i = ληαm�i and ηαl
(i) < ηαm

(i),
ηαl

�i if not.
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(9) In almost the same way we define “strongly∗ J-cofinal”, “stronger∗

J-cofinal” and “strongest∗ big J-cofinal”, replacing the requirement that
α∗ ≤ αm in 5(b), 6(b), 7(b) above (respectively) by α∗ ≤ α0.

Remark 2.3. (a) Note that “strongest J-cofinal” implies “stronger J-
cofinal” and this implies “strongly J-cofinal”. “Stronger J-cofinal” implies
“J-cofinal”. Also “bigger” ⇒ “big” ⇒ “cofinal”, “big” ⇒ “strongly”.

(b) The different notions of “strong J-cofinality” (the conditions (i) and
(i′)) are to allow us to carry some diagonalization arguments.

(c) The difference between “strongly J-cofinal” and “strongly∗ J-cofinal”
etc. is, in our context, immaterial. We may in all places in this paper replace
the relevant notion with its version with “∗” and no harm will be done.

Remark 2.4. (1) Recall pcf: An important case is when 〈λi : i < δ〉
is an increasing sequence of regular cardinals, λi >

∏
j<i λj , λη = λlg(η),

Iη = Jbd
λη

and λ = tcf(
∏

i<δ λi/J).
(2) Moreover we are interested in more complicated Iη’s (as in [23, §5]),

connected to our problem, so “the existence of the true cofinality” is less
clear. But the assumption 2µ = µ+ will rescue us.

(3) There are natural stronger demands of cofinality since here we are
not interested just in xα’s but also in Boolean combinations. Thus naturally
we are interested in behaviours of large sets of n-tuples (see 5.1).

Proposition 2.5. Suppose that (T, λ̄, Ī) ∈ Kid
µ,δ, η̄ = 〈ηα : α < λ〉 ⊆

limδ(T ) and J is an ideal on δ, J ⊇ Jbd
δ .

(1) Assume that

(}) if α < β < λ then (∀J i < δ)(ληα�i < ληβ�i).

Then the following are equivalent :

• “η̄ is strongly J-cofinal for (T, λ̄, Ī)”,
• “η̄ is stronger J-cofinal for (T, λ̄, Ī)”,
• “η̄ is strongest J-cofinal for (T, λ̄, Ī)”,
• “η̄ is big J-cofinal for (T, λ̄, Ī)”.

(2) If Iν ⊇ Jbd
λν

and λν = λlg(ν) for each ν ∈ T and the sequence η̄ is
stronger J-cofinal for (T, λ̄, Ī) then for some α∗ < λ the sequence 〈ηα : α∗ ≤
α < λ〉 is <J -increasing.

(3) If η ∈ Ti ⇒ λη = λi and η̄ is <J -increasing in
∏

i<δ λi then “big”
is equivalent to “stronger”.

Proposition 2.6. Suppose that :

(1) 〈λi : i < δ〉 is an increasing sequence of regular cardinals, where
δ < λ0 is a limit ordinal ,

(2) T =
⋃

i<δ

∏
j<i λj , Iη = Ilg(η) = Jbd

λlg(η)
and λη = λlg(η),
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(3) J is an ideal on δ, λ = tcf(
∏

i<δ λi/J) and it is exemplified by a
sequence η̄ = 〈ηα : α < λ〉 ⊆

∏
i<δ λi,

(4) |{ηα�i : α < λ}| < λi for each i < δ (so, e.g., λi >
∏

j<i λj suffices).

Then the sequence η̄ is J-cofinal in (T, λ̄, Ī).

P r o o f. First note that our assumptions imply that each ideal Iη = Ilg(η)

is |{ηα� lg(η) : α < λ}|+-complete. Hence for each sequence Ā = 〈Aη :
η ∈ T 〉 ∈

∏
η∈T Iη and i < δ the set

Ai :=
⋃
{Aηα�i : α < λ}

is in the ideal Ii, i.e., it is bounded in λi (for i < δ). (We should remind here
our convention that we do not distinguish λi and succT (η) if lg(η) = i, see
2.1.) Take η∗ ∈

∏
i<δ λi such that for each i < δ we have Ai ⊆ η∗(i). As the

sequence η̄ realizes the true cofinality of
∏

i<δ λi/J we find α∗ < λ such that

α∗ ≤ α < λ ⇒ {i < δ : ηα(i) < η∗(i)} ∈ J,
which allows us to finish the proof.

It follows from the above proposition that the notion of J-cofinal se-
quence is not empty. Of course, it is better to have “strongly (or even:
stronger) J-cofinal” sequences η̄. So it is nice to find that sometimes the
weaker notion implies the stronger one.

Proposition 2.7. Assume that δ is a limit ordinal , µ is a cardinal , and
(T, λ̄, Ī) ∈ Kid

µ,δ. Let J be an ideal on δ such that J ⊇ Jbd
δ (which is our

standard hypothesis). Further suppose that

(~) if η ∈ Ti then the ideal Iη is (|Ti| +
∑
{λν : ν∈Ti & λν<λη})+-

complete.

Then each J-cofinal sequence η̄ for (T, λ̄, Ī) is strongly J-cofinal for (T, λ̄, Ī).
If , in addition, η 6= ν ∈ Ti ⇒ λη 6= λν then η̄ is big J-cofinal for

(T, λ̄, Ī). Also, if in addition
η ∈ Ti ⇒ (∃!1ν ∈ Ti)(λν = λη) ∨ [(∃≤λην ∈ Ti)(λν = λη) & Iη normal ]
then η̄ is big J-cofinal.

P r o o f. Let n < ω and F0, . . . , Fn be (n + 1)-place functions. First
we define a sequence Ā = 〈Aη : η ∈ T 〉. For m ≤ n and a sequence
〈ηm, . . . , ηn〉 ⊆ Ti we put

Am
〈ηm,...,ηn〉 =

⋃
{Fm(ν0, . . . , νm−1, ηm, . . . , ηn) : ν0, . . . , νm−1 ∈ Ti+1,

(ν0, . . . , νm−1, ηm, . . . , ηn) ∈ dom(F ),
λν0�i < λη, . . . , λνm−1�i < ληm

and F (ν0, . . . , νm−1, ηm, . . . , ηn) ∈ Iηm},
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and next for η ∈ Ti let

Aη =
⋃
{Am

〈η,ηm+1,...,ηn〉 : m ≤ n & ηm+1, . . . , ηn ∈ Ti}.

Note that the assumption (~) was set up so that Am
〈ηm,...,ηn〉 ∈ Iηm and the

sets Aη are in Iη (for η ∈ T ).
By the J-cofinality of η̄, for some α∗ < λ we have

α∗ ≤ α < λ ⇒ (∀J i < δ)(ηα�(i+ 1) 6∈ Aηα�i).

We are going to prove that this α∗ is as required in the definition of strongly
J-cofinal sequences. So suppose that m ≤ n, α0 < . . . < αn < λ and
α∗ ≤ αm. By the choice of α∗ the set A := {i < δ : ηαm�(i + 1) ∈ Aηαm�i}
is in the ideal J . But if i < δ is such that

• (∀l < m)(ληαl
�i < ληαm�i),

• F (ηα0�(i+ 1), . . . , ηαm−1�(i+ 1), ηαm�i, . . . , ηαn�i) ∈ Iηαm�i, but
• ηαm�(i+ 1) ∈ F (ηα0�(i+ 1), . . . , ηαm−1�(i+ 1), ηαm�i, . . . , ηαn�i)

then clearly ηαm
�(i+ 1) ∈ Am

〈ηαm�i,...,ηαn�i〉 and so i ∈ A.
The “big” version should be clear too.

Proposition 2.8. Assume that µ is a strong limit uncountable cardinal
and 〈µi : i < δ〉 is an increasing sequence of cardinals with limit µ. Further
suppose that (T, λ̄, Ī) ∈ Kid

µ,δ, |Ti| ≤ µi (for i < δ), λη < µ and each Iη
is µ+

lg(η)-complete and contains all singletons (for η ∈ T ). Finally assume
2µ = µ+ and let J be an ideal on δ, J ⊇ Jbd

δ . Then there exists a stronger
J-cofinal sequence η̄ for (T, λ̄, Ī) of length µ+ (even for J = Jbd

δ ). We can
get “big” if

% 6= η ∈ Ti & λ% = λη ⇒ (∃≤λην ∈ Ti)(λν = λη) & Iη normal.

P r o o f. This is a straight diagonal argument. Put

Y := {〈F0, . . . , Fn〉 : n < ω and each Fl is a function with

dom(F ) ⊆ Tn+1, rng(F ) ⊆
⋃

η∈T Iη}.

Since |Y | = µµ = µ+ (remember that µ is strong limit and λη < µ for
η ∈ T ) we may choose an enumeration Y = {〈F ξ

0 , . . . , F
ξ
nξ
〉 : ξ < µ+}. For

each ζ < µ+ choose an increasing sequence 〈Aζ
i : i < δ〉 such that |Aζ

i | ≤ µi

and ζ =
⋃

i<δ A
ζ
i . Now we choose by induction on ζ < µ+ branches ηζ such

that for each ζ the restriction ηζ�i is defined by induction on i as follows.
If i = 0 or i is limit then there is nothing to do.
Suppose now that we have defined ηζ�i and ηξ for ξ < ζ. We find ηζ(i)

such that:
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(α) ηζ(i) ∈ ληζ�i,
(β) if ε ∈ Aζ

i , m ≤ nε, α0, . . . , αm−1 ∈ Aζ
i (hence αl < ζ so ηαl

are
already defined), νm+1, . . . , νn ∈ Ti and

F ε
m(ηα0�(i+ 1), . . . , ηαm−1�(i+ 1), ηζ�i, νm+1, . . . , νn) ∈ Iηζ�i

and well defined, then

ηζ�(i+ 1) 6∈ F ε
m(ηα0�(i+ 1), . . . , ηαm−1�(i+ 1), ηζ�i, νm+1, . . . , νn),

(γ) ηζ�(i+ 1) 6∈ {ηε�(i+ 1) : ε ∈ Aζ
i }.

Why is it possible? Note that there are ≤ ℵ0 + |Aζ
i | + |Aζ

i |<ℵ0 + |Ti| ≤
µi negative demands and each of them says that ηζ�(i + 1) is in no set
from Iηζ�i (remember that we have assumed that the ideals Iηζ�i contain
singletons). Consequently, using the completeness of the ideal we may satisfy
the requirements (α)–(γ) above.

Now of course ηζ ∈ limδ(T ). Moreover if ε < ζ < µ+ then (∃i < δ)(ε ∈
Aζ

i ), which implies (∃i < δ)(ηε�(i+ 1) 6= ηζ�(i+ 1)). Consequently,

ε < ζ < µ+ ⇒ ηε 6= ηζ .

Checking the demand (b) of “stronger J-cofinal” is straightforward: for
functions F0, . . . , Fn (and n ∈ ω) take ε such that

〈F0, . . . , Fn〉 = 〈F ε
0 , . . . , F

ε
nε
〉

and put α∗ = ε+1. Suppose now that m ≤ n, α0 < . . . < αn < λ, α∗ ≤ αm.
Let i∗ < δ be such that for i > i∗ we have

ε, α0, . . . , αm−1 ∈ Aαm
i .

Then by the choice of ηαm
�(i+ 1) we see that for each i > i∗, if

F ε
m(ηα0�(i+ 1), . . . , ηαm−1�(i+ 1), ηζ�i, ηαm+1�i, . . . , ηαn�i) ∈ Iηαm�i,

then

ηαm
�i 6∈ F ε

m(ηα0�(i+ 1), . . . , ηαm−1�(i+ 1), ηζ�i, ηαm+1�i, . . . , ηαn�i).

Remark 2.9. The proof above can be carried out for functions F which
depend on (ηα0 , . . . , ηαm−1 , ηαm

�i, . . . , ηαn
�i). This will be natural later.

Let us note that if the ideals Iη are sufficiently complete then J-cofinal
sequences cannot be too short.

Proposition 2.10. Suppose that (T, λ̄, Ī) ∈ Kid
µ,δ is such that for each

η ∈ Ti, i < δ, the ideal Iη is (κi)+-complete ([λη]κi ⊆ Iη is enough). Let
J ⊇ Jbd

δ be an ideal on δ and let η̄ = 〈ηα : α < δ∗〉 be a J-cofinal sequence
for (T, λ̄, Ī). Then

δ∗ > lim sup
J

κi and consequently cf(δ∗) > lim sup
J

κi.
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P r o o f. Fix an enumeration δ∗ = {αε : ε < |δ∗|} and for α < δ∗ let ζ(α)
be the unique ζ such that α = αζ . For η ∈ Ti, i < δ, put

Aη := {ν ∈ succT (η) : (∃ε ≤ κi)(ν C ηε)}.
Clearly |Aη| ≤ κi and hence Aη ∈ Iη. Apply the J-cofinality of η̄ to the
sequence Ā = 〈Aη : η ∈ T 〉. Thus there is α∗ < δ∗ such that for each
α ∈ [α∗, δ∗) we have

(∀J i < δ)(ηα�(i+ 1) 6∈ Aηα�i)

and hence (∀J i < δ)(ζ(α) > κi) and consequently

ζ(α) ≥ lim sup
J
κi.

Hence we conclude that |δ∗| > lim supJ κi.
For the “consequently” part of the proposition note that if 〈ηα : α < δ∗〉

is J-cofinal (in (T, λ̄, Ī)) and A ⊆ δ∗ is cofinal in δ∗ then 〈ηα : α ∈ A〉 is
J-cofinal too.

Remark 2.11. (1) So if we have a J-cofinal sequence of length δ∗ then
we also have one of length cf(δ∗). Thus assuming regularity of the length is
natural.

(2) Moreover the assumption that the length of the sequence is above |δ|+
|T | is very natural and in most cases it will follow from the J-cofinality (and
completeness assumptions). However we will try to state this condition in
the assumptions whenever it is used in the proof (even if it can be concluded
from the other assumptions).

3. Getting (κ,notλ)-Knaster algebras

Proposition 3.1. Let λ, σ be cardinals such that (∀α < σ)(2|α| < λ) and
σ is regular. Then there are a Boolean algebra B, a sequence 〈yα : α < λ〉 ⊆
B+ and an ideal I on λ such that :

(a) if X ⊆ λ, X 6∈ I then (∃α, β ∈ X)(B |= yα ∩ yβ = 0),
(b) the ideal I is σ-complete,
(c) the algebra B satisfies the µ-Knaster condition for any regular un-

countable µ (actually , B is free).

P r o o f. Let B be the Boolean algebra freely generated by {zα : α < λ}
(so the demand (c) is satisfied). Let A = {(α, β) : α < β < λ} and
y(α,β) = zα − zβ (6= 0) (for (α, β) ∈ A). The ideal I of subsets of A is
defined by:

• a set X ⊆ A is in I if there are ζ < σ, Xε ⊆ A (for ε < ζ) such that
X ⊆

⋃
ε<ζ Xε and for every ε < ζ no two y(α1,β1), y(α2,β2) ∈ Xε are

disjoint in B.
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First note that

Claim 3.1.1. A 6∈ I.
P r o o f. If not then we have witnesses ζ < σ and Xε (for ε < ζ) for

it. So A =
⋃

ε<ζ Xε and hence for (α, β) ∈ A we have ε(α, β) such that
y(α,β) ∈ Xε(α,β). So ε(·, ·) is actually a function from [λ]2 to ζ < σ. By the
Erdős–Rado theorem we find α < β < γ < λ such that ε(α, β) = ε(β, γ).
But

y(α,β) ∩ y(β,γ) = (zα − zβ) ∩ (zβ − zγ) = 0,

so (α, β), (β, γ) cannot be in the same Xε—a contradiction.

To finish the proof note that I is σ-complete (as σ is regular), and
if X 6∈ I then, by the definition of I, there are two disjoint elements in
{y(α,β) : (α, β) ∈ X}. Finally |A| = λ.

Definition 3.2. (a) A pair (B, ȳ) is called a λ-marked Boolean algebra
if B is a Boolean algebra and ȳ = 〈yα : α < λ〉 is a sequence of non-zero
elements of B.

(b) A triple (B, ȳ, I) is called a (λ, χ)-well marked Boolean algebra if
(B, ȳ) is a λ-marked Boolean algebra, χ is a regular cardinal and I is a
(proper) χ-complete ideal on λ such that

{A ⊆ λ : (∀α, β ∈ A)(B |= yα ∩ yβ 6= 0)} ⊆ I.

By a λ-well marked Boolean algebra we will mean a (λ,ℵ0)-well marked one.
As in the above situation λ can be read off from ȳ (as λ = lg(ȳ)) we may
omit it and then we may speak just about well marked Boolean algebras.

Remark 3.3. Thus Proposition 3.1 says that if λ, σ are regular cardinals
and

(∀α < σ)(2|α| < λ)

then there exists a (λ, σ)-well marked Boolean algebra (B, ȳ, I) such that B
has the κ-Knaster property for every κ.

Definition 3.4. (1) For cardinals µ and λ and a limit ordinal δ, a
(δ, µ, λ)-constructor is a system

C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉)
such that:

(a) (T, λ̄) ∈ Kµ,δ,
(b) η̄ = 〈ηi : i ∈ λ〉 where ηi ∈ limδ(T ) (for i < λ) are distinct

δ-branches through T ,
(c) for each η ∈ T , (Bη, ȳη) is a λη-marked Boolean algebra, i.e.,

ȳη = 〈yη_〈α〉 : α < λη〉 ⊆ B+
η (usually this will be an enumera-

tion of B+
η ).
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(2) Let C be a constructor (as above). We define Boolean algebras B2 =
Bred = Bred(C) and B1 = Bgreen = Bgreen(C) as follows.

Bred is the Boolean algebra freely generated by {xi : i < λ} except that if

i0, . . . , in−1<λ, ν = ηi0�ζ=ηi1�ζ = . . . = ηin−1�ζ, Bν |=
⋂
l<n

yηil
�(ζ+1) =0

then
⋂

l<n xil
= 0. [Note: we may demand that the sequence 〈ηil

(ζ) : l < n〉
is strictly increasing, this will cause no difference.]

Bgreen is the Boolean algebra freely generated by {xi : i < λ} except
that if

ν = ηi�ζ = ηj�ζ, ηi(ζ) 6= ηj(ζ), Bν |= yηi�(ζ+1) ∩ yηj�(ζ+1) 6= 0

then xi ∩ xj = 0.

Remark 3.5. (1) The equations for the green case can look strange but
they have to be dual to the ones of the red case.

(2) “Freely generated except . . .” means that a Boolean combination is
non-zero except when some (finitely many) conditions imply it. For this it
is enough to look at elements of the form

xt0
i0
∩ . . . ∩ xtn−1

in−1

where tl ∈ {0, 1}.
(3) Working in the free product Bred∗Bgreen we will use the same notation

for elements (e.g., generators) of Bred as for elements of Bgreen. Thus xi may
stand either for the corresponding generator in Bred or Bgreen. We hope
that this will not be confusing, as one can easily decide in which algebra the
element is considered from the place of it (if x ∈ Bred, y ∈ Bgreen then (x, y)
will stand for the element x ∩Bred∗Bgreen y ∈ Bred ∗ Bgreen). In particular we
may write (xi, xi) for an element which could be denoted by xred

i ∩ xgreen
i .

Remark 3.6. If the pair (Bred,Bgreen) is a counterexample with the free
product Bred ∗Bgreen failing the λ-cc but each of the algebras satisfying that
condition then each of the algebras fails the λ-Knaster condition. But Bred

is supposed to have the κ-cc (κ smaller than λ). This is known to restrict λ.

Proposition 3.7. Assume that C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) is a
(δ, µ, λ)-constructor and J ⊇ Jbd

δ is an ideal on δ such that:

(a) η̄ = 〈ηi : i ∈ T 〉 is J-cofinal for (T, λ̄, Ī),
(b) if X ∈ I+

η then

(∃α, β ∈ X)(Bη |= yη_〈α〉 ∩ yη_〈β〉 = 0).

Then the sequence 〈xred
α : α < λ〉 exemplifies that Bred(C) fails the λ-Knaster

condition.
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Explanation. The above proposition is not just something in the di-
rection of Problem 0.6. The tuple (Bred, x̄, Jbd

λ ) is like (Bη, ȳη, Iη), but Jbd
λ

is nicer than the ideals given by previous results. Using such objects makes
building examples for Problem 0.6 much easier.

P r o o f (of Proposition 3.7). It is enough to show that for each Y ∈ [λ]λ

one can find ε, ζ ∈ Y such that

Bηε�i |= yηε�(i+1) ∩ yηζ�(i+1) = 0

where i = lg(ηε ∧ ηζ). For this, for each ν ∈ T we put

Aν := {α < λν : (∃ε ∈ Y )(ν_〈α〉 C ηε)}.

Claim 3.7.1. There is ν ∈ T such that Aν 6∈ Iν .

P r o o f. First note that by the definition of Aν , for each ε ∈ Y we have

(∀i < δ)(ηε
_〈i〉 ∈ Aηε�i).

Now, if we had Aν ∈ Iν for all ν ∈ T then we could apply the assumption
that η̄ is J-cofinal for (T, λ̄, Ī) to the sequence 〈Aν : ν ∈ T 〉. Thus we would
find α∗ < λ such that

α∗ ≤ α < λ ⇒ {i < δ : ηα(i) 6∈ Aηα�i} ∈ J,

which contradicts our previous remark (remember |Y | = λ).

Due to the claim we find ν ∈ T such that Aν 6∈ Iν . By part (b) of our
assumptions we find α, β ∈ Aν such that

Bν |= yν_〈α〉 ∩ yν_〈β〉 = 0.

Choose ε, ζ ∈ Y such that ν_〈α〉 C ηε, ν_〈β〉 C ηζ (see the definition of
Aν). Then ν = ηε ∧ ηζ and

Bν |= yηε�(i+1) ∩ yηζ�(i+1) = 0

(where i = lg(ν)), finishing the proof of the proposition.

Lemma 3.8. Let C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) be a (δ, µ, λ)-constructor
such that

(F) for η ∈ T , the Boolean algebras Bη satisfy the (2|δ|)+-Knaster con-
dition.

Then the Boolean algebra Bred(C) satisfies the (2|δ|)+-Knaster condition. In
fact we may replace (2|δ|)+ above by any regular cardinal θ such that

(∀α < θ)(|α||δ| < θ).
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To deduce that Bred(C) satisfies the (2|δ|)+-cc it is enough to assume, instead
of (F),

(FF) for η ∈ T , every free product of finitely many of the Boolean alge-
bras Bη satisfies the (2|δ|)+-cc.

Remark. (1) Usually we will have δ = cf(µ).
(2) Later we will get more (e.g., |δ|+-Knaster if (T, η̄) is hereditarily free,

see 5.12, 5.13).

P r o o f (of Lemma 3.8). Let θ = (2|δ|)+ and assume (F) (the other cases
have the same proofs). Suppose that zε ∈ Bred \ {0} (for ε < θ). We start
with a series of reductions which we describe fully here but later, in similar
situations, we will state the result of the procedure only.

Standard cleaning. Each zε is a Boolean combination of some genera-
tors xi0 , . . . , xin−1 . But, as we want to find a subsequence with non-zero
intersections, we may replace zε by any non-zero z ≤ zε. Consequently, we
may assume that each zε is an intersection of some generators or their com-
plements. Further, as cf(θ) = θ > ℵ0 we may assume that the number of
generators needed for this representation does not depend on ε and is equal
to, say, n∗. Thus we have two functions

i : θ × n∗ → λ and t : θ × n∗ → 2

such that for each ε < θ,

zε =
⋂

l<n∗

(xi(ε,l))t(ε,l)

and there is no repetition in 〈i(ε, l) : l < n∗〉. Moreover we may assume that
t(ε, l) does not depend on ε, i.e., t(ε, l) = t(l). By the ∆-system lemma for
finite sets we may assume that 〈〈i(ε, l) : l < n∗〉 : ε < θ〉 is a ∆-system of
sequences, i.e.:

(∗)1 i(ε, l1) = i(ε, l2) ⇒ l1 = l2,
(∗)2 for some w ⊆ n∗ we have

(∃ε1 < ε2 < θ)(i(ε1, l) = i(ε2, l)) iff (∀ε1, ε2 < θ)(i(ε1, l) = i(ε2, l))
iff l ∈ w.

Now note that, by the definition of the algebra Bred,

(∗)3 zε1 ∩ zε2 = 0 if and only if⋂
{xt(l)

i(ε1,l) : l < n∗, t(l) = 0} ∩
⋂
{xt(l)

i(ε2,l) : l < n∗, t(l) = 0} = 0.

Consequently, we may assume that

(∀l < n∗)(∀ε < θ)(t(l) = 0).
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Explanation of what we are going to do now. We want to replace the
sequence 〈zε : ε < θ〉 by a large subsequence such that the places of splitting
between two branches used in two different zε’s will be uniform. Then we
will be able to translate our θ-cc problem to one on the algebras Bη.

Let
Aε := {ν ∈ δ>µ : (∃j < ε)(∃l < n∗)(ν C ηi(j,l))}

and let Bε be the closure of Aε:

Bε := {% ∈ δ≥µ : % ∈ Aε or lg(%) is a limit ordinal and
(∀ζ < lg(%))(%�ζ ∈ Aε)}

Note that |Aε| ≤ |ε| · |δ| and hence |Bε| ≤ |Aε|≤|δ| < θ. Next we define (for
ε < θ, l < n∗)

ζ(ε, l) := sup{ζ < δ : ηi(ε,l)�ζ ∈ Bε}.

Thus ζ(ε, l) ≤ lg(ηi(ε,l)) = δ. Let S = {ε < θ : cf(ε) > |δ|}. For each ε ∈ S
we necessarily have

ηi(ε,l)�ζ(ε, l) ∈ Bε and Bε =
⋃
ξ<ε

Bξ

(remember that cf(ε) > |δ| and for limit ε we have Aε =
⋃

ξ<εAξ) and
hence

ηi(ε,l)�ζ(ε, l) ∈ Bξ(ε,l) for some ξ(ε, l) < ε.

Let ξ(ε) = max{ξ(ε, l) : l < n∗}. By the Fodor lemma we find ξ∗ < θ such
that the set

S1 := {ε ∈ S : ξ(ε) = ξ∗}

is stationary. Thus ηi(ε,l)�ζ(ε, l) ∈ Bξ∗ for each ε ∈ S1, l < n∗. Since
|Bξ∗ |, |δ| < θ we find ν0, . . . , νn∗−1 ∈ Bξ∗ and α(l1, l2) ≤ δ (for l1 ≤ l2 < n∗)
such that the set

S2 := {ε ∈ S1 : (∀l < n∗)(ηi(ε,l)�ζ(ε, l) = νl)

& (∀l1 ≤ l2 < n∗)(lg(ηi(ε,l1) ∧ ηi(ε,l2)) = α(l1, l2))}

is stationary. Further, applying the ∆-system lemma we find a set S3 ∈ [S2]θ

such that
{〈ηi(ε,l)(lg(νl)) : l < n∗〉 : ε ∈ S3}

forms a ∆-system of sequences.
For ε ∈ S3 and ν ∈ T define

bεν :=
⋂
{yηi(ε,l)�(lg(ν)+1) : l < n∗, ν C ηi(ε,l)} ∈ Bν .

Claim 3.8.1. For each ε ∈ S3, ν ∈ T the element bεν (of the algebra Bν)
is non-zero.
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P r o o f. This follows from the definition of Bred and the fact that
zε 6= 0, as

bεν = 0 ⇒
⋂
{xηi(ε,l) : l < n∗, ν C ηi(ε,l)} = 0 ⇒ zε = 0.

Since for each l < n∗ the algebra Bνl
has the θ-Knaster property we find

a set S4 ∈ [S3]θ such that for each l < n∗ and ε1, ε2 ∈ S4 we have

ε1 6= ε2 ⇒ bε1
νl
∩ bε2

νl
6= 0 in Bνl

.

Now we may finish by proving the following claim.

Claim 3.8.2. For each ε1, ε2 ∈ S4,

Bred |= zε1 ∩ zε2 6= 0.

P r o o f. Since zε1 ∩ zε2 is just the intersection of generators it is enough
to show that (remember the definition of Bred):

(⊗) for each ε1, ε2 ∈ S4 and for every ν ∈ T ,

Bν |=
⋂
{yηi�(lg(ν)+1) : i ∈ {i(ε1, l), i(ε2, l) : l < n∗} and ν C ηi} 6= 0.

If ν = νl, l < n∗ then the intersection is bε1
νl
∩ bε2

νl
, which is not zero by the

choice of S4. So suppose that ν 6∈ {νl : l < n∗}. Put

uν := {i : ν C ηi and for some l < n∗ either i = i(ε1, l) or i = i(ε2, l)}.
If

{ηi(lg(ν)) : i ∈ uν} ⊆ {ηi(ε2,l)(lg(ν)) : l < n∗ & ν C ηi(ε2,l)}
then we are done as bε2

ν 6= 0. So there is l1 < n∗ such that ν C ηi(ε1,l1) and

ηi(ε1,l1)�(lg(ν) + 1) 6∈ {ηi(ε2,l)�(lg(ν) + 1) : l < n∗ & ν C ηi(ε2,l)}.
Similarly we may assume that there is l2 < n∗ such that ν C ηi(ε2,l2) and

ηi(ε2,l2)�(lg(ν) + 1) 6∈ {ηi(ε1,l)�(lg(ν) + 1) : l < n∗ & ν C ηi(ε1,l)}.
By symmetry we may assume that ε1 < ε2. Then

ν = ηi(ε2,l2)� lg(ν) ∈ Aε1+1 ⊆ Bε2

and hence ζ(ε2, l2) ≥ lg(ν). By the choice of S2 (remember ε1, ε2 ∈ S4 ⊆ S2),
we get ν E νl2 . But we have assumed that ν 6= νl2 , so ν C νl2 . Hence (once
again due to ε1, ε2 ∈ S2)

ηi(ε2,l2)�(lg(ν) + 1) = ηi(ε1,l2)�(lg(ν) + 1) = νl2�(lg(ν) + 1),

which contradicts the choice of l2.

This completes the proof of Lemma 3.8.

Remark 3.9. We can strengthen “θ-Knaster” in the assumption and
conclusion of 3.8 in various ways. For example we may have “intersection
of any n members of the final set is non-zero”.
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Definition 3.10. Let (B, ȳ) be a λ-marked Boolean algebra, κ ≤ λ. We
say that:

(1) (B, ȳ) the κ-Knaster property if B satisfies the condition in the def-
inition of the κ-Knaster property (see 0.4) with restriction to subsequences
of ȳ.

(2) (B, ȳ) is (κ,notλ)-Knaster if

(a) the algebra B has the κ-Knaster property, but
(b) the sequence ȳ witnesses that the λ-Knaster property fails for B.

Conclusion 3.11. Assume that µ is a strong limit singular cardinal ,
λ = 2µ = µ+ and θ = (2cf(µ))+. Then there exists a λ-marked Boolean
algebra (B, ȳ) which is (θ,notλ)-Knaster.

P r o o f. Choose cardinals µ0
i , µi < µ (for i < cf(µ)) such that:

(α) cf(µ) < µ0
0,

(β)
∏

j<i µj < µ0
i , µi = (2µ0

i )+,
(γ) 〈µi : i < cf(µ)〉 and 〈µ0

i : i < cf(µ)〉 are increasing cofinal in µ.

(Possible as µ is strong limit singular.) By Proposition 3.1 we find µi-marked
Boolean algebras (Bi, ȳ

i) and (µ0
i )

+-complete ideals Ii on µi (for i < δ) such
that:

(a) if X ⊆ µi, X 6∈ Ii then (∃α, β ∈ X)(Bi |= yi
α ∩ yi

β = 0),
(b) the algebra Bi has the (2cf(µ))+-Knaster property.

Let T =
⋃

i<cf(µ)

∏
j<i µj and for ν ∈ Ti (i < cf(µ)) let Iν = Ii, Bν = Bi,

ȳν = ȳi and λν = µi. Now we may apply Proposition 2.8 to µ, 〈µ0
i : i <

cf(µ)〉 and (T, λ̄, Ī) to find a stronger Jbd
cf(µ)-cofinal sequence η̄ for (T, λ̄, Ī)

of length λ. Consider the (cf(µ), µ, λ)-constructor C = (T, λ̄, η̄, 〈(Bν , ȳν) :
ν ∈ T 〉). By (b) above we may apply Lemma 3.8 to deduce that the algebra
Bred(C) satisfies the (2cf(µ))+-Knaster condition. Finally we use Propo-
sition 3.7 (and (a) above) to conclude that (Bred(C), 〈xred

α : α < λ〉) is
(θ,notλ)-Knaster.

Proposition 3.12. Assume that κ is a regular cardinal such that (∀α <
κ)(|α||δ| < κ), λ̄ = 〈λi : i < δ〉 is an increasing sequence of regular cardinals
such that κ ≤ λ0,

∏
j<i λj < λi (or just max pcf{λj : j < i} < λi) for i < δ

and λ ∈ pcf{λi : i < δ}. Further suppose that for each i < δ there exists a
λi-marked Boolean algebra which is (κ,notλi)-Knaster. Then there exists a
λ-marked Boolean algebra which is (κ,notλ)-Knaster.

P r o o f. If λ = λi for some i < δ then there is nothing to do. If λ < λi

for some i < δ then let α < δ be the maximal limit ordinal such that
(∀i < α)(λi < λ) (it necessarily exists). Now we may replace 〈λi : i < δ〉 by
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〈λi : i < α〉. Thus we may assume that (∀i < δ)(λi < λ). Further we may
assume that

λ = maxpcf{λi : i < δ}

(by [22, I, 1.8]). Now, due to [22, II, 3.5, p. 65], we find a sequence η̄ ⊆∏
i<δ λi and an ideal J on δ such that:

(1) J ⊇ Jbd
δ and λ = tcf(

∏
i<δ λi/J)

(naturally: J = {a ⊆ δ : max pcf{λi : i ∈ a} < λ}),
(2) η̄ = 〈ηε : ε < λ〉 is <J -increasing cofinal in

∏
i<δ λi/J ,

(3) for each i < δ, |{ηε�i : ε < λ}| < λi.

Let T =
⋃

i<δ

∏
j<i λj and for ν ∈ Ti (i < δ) let λν = λi, Iν = Jbd

λi
.

It follows from the choice of η̄, J above and our assumptions that we may
apply Proposition 2.6 and hence η̄ is J-cofinal for (T, λ̄, Ī). For ν ∈ T let
(Bν , ȳν) be a λν-marked (κ,notλν)-Knaster Boolean algebra (exists by our
assumptions). Now we may finish using 3.8 and 3.7 for C=(T, λ̄, η̄, 〈(Bη, ȳη) :
η ∈ T 〉), Ī and J (note the assumption (b) of 3.7 is satisfied as Iη = Jbd

λη
;

remember the choice of (Bη, ȳη)).

Remark 3.13. Note that from the cardinal arithmetic hypothesis cf(µ)
= χ, χ<χ < χ < µ, µ+ = λ < 2χ alone we cannot hope to build a coun-
terexample. This is because of [15, §4], particularly Lemma 4.13 there. It
was shown in that paper that if χ<χ < χ1 = χ<χ1

1 then there is a χ+-cc
χ-complete forcing notion P of size χ1 such that


P “if |B| < χ1, B |= χ-cc then B+ is the union of χ ultrafilters”.

More on this in Section 8. So the centrality of λ ∈ Reg∩(µ, 2µ], µ strong
limit singular, is very natural.

4. The main result

Proposition 4.1. Suppose that C is a (δ, µ, λ)-constructor. Then the
free product Bred(C)∗Bgreen(C) fails the λ-cc (so c(Bred(C)∗Bgreen(C)) ≥ λ).

P r o o f. Look at the elements (xi, xi) ∈ Bred ∗Bgreen for i < λ. It follows
directly from the definition of the algebras that for each i < j < λ,

either Bred |= xred
i ∩ xred

j = 0 or Bgreen |= xgreen
i ∩ xgreen

j = 0.

Consequently, the sequence 〈(xi, xi) : i < λ〉 witnesses the assertion.

Proposition 4.2. Suppose that n < ω and for l ≤ n:

(1) χl, λl are regular cardinals, χl < λl < χl+1,
(2) (Bl, ȳl, Il) is a (λl, χl)-well marked Boolean algebra (see Defini-

tion 3.2), ȳl = 〈yl
i : i < λl〉,
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(3) B is the Boolean algebra freely generated by {yη : η ∈
∏

l≤n λl} except
that if

ηi0 , . . . , ηik−1 ∈
∏
l≤n

λl, ηi0�l = ηi1�l = . . . = ηin−1�l, Bl |=
⋂

m<k

yl
ηim (l) = 0

then
⋂

m<k yηim
= 0. [Compare the definition of the algebras Bred(C).]

(4) I = {B ⊆
∏

l≤n λl : ¬(∃I0γ0) . . . (∃Inγn)(〈γ0, . . . , γn〉 ∈ B)}.
Then:

(a) if all the algebras Bl (for l ≤ n) have the θ-Knaster property and θ
is a regular uncountable cardinal then B has the θ-Knaster property ,

(b) I is a χ0-complete ideal on
∏

l≤n λi,
(c) if Y ⊆ (

∏
l≤n λl)n is such that

(∃Iη0) . . . (∃Iηn)(〈η0, . . . , ηn〉 ∈ Y )

then there are 〈η′0, . . . , η′n〉, 〈η′′0 , . . . , η′′n〉 ∈ Y such that for all l ≤ n,

B |= yη′l
∩ yη′′l

= 0.

P r o o f. (a) The proof that the algebra B satisfies the θ-Knaster condi-
tion is exactly the same as that of 3.8 (actually it is a special case).

(b) Should be clear.
(c) For l,m ≤ n put χm

l = χl, λm
l = λl, Im

l = Il, Pm
l = {{α, β} ⊆ λl :

Bl |= yl
α ∩ yl

β = 0}, B = Y . It is easy to check that the assumptions of
Proposition 1.5 are satisfied. Applying it we find sets X0, . . . , Xn satisfying
the appropriate versions of clauses (a)–(d) there. Note that our choice of
the sets Pm

l and clauses (b), (c) of 1.5 imply that

Xm = {ν′m, ν′′m} ⊆
∏

l≤n−m

λl, ν′m�(n−m) = ν′′m�(n−m),

Bn−m |= yn−m
ν′m(n−m) ∩ y

n−m
ν′′m(n−m) = 0.

Look at the sequences 〈ν′0, . . . , ν′n〉, 〈ν′′0 , . . . , ν′′n〉. By clause (d) of 1.5 we find
〈η′0, . . . , η′m〉, 〈ν′′0 , . . . , ν′′n〉 ∈ Y such that for each m ≤ n,

ν′m E η′m, ν′′m E η′′m.

Now, the properties of ν′m, ν′′m and the definition of the algebra B imply that
for each m ≤ n,

B |= yη′m ∩ yη′′m = 0.

Lemma 4.3. Assume that λ is a regular cardinal , |δ| < λ, J is an ideal
on δ extending Jbd

δ , C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) is a (δ, µ, λ)-constructor
and Ī is such that (T, λ̄, Ī) ∈ Kid

δ,µ. Suppose that η̄ = 〈ηα : α < λ〉 is a
sequence stronger (or big) J-cofinal in (T, λ̄, Ī) such that

(∀i < δ)(|{ηα�i : α < λ}| < λ).
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Further , assume that

(�) for every n < ω, for a J-positive set of i < δ we have: if η0, . . . , ηn ∈
Ti are pairwise distinct and the set Y ⊆

∏
l≤n ληl

is such that

(∃Iη0γ0) . . . (∃Iηnγn)(〈γ0, . . . , γn〉 ∈ Y )

then for some γ′l , γ
′′
l <ληl

(for l≤n) we have 〈γ′l : l≤n〉, 〈γ′′l : l≤n〉
∈ Y and for all l ≤ n,

Bηl
|= yηl

_〈γ′l〉 ∩ yηl
_〈γ′′l 〉 = 0.

Then the Boolean algebra Bgreen(C) satisfies the λ-cc.

P r o o f. Suppose that 〈zα : α < λ〉 ⊆ Bgreen \ {0}. By the standard
cleaning (compare the first part of the proof of 3.8) we may assume that
there are n∗ ∈ ω and a function ε : λ× n∗ → λ such that:

(1) zα =
⋂

l<n∗ xε(α,l) (in Bgreen),
(2) ε(α, 0) < ε(α, 1) < . . . < ε(α, n∗ − 1),
(3) 〈〈ε(α, l) : l < n∗〉 : α < λ〉 forms a ∆-system of sequences with kernel

m∗, i.e., (∀l < m∗)(ε(α, l) = ε(l)) and

(∀l ∈ [m∗, n∗))(∀α < λ)(ε(α, l) 6∈ {ε(β, k) : (β, k) 6= (α, l)}),
(4) there is i∗ < δ such that for each α < λ there is no repetition in the

sequence 〈ηε(α,l)�i∗ : l < n∗〉.
Since |{ηα�i : α < λ}| < λ (for i < δ) and |δ| < λ we may additionally

require that

(∗̂) for each i < δ, for every α < λ we have

(∃λβ < λ)(∀l < n∗)(ηε(α,l)�(i+ 1) = ηε(β,l)�(i+ 1)),

(∗̂∗) for each α < β < λ, l < n∗,

ηε(α,l)�i
∗ = ηε(β,l)�i

∗.

Remark. Note that the claim below is like an (n∗ −m∗)-place version
of 3.7. Having an (n∗ −m∗)-ary version is extra for the construction but it
also costs.

Claim 4.3.1. Assume that : C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉 is a (δ, µ, λ)-
constructor , λ is a regular cardinal , δ < λ, Ī is such that (T, λ̄, Ī) ∈ Kid

δ,µ,
J is an ideal on δ extending Jbd

δ and the sequence η̄ is stronger J-cofinal
in (T, λ̄, Ī). Further suppose that ε : λ × n∗ → λ, m∗, n∗ and i∗ < δ are as
above (after the reduction, but the property ˆ(∗∗) is not needed). Then

(�) Zα ∈ J for every large enough α < λ, where

Zα := {i < δ : ¬(∃Iηε(α,m∗)�iγm∗)(∃Iηε(α,m∗+1)�iγm∗+1) . . .

. . . (∃Iηε(α,n∗−1)�iγn∗−1)(∃λβ)(∀l ∈ [m∗, n∗))(ηε(β,l)�(i+1) = ηε(α,l)�i
_〈γl〉)}.
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P r o o f. For i < δ, i ≥ i∗ and distinct sequences νm∗ , . . . , νn∗−1 ∈ Ti

define
B〈νl:l∈[m∗,n∗)〉 := {γ̄ : γ̄ = 〈γl : l ∈ [m∗, n∗)〉 and

for arbitrarily large α < λ, for all m∗ ≤ l < n∗,

νl
_〈γl〉 C ηε(α,l)}.

We will call a sequence 〈νl : l ∈ [m∗, n∗)〉 a success if

(∃Iνm∗ γm∗) . . . (∃Iνn∗−1γn∗−1)(〈γl : l ∈ [m∗, n∗)〉 ∈ B〈νl∈[m∗,n∗)〉).

Using this notion we may reformulate (�) (which we have to prove) as

(�∗) for every large enough α < λ, for J-majority of i < δ, i > i∗ the
sequence 〈ηε(α,l)�i : l ∈ [m∗, n∗)〉 is a success.

To show (�∗) note that if a sequence 〈νl : l ∈ [m∗, n∗)〉 is not a success then
there are functions fk

〈νl:l∈[m∗,n∗)〉 (for m∗ ≤ k < n∗) such that

fk
〈νl:l∈[m∗,n∗)〉 :

k−1∏
l=m∗

λνl
→ Iνk

and if 〈γl : l ∈ [m∗, n∗)〉 ∈ B〈νl:l∈[m∗,n∗)〉 then

(∃k ∈ [m∗, n∗))(γk ∈ fk
〈νl:l∈[m∗,n∗)〉(γm∗ , . . . , γk−1)).

If 〈νl : l ∈ [m∗, n∗)〉 is a success then we declare that fk
〈νl:l∈[m∗,n∗)〉 is

constantly equal to ∅.
Now we may finish the proof of the claim applying clause (b) of Defini-

tion 2.2(5) to n∗− 1 and functions F0, . . . , Fn∗−1 such that for k ∈ [m∗, n∗),

Fk(ν0_〈γ0〉, . . . , νk−1
_〈γk−1〉, νk, . . . , νn∗−1〉)=fk

〈νl:l∈[m∗,n∗)〉(γm∗ , . . . , γk−1).

This gives us a suitable α∗ < λ. Suppose ε(α,m∗) ≥ α∗. Then for J-
majority of i < δ for each k ∈ [m∗, n∗) we have: if

Fm(ηε(α,0)�(i+1), . . . , ηε(α,k−1)�(i+1), ηε(α,k)�i, . . . , ηε(α,n∗−1)�i) ∈ Iηε(α,k)�i

then

ηε(α,k)�(i+1) 6∈Fm(ηε(α,0)�(i+1), . . . ,ηε(α,k−1)�(i+1), ηε(α,k)�i, . . . ,ηε(α,n∗−1)�i).

But the choice of the functions Fk implies that thus for J-majority of i < δ,
for each k ∈ [m∗, n∗),

ηε(α,k)(i) 6∈ fk
〈ηε(α,l)�i:l∈[m∗,n∗)〉(ηε(α,m∗)(i), . . . , ηε(α,k−1)(i)).

Now the definition of the function fk
〈νl:l∈[m∗,n∗)〉 works: if for some relevant

i < δ above the sequence 〈ηε(α,l)�i : l ∈ [m∗, n∗)〉 is not a success then

〈ηε(α,l)(i) : l ∈ [m∗, n∗)〉 6∈ B〈ηε(α,l)�i:l∈[m∗,n∗)〉,

and this contradicts (∗̂) before.
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Let α∗ be such that for each α ≥ α∗ we have Zα ∈ J . Choose i ∈ δ \Zα∗

such that the clause (�) applies to n∗ −m∗ and i. Let

Y :={〈γm∗ , . . . , γn∗−1〉 : (∃λβ)(∀l∈[m∗, n∗))(ηε(β,l)�(i+1)=(ηε(α∗,l)�i)_〈γl〉)}.
The definition of Zα∗ (and the choice of i) imply that the assumption (�)
applies to the set Y , and we get γ′l , γ

′′
l < ληε(α∗,l)�i (for m∗ ≤ l < n∗) such

that

〈γ′l : m∗ ≤ l < n∗〉, 〈γ′′l : m∗ ≤ l < n∗〉 ∈ Y,
Bηε(α∗,l)�i |= yηε(α∗,l)�i_〈γ′l〉 ∩ yηε(α∗,l)�i_〈γ′′l 〉 = 0 for m∗ ≤ l < n∗.

Now, choose α < β < λ such that for m∗ ≤ l < n∗,

ηε(α∗,l)�i
_〈γ′l〉 = ηε(α,l)�(i+ 1), ηε(α∗,l)�i

_〈γ′′l 〉 = ηε(β,l)�(i+ 1)

(possible by the choice of Y and γ′l , γ
′′
l ). The definition of the algebra

Bgreen(C) and the choice of γ′l , γ
′′
l imply that for m∗ ≤ l < n∗,

Bgreen(C) |= xε(α,l) ∩ xε(β,l) 6= 0.

If l 6= m then
Bgreen(C) |= xε(α,l) ∩ xε(β,m) 6= 0

by the conditions (∗̂∗) and (4) of the preliminary cleaning (and the definition
of Bgreen(C), remember zα 6= 0). Finally, remembering that ε(α, l) = ε(β, l)
for l < m∗, zα 6= 0 and zβ 6= 0, we may conclude that

Bgreen(C) |=
⋂

l<n∗

xε(α,l) ∩
⋂

l<n∗

xε(β,l) 6= 0,

finishing the proof of Lemma 4.3.

Theorem 4.4. If µ is a strong limit singular cardinal , λ := 2µ = µ+

then there are Boolean algebras B1,B2 such that the algebra B1 satisfies the
λ-cc, the algebra B2 has the (2cf(µ))+-Knaster property but the free product
B1 ∗ B2 does not satisfy the λ-cc.

P r o o f. Let δ = cf(µ) and let h : δ → ω be a function such that

(∀n ∈ ω)(∃δi)(h(i) = n).

Choose an increasing sequence 〈µi : i < δ〉 of regular cardinals such that
µ =

∑
i<δ µi. Next, by induction on i < δ choose λi, χi, (Bi, ȳi) and Ii such

that:

(1) λi, χi are regular cardinals below µ,
(2) λi > χi ≥

∏
j<i λj + µi,

(3) Ii is a χ+
i -complete ideal on λi (containing all singletons),

(4) (Bi, ȳi) is a λi-marked Boolean algebra such that if n = h(i) and the
set Y ⊆ (λi)n+1 is such that

(∃Iiγ0) . . . (∃Iiγn)(〈γ0, . . . , γn〉 ∈ Y )
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then for some γ′l , γ
′′
l < λi (for l ≤ n) we have 〈γ′l : l ≤ n〉, 〈γ′′l : l ≤ n〉 ∈ Y

and for all l ≤ n,
Bi |= yi

γ′l
∩ yi

γ′′l
= 0,

(5) each algebra Bi satisfies the (2|δ|)+-Knaster condition.

Arriving at stage i of the construction we first put χi = (
∏

j<i λj +µi)+.
Next we define inductively χi,k, λi,k for k ≤ h(i) such that

χi,0 = χi, λi,k = (2χi,k)+, χi,k+1 = (λi,k)+.

By 3.1, for each k ≤ h(i) we find a (λi,k, χ
+
i,k)-well marked Boolean algebra

(Bi,k, ȳi,k, Ii,k) such that Bi,k has the (2δ)+-Knaster property (compare 3.3).
Let λi = λi,h(i). Proposition 4.2 applied to 〈(Bi,k, ȳi,k, Ii,k) : k ≤ h(i)〉
provides a λi-marked Boolean algebra (Bi, ȳi) and a χ+

i -complete ideal Ii
on λi such that the requirements (4), (5) above are satisfied.

Now put T =
⋃

j<δ

∏
i<j λi and for η ∈ T ,

Bη = Blg(η), ȳη = ȳlg(η), Iη = Ilg(η).

By 2.8 we find a stronger Jbd
δ -cofinal sequence η̄ = 〈ηα : α < λ〉 for (T, λ̄, Ī).

Take the (δ, µ, µ+)-constructor C determined by these parameters. Look at
the algebras B2 = Bred(C), B1 = Bgreen(C). Applying 4.1 we see that B1 ∗B2

fails the λ-cc. The choice of the function h and the requirement (4) above
allow us to apply 4.3 to conclude that the algebra B2 satisfies the λ-cc.
Finally, by 3.8, we conclude that B1 has the (2δ)+-Knaster property.

Remark 4.5. (1) We shall later give results not using 2µ = µ+ but still
not in ZFC.

(2) Applying the methods of [1] or [3] we hope to prove the consistency
of: for some µ strong limit singular there is no example for λ = µ+.

(3) If we want “for no regular λ ∈ [µ, 2µ]” more is needed; we expect the
consistency, but it is harder (not to speak of “for all µ”)

(4) Remark (1) above shows that 2µ > µ+ is not enough for the negative
result.

5. Toward improvements

Definition 5.1. Let (T, λ̄, Ī) ∈ Kid
µ,δ and let J be an ideal on δ (including

Jbd
δ , as usual). We say that a sequence η̄ = 〈ηα : α < λ〉 of δ-branches

through T is super J-cofinal for (T, λ̄, Ī) if

(a) ηα 6= ηβ for distinct α, β < λ,
(b) for every function F there is α∗ < λ such that if α0 < . . . < αn < λ,

α∗ ≤ αn then the set
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{i < δ : (ii)∗ F (ηα0 , . . . , ηαn−1 , ηαn�i) ∈ Iηαn�i

(and well defined) but
ηαn

�(i+1) ∈ F (ηα0 , . . . , ηαn−1 , ηαn
�i)}

is in the ideal J .

Remark 5.2. (1) The main difference between the definition of super
J-cofinal sequence and those in 2.2 is the fact that here the values of the
function F depend on ηαl

(for l < n), not on the restrictions of these se-
quences as in earlier notions.

(2) “Super∗ J-cofinal” is defined by adding “α∗ ≤ α0” (compare 2.2(9)).

Proposition 5.3. Suppose that (T, λ̄, Ī) ∈ Kid
µ,δ is such that for each

ν ∈ Ti, i < δ the ideal Iν is |Ti|+-complete. Let J ⊇ Jbd
δ be an ideal on δ.

Then every super J-cofinal sequence is stronger∗ J-cofinal.

P r o o f. Assume that η̄ = 〈ηα : α < λ〉 ⊆ limδ(T ) is super J-cofinal for
(T, λ̄, Ī). Let n < ω and let F0, . . . , Fn−1 be functions. For each l ≤ n we
define an (l + 1)-place function F ∗

l such that if α0 < α1 < . . . < αl−1 < λ,
% ∈ Ti, i < δ then

F ∗
l (ηα0 , . . . , ηαl−1 , %)

=
⋃
{Fl(ηα0�(i+1), . . . , ηαl−1�(i+1), %, νl+1, . . . , νn) : νl+1, . . . , νn ∈ Ti &

Fl(ηα0�(i+1), . . . , ηαl−1�(i+1), %, νl+1, . . . , νn) ∈ I% (and well defined)}.
As the ideals I% (for % ∈ Ti) are |Ti|+-complete we know that

F ∗
l (ηα0 , . . . , ηαl−1 , %) ∈ I%.

Applying 5.1(b) to the functions F ∗
l (l < n) we choose α∗l < λ such that if

α0 < . . . < αl < λ, α∗l ≤ αl then the set

B∗
l := {i < δ : F ∗

l (ηα0 , . . . , ηαl−1 , ηαl
�i) ∈ Iηαl

�i but

ηαl
�(i+ 1) ∈ F ∗

l (ηα0 , . . . , ηαl−1 , ηαl
�i)}

is in the ideal J .
Put α∗ = max{α∗l : l ≤ n}. We want to show that this α∗ works for

the condition 2.2(6)(b) (version for “stronger∗”). So suppose that m ≤ n,
α∗ ≤ α0 < α1 < . . . < αn < λ. Let

Bm := {i < δ : Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i) ∈ Iηαm�i

and ηαm�(i+1) ∈ Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i)}.
Note that if i ∈ Bm then, as α∗m ≤ α∗ ≤ αm,

ηαm�(i+1) ∈ Fm(ηα0�(i+1), . . . , ηαm−1�(i+1), ηαm�i, . . . , ηαn�i)
⊆ F ∗

m(ηα0 , . . . , ηαm−1 , ηαm�i) ∈ Iηαm�i.

Hence we conclude that Bm ⊆ B∗
m and therefore Bm ∈ J .
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Proposition 5.4. Assume that (T, λ̄, Ī) ∈ Kid
µ,δ, each ideal Iη (for η ∈

Ti, i < δ) is (|δ| + |Ti|)+-complete and J ⊇ Jbd
δ is an ideal on δ. Further

suppose that a sequence η̄ = 〈ηα : α < λ〉 is super J-cofinal for (T, λ̄, Ī), λ is
a regular cardinal greater than |T | and a sequence 〈αε,l : ε < λ, l < n〉 ⊆ λ
is with no repetition and such that

αε,0 < αε,1 < . . . < αε,n−1 for all ε < λ.

Then for every ε < λ large enough there is a ∈ J such that

(�) if il ∈ δ \ a (for l < n) and i0 ≥ i1 ≥ . . . ≥ in−1 then

(∃Iηαε,0 �i0γ0) . . . (∃
Iηαε,n−1 �in−1γn−1)

(∃λζ <λ)(∀l<n)(ηαζ,l
�(il+1) = ηαε,l

�il
_〈γl〉).

P r o o f. This is very similar to Claim 4.3.1. First choose ε0 < λ such
that for each ε ∈ [ε0, λ) and for every i0, . . . , in−1 < δ we have

(∃λζ < λ)(∀l < n)(ηαζ,l
�(il + 1) = ηαε,l

�(il + 1))

(possible as |T | < cf(λ) = λ).
Now, for ı̄ = 〈il : l < n〉 ⊆ δ and ν̄ = 〈νl : l < n〉 such that i0 ≥ i1 ≥

. . . ≥ in−1, νl ∈ Til
and k < n we define a function fk

ı̄,ν̄ :
∏

l<k λνl
→ Iνk

(with the convention that f0
ı̄,ν̄ is supposed to be a 0-place function, i.e., a

constant) as follows.
Let

Bı̄,ν̄ :=
{
〈γl : l < n〉 ∈

∏
l<n

λνl
: (∃λζ < λ)(∀l < n)(ηαζ,l

�(il+1) = νl
_〈γl〉)

}
.

If

(�ı̄,ν̄) ¬(∃Iν0γ0) . . . (∃Iνn−1γn−1)(〈γ0, . . . , γn−1〉 ∈ Bı̄,ν̄)

then f0
ı̄,ν̄ , . . . , f

n−1
ı̄,ν̄ are such that

(♦) if 〈γ0, . . . , γn−1〉 ∈ Bı̄,ν̄ then (∃k < n)(γk ∈ fk
ı̄,ν̄(γ0, . . . , γk−1)).

Otherwise (i.e., if not (�ı̄,ν̄)) the functions fk
ı̄,ν̄ are constantly equal to ∅

(for k < n). Next, for k < n, choose functions Fk such that if η0, . . . , ηk ∈
limδ(T ), i < δ then

Fk(η0, . . . , ηk−1, ηk�i)

=
⋃
{fk

ı̄,ν̄(η0(i0), . . . , ηk−1(ik−1)) : ı̄ = 〈il : l < n〉, ν̄ = 〈νl : l < n〉,

δ>i0 ≥ . . . ≥ ik = i ≥ ik+1≥ . . . ≥ in−1,

νl = ηl�il for l ≤ k and

νl ∈ Til
for k < l < n}.
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Note that Fk(η0, . . . , ηk−1, ηk�i) is a union of at most |δ| + |Ti| sets from
the ideal Iηk�i and hence Fk(η0, . . . , ηk−1, ηk�i) ∈ Iηk�i (for each η0, . . . , ηk ∈
limδ(T ), i < δ). Thus, using the super J-cofinality of η̄ we find α∗ < λ such
that if α∗ ≤ α0 < . . . < αn < λ then the set

{i < δ : (∃k < n)(ηαk
(i) ∈ Fk(ηα0 , . . . , ηαk−1 , ηαk

))}

is in the ideal J .
Let ε1 > ε0 be such that for every ε ∈ [ε1, λ) we have α∗ < αε,0 < . . . <

αε,n−1.
Suppose now that ε1 < ε < λ. By the choice of α∗ we know that the set

a := {i < δ : (∃l < n)(ηαε,l
(i) ∈ Fl(ηαε,0 , . . . ηαε,l−1 , ηαε,l

�i))}

is in the ideal J . We are going to show that the assertion (�) holds for ε
and a.

Suppose that ı̄ = 〈il : l < n〉 ⊆ δ \ a and i0 ≥ i1 ≥ . . . ≥ in−1. Let
ν̄ = 〈νl : l < n〉, νl = ηαε,l

�il. If the condition (�ı̄,ν̄) fails then we are done.
So assume that it holds true. By the choice of the set a (and α∗) we have

(∀l < n)(ηαε,l
(il) 6∈ Fl(ηαε,0 , . . . , ηαε,l−1 , ηαε,l

�il)),

which, by the definition of Fl, implies that

(∀l < n)(ηαε,l
(il) 6∈ f l

ı̄,ν̄(ηαε,0(i0), . . . , ηαε,l−1(il−1))).

By (♦) we conclude that

〈ηαε,0(i0), . . . , ηαε,n−1(in−1)〉 6∈ Bı̄,ν̄ ,

and hence, by the definition of Bı̄,ν̄ ,

¬(∃λζ)(∀l < n)(ηαζ,l
�(il + 1) = ηαε,l

�(il)),

which contradicts the choice of ε0 (remember ε ≥ ε1 > ε0).

Definition 5.5. We say that a λ-marked Boolean algebra (B, ȳ) has
character n if for every finite set u ∈ [λ]<ω such that B |=

⋂
α∈u yα = 0

there exists a subset v ⊆ u of size |v| ≤ n such that B |=
⋂

α∈v yα = 0.

Proposition 5.6. If a λ-marked Boolean algebra (B, ȳ) is (θ,notλ)-
Knaster (or other examples considered in the present paper) and (B, ȳ) has
character 2 then without loss of generality (B, ȳ) is determined by a colouring
on λ: if c : [λ]2 → 2 is such that

c({α, β}) = 0 iff B |= yα ∩ yβ = 0

then the algebra B is freely generated by {yα : α < λ} except that

if c({α, β}) = 0 then yα ∩ yβ = 0.

Remark 5.7. These are nice examples.
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Proposition 5.8. In all our results (like 3.1 or 3.8), the marked Boolean
algebra (B, ȳ) which we get is actually of character 2 as long as any (Bη, ȳη)
appearing in the assumptions (if any) is like that. Then automatically the
θ-Knaster property of the marked Boolean algebra (B, ȳ) implies a stronger
condition: if Z ∈ [lg(ȳ)]θ then there is a set Y ∈ [Z]θ such that {yi : i ∈ Y }
generates a filter in B.

Proposition 5.9. Let (T, λ̄, Ī) ∈ Kid
µ,δ be such that for each η ∈ T the

filter (Iη)c (dual to Iη) is an ultrafilter on succT (η), and let J be an ideal
on δ (extending Jbd

δ ). Suppose that :

(a) C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) is a (δ, µ, λ)-constructor and the
sequence η̄ is stronger J-cofinal for (T, λ̄, Ī), |T | < cf(λ) = λ,

(b) the sequence 〈αε,l : ε < λ, l < n〉 ⊆ λ is with no repetition,
(c) for any distinct η, ν ∈ T either the ideal Iη is (2λν )+-complete (which,

of course, implies λη > 2λν ) or the ideal Iν is (2λη )+-complete (it is enough
if this holds true for η, ν such that lg(η) = lg(ν)).

Then for every large enough ε < λ, for J-almost all i < δ there are sets
Xl ∈ (Iηαε,l

�i)+ (for l < n) such that

(∀γ0 ∈ X0) . . . (∀γn−1 ∈ Xn−1)(∃λζ < λ)(∀l < n)(ηαε,l
�i_〈γl〉 C ηαζ,l

).

Remark 5.9.A. We can replace stronger by big and then omit being an
ultrafilter.

P r o o f (of Proposition 5.9). First note that we may slightly reindex our
sequence 〈αε,l : ε < λ, l < n〉 and assume that for each ε < λ,

αε,0 < αε,1 < . . . < αε,n−1.

Now, since |T | < cf(λ) = λ we may apply Claim 4.3.1 to

〈〈αε,l : l < n〉 : ε0 ≤ ε < λ〉

(we need to take ε0 large enough to get the condition (∗̂) of the proof of
4.3). Consequently, we may conclude that there is ε1 < λ such that for
every ε ∈ [ε1, λ),

(�ε) for J-majority of i < δ we have

(∃Iηαε,0 �iγ0) . . . (∃
Iηαε,n−1 �iγn−1)(∃λζ<λ)(∀l<n)(ηαζ,l

�(i+1)=ηαε,l
�i_〈γl〉).

Now we would like to apply 1.2. We cannot do this directly as we do not
know if the cardinals ληε,l�i are decreasing (with l). However the following
claim helps us.



184 S. Shelah

Claim 5.9.1. Suppose that λ0 < λ1 are cardinals and I0, I1 are maximal
ideals on λ0, λ1 respectively. Assume that the ideal I1 is (λ0)+-complete and
ϕ(x, y) is a formula. Then

(∃I0γ0)(∃I1γ1)ϕ(γ0, γ1) ⇒ (∃I1γ1)(∃I0γ0)ϕ(γ0, γ1).

P r o o f. First note that if I is a maximal ideal then the quantifiers ∃I

and ∀I are equivalent. Suppose now that

(∃I0γ0)(∃I1γ1)ϕ(γ0, γ1).

This implies (as I0, I1 are maximal) that

(∀I0γ0)(∀I1γ1)ϕ(γ0, γ1).

Thus we have a set a ∈ I0 and for each γ ∈ λ0 \ a a set bγ ∈ I1 such that

(∀γ0 ∈ λ0 \ a)(∀γ1 ∈ λ1 \ bγ0)ϕ(γ0, γ1).

Let b =
⋃

γ∈λ0\a bγ . As I1 is (λ0)+-complete the set b is in I1. Clearly

(∀γ1 ∈ λ1 \ b)(∀γ0 ∈ λ \ a)ϕ(γ0, γ1),

which implies (∃I1γ1)(∃I0γ0)ϕ(γ0, γ1).

Now fix ε > ε1 (ε1 as chosen earlier). Take i∗ < δ such that the elements
of 〈ηαε,l

�i : l < n〉 are pairwise distinct. Suppose that i ∈ [i∗, δ) is such that
the formula of (�ε) holds true. Let {kl : l < n} be an enumeration of n
such that

ληαε,k0
�i > ληαε,k1

�i > . . . > ληαε,kn−1
�i.

(Note that by the assumption (c) we know that all the ληαε,kl
�i are distinct,

remember the choice of i∗.) Applying Claim 5.9.1 we conclude that

(∃Iηαε,k0
�i
γk0) . . . (∃

Iηαε,kn−1
�i

γkn−1)(∃λζ < λ)(∀l < n)
(ηαε,l

�i_〈γl〉 = ηαζ,l
�(i+ 1)).

But now we are able to use 1.2 to find that there are sets Xkl
⊆ ληαε,kl

�i,
Xkl

6∈ Iηαε,kl
�i (for l < n) such that∏

l<n

Xl ⊆ {〈γ0, . . . , γn−1〉 : (∃λζ<λ)(∀l<n)(ηαε,l
�i_〈γl〉 = ηαζ,l

�(i+1))},

which is exactly what we need.

If we assume less completeness of the ideals Iη in 5.9 then still we may
say something.

Proposition 5.10. Let 〈σi : i < δ〉 be a sequence of cardinals. Suppose
that T, λ̄, Ī, η̄, J, λ, µ, δ and 〈αε,l : ε < λ, l < n〉 are as in 5.9 but with
condition (c) replaced by
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(c)−〈σi:i<δ〉 if η, ν ∈ Ti, η 6= ν, i < δ then either the ideal Iη is ((λν)σi)+-
complete or the ideal Iν is ((λη)σi)+-complete.

Then for every large enough ε < λ, for J-almost all i < δ there are sets
Xl ∈ [ληαε,l

�i]σi (for l < n) such that

(∀γ0 ∈ X0) . . . (∀γn−1Xn−1)(∃λζ < λ)(∀l < n)(ηαε,l
�i_〈γl〉 C ηαζ,l

).

P r o o f. The proof goes exactly as the one of 5.9, but instead of 1.2 we
use 1.3.

Remark 5.11. (1) Note that in the situation as in 5.9, usually “J-
cofinal” implies “stronger J-cofinal” (see 2.7, 2.5).

(2) The first assumption of 5.9 (ultrafilters) coupled with our normal
completeness demands is a very heavy condition, but it has rewards.

(3) A natural context here is when 〈µi : i ≤ κ〉 is a strictly increasing
continuous sequence of cardinals such that each µi+1 is compact and µ =
µκ. Then every µi+1-complete filter can be extended to an µi+1-complete
ultrafilter. Moreover 2µ = µ+ follows by Solovay [26].

If for some function f from cardinals to cardinals and for each χ there is
an algebra Bχ of cardinality f(χ) which cannot be decomposed into ≤ µ sets
Xi each with some property Pr(Bχ, Xi) and if each µi is f -inaccessible then
we can find T, Ī, λ̄ as in 5.9 and such that η ∈ Ti ⇒ µi < χη < λη < µi+1

and for η ∈ Ti there is an algebra Bη with universe λη and the ideal Iη is
χη-complete,

if X ⊆ Bη and Pr(Bη, X) then X ∈ Iη
(compare 3.1) and λη < λν ⇒ (2λη )+ < χν . Now choosing cofinal η̄ we
may proceed as in earlier arguments.

(4) It seems to be good for building nice examples, however we did not
find the right question yet.

(5) Central to our proofs is the assumption that

“〈αζ,l : ζ < λ, l < n〉 ⊆ λ is a sequence with no repetition”,

i.e., we deal with λ disjoint n-tuples. This is natural as the examples con-
structed here are generated from {xi : i < λ} by finitary functions. One
may ask what happens if we admit functions with, say, ℵ0 places. We can
still try to deduce for µ as above that:

(�) there is h : [µ+]2 → 2 such that if 〈uε : ε < λ〉 are pairwise disjoint,
uε = {αε,l : l < l∗} is the increasing (with l) enumeration, l∗ < µ
(l∗ infinite), for a sequence 〈νl : l < l∗〉 ⊆ Ti we set

B〈νl:l<l∗〉 :=

{〈ηαε,l
(i) : l < l∗〉 : (∃λζ < λ)(∀l < l∗)(ηαε,l

�(i+ 1) = ηαζ,l
�(i+ 1))},
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for some i∗ < δ there are no repetitions in 〈ηαε,l
�i∗ : l < l∗〉 and

h�[uε]2 ≡ 1 (for each ε < λ) then there are α < β (really a large set
of these) such that

h�[uα ∪ uβ ]2 ≡ 1.

The point is that we can deal with functions with infinitely many variables.
Looking at previous proofs, “in stronger” we can get (for µ strong limit
singular etc.): for α large enough, for i < δ = cf(µ) large enough, etc. we
can defeat

(. . . (∀Iηαε,l
�iγl) . . .)(〈γl : l < l∗〉 ∈ B〈ηαε,l

�i:l<l∗〉)

but the duality of quantifiers fails, so the conclusion is only that

(∀J i < δ)[¬(. . . (∀Iηαε,l
�iγl) . . .)l<l∗(〈ηαε,l

(i) : l < l∗〉 6∈ B〈ηαε,l
�i:l<l∗〉)].

(6) (no ultrafilters) If I ⊇ Jbd
η , δ is a regular cardinal, λη = λlg(η) and for

each u ∈ [Ti]<|δ|χ, i < δ the free product Fη∈u Bη satisfies the λ-cc then we
can show that the algebra Bred

<χ also satisfies the λ-cc, where for a cardinal
χ the algebra Bred

<χ is the Boolean algebra freely generated by{⋂
α∈u x

t(α)
α : t : u→ 2, u ∈ [λ]<δ, h�[u ∩ t−1[1]]2 ≡ 1, |u| < χ and

(∃i < δ)(the mapping α 7→ ηα(i) is one-to-one (for α ∈ u)),
(∃i < δ)(∃α ∈ u)(∀j ∈ (i, δ))(∀β ∈ u)(fα(j) ≤ fβ(j))

}
.

[Note that if χ ≤ cf(δ) it is simpler.]

∗ ∗ ∗
Now we will deal with an additional demand that the algebra Bred sat-

isfies the |δ|+-cc (or even has the |δ|+-Knaster property). Note that the
demand of |δ|-cc does not seem to be reasonable: if every ȳη has two dis-
joint members (and every node t ∈ T is an initial segment of a branch
{ηα : α < λ} through T and δ 6= cf(δ) implies t has at least two immedi-
ate successors) then we can find δ branches which give δ pairwise disjoint
elements. Moreover, for each ν ∈ Ti let Aν = {ηα(i) : ηα�i = ν} and

aα = {i < δ : (∃β ∈ Aηα�i)(Bηα�i |= yηα(i) ∩ yβ = 0)}.

So if Bred |= σ-cc then (∀α < λ)(|aα| < σ).

Definition 5.12. Let (T, λ̄) ∈ Kµ,δ and let η̄ = 〈ηα : α < λ〉 ⊆ limδ(T ).
We say that η̄ is hereditary† θ-free if for every Y ∈ [λ]θ there are Z ∈ [Y ]θ

and i < δ such that

(∀α, β ∈ Z)(α 6= β ⇒ [ηα�i = ηβ�i & ηα(i) 6= ηβ(i)]).

† Sorry, this is weaker than θ-free.
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Proposition 5.13. Assume that C = (T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) is
a (δ, µ, λ)-constructor. If η̄ is hereditary θ-free, each algebra Bη has the θ-
Knaster property and θ is regular then the algebra Bred(C) has the θ-Knaster
property.

P r o o f. The same as for 3.8. Note that the proof there shows actually
that if (∀α < θ)(|α||δ| < θ = cf(θ)), then η̄ is θ-hereditary free. Also if
(∀α < θ)(|α|<|δ| < θ = cf(θ)) then we can weaken the demand in 5.12 to
(∀α, β ∈ Z)(α 6= β ⇒ ηα�i 6= ηβ�i); note that we can replace i by i+ 1.

Proposition 5.14. Assume that (T, λ̄) ∈ Kµ,δ, η̄ = 〈ηα : α < λ〉 ⊆
limδ(T ) and λ is a regular cardinal. Further suppose that :

(a) (∀α < θ)(|α|<δ < θ = cf(θ)), δ < θ, J is an ideal on δ extending
Jbd

δ ,
(b) the sequence η̄ is <J -increasing and one of the following conditions

is satisfied :

(α) η̄ is <J -cofinal in
∏

i<δ λi/J , λi are regular cardinals above θ
(at least for J-majority of i < δ), {α < λ : cf(α) = θ} ∈ I[λ]
and λη = λlg(η),

(β) there are a sequence 〈Cα : α < λ〉 of subsets of λ, a closed
unbounded subset E of λ and i∗ < δ such that :

(i) Cα ⊆ α, otp(Cα) ≤ θ,
(ii) if β ∈ Cα then Cβ = Cα ∩ β and ηβ�[i∗, δ) < ηα�[i∗, δ),
(iii) if α ∈ E and cf(α) = θ then α = sup(Cα).

Then there is A ∈ [λ]λ such that the restriction η̄�A is θ-hereditary free.

P r o o f. First assume that case (b)(β) holds.

Claim 5.14.1. Suppose that Y ∈ [E]θ. Then:

(1) (∃Z ∈ [Y ]θ)(∃i⊗)(〈fβε(i
⊗) : ε ∈ Z〉 is strictly increasing).

(2) If additionally J = Jbd
δ then

(∃Z ∈ [Y ]θ)(∃i⊗ < δ)(〈ηβ�[i⊗, δ) : β ∈ Z〉 is strictly increasing).

P r o o f. Suppose Y ∈ [E]θ. Without loss of generality we may assume
that otp(Y ) = θ. Let α = sup(Y ). So α ∈ E, cf(α) = θ and hence Cα

is unbounded in α. Let Cα = 〈αε : ε < θ〉 be the increasing enumeration.
Clearly the set

A := {ε < θ : [αε, αε+1) ∩ Y 6= ∅}
is unbounded in θ. For ε ∈ A choose βε ∈ [αε, αε+1) ∩ Y . Then

(∃aε ∈ J)(ηαε�(δ \ aε) ≤ ηβε�(δ \ aε) < ηαε+1�(δ \ aε)).

Now choose iε ∈ δ \ aε, iε > i∗ and find B ∈ [A]θ such that

ε ∈ B ⇒ iε = i⊗.
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Clearly, by the assumption (β)(ii), this i⊗ and Z = {βε : ε ∈ B} are as
required in 5.14.1(1).

If additionally we know that J = Jbd
δ then for some B ∈ [A]θ we have

(∃i⊗ ∈ [i∗, δ))(ε ∈ B ⇒ aε ⊆ i⊗)

and hence the sequence 〈fβε�[i
⊗, δ) : ε ∈ B〉 is as required in 5.14.1(2)

(remember (β)(ii)).

But now, using i⊗ given by 5.14.1 we may deal with the sequence
〈fβε�(i

⊗ + 1) : ε ∈ B〉 and using the old proof (see 3.8) on the tree
⋃

i≤i⊗ Ti

(note that we may apply the assumption (a) to arguments like there) we
may get the desired conclusion. This finishes the case when (b)(β) holds
true.

Now, assume that (b) (α) holds. We reduce this case to the previous one
(using cofinality).

Take C̄, E witnessing that the set {α < λ : cf(α) = θ} is in I[λ] and
build a <J -increasing sequence η̄′ = 〈η′α : α < λ〉 ⊆

∏
i<δ λi such that

η′α > ηα and η̄′ satisfies clause (β) of (b) for C̄, E. [The construction of η′α
is by induction on α < λ. Suppose that we have defined η′β for β < α. Now,
at stage α of the construction, we first choose η0

α ∈
∏

i<δ λi such that

(∀β < α)(η′β <J η
0
α).

This is possible since the condition (α) implies that λ = tcf(
∏

i<δ λi/J) and
α < λ. Now for i < δ we put

η′α(i) = max{η0
α(i), ηα(i) + 1, sup{η′γ(i) + 1 : γ ∈ Cα}}.

One can check that this η̄′ is as required.]
Now we use the fact that η̄ is cofinal. The set

E′ = {γ ∈ E : (∀α < γ)(∃β < γ)(η′α <J ηβ)}
is a club of λ. Look at η̄�E′. Suppose that Y ∈ [E′]θ. Without loss
of generality we may assume that otp(Y ) = θ and let α = sup(Y ). By
induction on ε < θ choose αε < βε < γε such that βε ∈ Y , αε ∈ Cα,
γε ∈ Cα, η′αε

<J ηβε <J η
′
γε

and if ζ < ε then γζ < αε. Next choose iε > i∗

such that
η′αε

(iε) < ηβε(iε) < η′γε
(iε).

We may assume that iε = i⊗ for all ε < θ. Now, as η̄′ obeys C̄, we have

ζ < ε ⇒ η′γζ
(i⊗) < η′αε

(i⊗),

J = Jbd
δ ∧ ζ < ε ⇒ η′γζ

�[i⊗, δ) < η′αε
�[i⊗, δ),

and hence we conclude that the sequence 〈ηβε(i
⊗) : ε < θ〉 is strictly in-

creasing. Now we may finish the proof as earlier.
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Conclusion 5.15. If µ is a strong limit singular cardinal , 2µ = µ+ = λ
and ¬(∃0#) or at least

{δ < µ+ : cf(δ) = (2<cf(µ))+} ∈ I[λ]

then there is a (cf(µ), µ, λ)-constructor C such that the algebra Bred(C) has
the (2<cf(µ))+-Knaster property , its counterpart Bgreen(C) is λ-cc and the
free product is not λ-cc.

[Note that if GCH holds then (2<cf(µ))+ = (cf(µ))+ so the problem is
closed then.]

P r o o f. Like 4.4 using 5.14, 5.13 instead of 2.8, 3.8.

6. The use of pcf. Assuming that 2<κ is much larger than κ = cf(κ)
(= cf(µ) < µ) we may still want to have examples with the (κ+,notλ)-
Knaster property and the non-multiplicativity. Here 5.15 does not help if
GCH holds on an end segment of the cardinals (and ¬(∃0#)). We try to
remedy this.

It is done inductively. So 6.3 uses cf(µ) = ℵ0 just to start the induction.
We can phrase (a part of) it without this assumption but in applications we
use it for cf(µ) = ℵ0. Also 6.3(b) really needs this condition (otherwise we
would have to assume that (∀α < θ)(|α|<δ < µ)). This result says that, if
cf(µ) = ℵ0, then we have the θ-Knaster property for every regular cardinal
θ ∈ µ \ κ+.

Definition 6.1. (1) Let Kwmk denote the class of all tuples (θ, λ, χ, J)
such that θ < λ, χ are regular cardinals, J is a χ-complete ideal on λ and
there is a (λ, χ)-well marked Boolean algebra (B, ȳ, J) (see 3.2) such that
the algebra B has the θ-Knaster property (wmk stands for “well marked
Knaster”).

When we write (θ, λ) ∈ Kwmk we really mean (θ, λ, λ, Jbd
λ ) ∈ Kwmk

(which just means that there exists a (θ, λ)-Knaster marked Boolean alge-
bra).

(2) By Ksmk (smk is for “sequence marked Knaster”) we denote the class
of all triples (θ, λ, χ) of cardinals such that θ < λ are regular and there is
a sequence 〈(Bα, ȳ

α) : α < χ〉 of λ-marked Boolean algebras such that (for
α < χ) the algebras Bα have the θ-Knaster property, ȳα = 〈yα

i : i < λ〉 and
if n < ω, α0 < . . . < αn−1 < χ and βε,l < λ for ε < λ, l < n are such that
(∀ε1 < ε2 < λ)(∀l < n)(βε1,l < βε2,l) then there are ε1 < ε2 < λ such that

l < n ⇒ Bαl
|= “yαl

βε1,l
∩ yαl

βε2,l
= 0”.

Remark 6.2. (1) On some closure properties of Kθ
wmk := {λ : (θ, λ) ∈

Kwmk} under pcf see 3.12: if λi ∈ Kθ
wmk (for i < δ), λi > max pcf{λj : j < i}

and λ ∈ pcf{λi : i < δ} and (∀α < θ)(|α||δ| < θ) then λ ∈ Kθ
wmk.
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(2) We can replace θ by a set Θ of such cardinals, with no real difference.
And thus we may consider the class K∗

wmk of all tuples (Θ, λ, χ, J) such that
there exists a (λ, χ)-well marked Boolean algebra (B, ȳ, J) with

(∀θ ∈ Θ)(B has the θ-Knaster property).

(3) In 6.1(2), each (Bα, ȳ
α) is well marked.

Proposition 6.3. Assume that µ is a strong limit singular cardinal ,
ℵ0 = cf(µ) < µ and λ = 2µ = µ+.

(a) If (∀α < θ)(|α|cf(µ) < θ = cf(θ) < λ), then (θ, λ) ∈ Kwmk. Moreover
(θ, λ, 2λ) ∈ Ksmk.

(b) If cf(µ) < θ = cf(θ) < µ and {α < λ : cf(α) = θ} ∈ I[λ], then
(θ, λ) ∈ Kwmk. Moreover (θ, λ, 2λ) ∈ Ksmk.

P r o o f. This is similar to previous proofs and the first parts of 6.3(a),
(b) follow from what we have done already: (a) is an obvious modification
of 3.11; (b) is similar, but based on 5.13, 5.14 (and 2.8, 3.7) (see below).
What we actually have to prove are the “moreover” parts. We will only
sketch the proof for (b), modifying the proof of 4.4.

As in 4.4 we choose h : cf(µ) → ω such that for each n ∈ ω the preimage
h−1[{n}] is unbounded (in cf(µ)). Next we take an increasing sequence
〈µi : i < cf(µ)〉 of regular cardinals such that µ =

∑
i<δ µi. Finally (as in

4.4) we construct λi, χi, (Bi, ȳi) and Ii such that for i < cf(µ):

(1) λi, χi < µ are regular cardinals,
(2) λi > χi ≥

∏
j<i λj + µi and χ0 > θ + µ0,

(3) Ii is a χ+
i -complete ideal on λi,

(4) (Bi, ȳi) is a λi-marked Boolean algebra such that if n = h(i) and the
set Y ⊆ (λi)n+1 is such that

(∃Iiγ0) . . . (∃Iiγn)(〈γ0, . . . , γn〉 ∈ Y ),

then for some γ′l , γ
′′
l < λi (for l ≤ n) we have 〈γ′l : l ≤ n〉, 〈γ′′l : l ≤ n〉 ∈ Y

and for all l ≤ n,
Bi |= yi

γ′l
∩ yi

γ′′l
= 0,

(5) each algebra Bi satisfies the θ-Knaster condition,
(6) for ξ < λi the set [ξ, λi) is not in the ideal Ii.

Note that the last requirement is new here. Though we cannot demand that
the ideals Ii extend Ibd

λi
, the condition (6) above is satisfied in our standard

construction. Note that the ideal from 3.1 has this property if λ there is
regular. Moreover it is preserved when the (finite) products of ideals (as in
4.2) are considered. Also, if I is an ideal on λ, A0 ∈ I is such that |λ \ A0|
is minimal and A1 ∈ I+ is such that |A1| is minimal then we can use either
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I�A0 or I�A1. All relevant information is then preserved (in the first case
the condition (6) holds, in the second Jbd

λ ⊆ I under suitable renaming).
Now we put T =

⋃
i<δ

∏
j<i λj , Bη = Blg(η), ȳη = ȳlg(η) and Iη = Ilg(η).

Applying 2.8 we find a stronger Jbd
δ -cofinal sequence η̄ = 〈ηα : α < λ〉 for

(T, λ̄, Ī). By (6) we may additionally demand that η̄ is <Jbd
cf(µ)

-increasing

cofinal in
∏

i<cf(µ) λi/J
bd
cf(µ). Let 〈Bξ : ξ < 2λ〉 be a sequence of pairwise

almost disjoint elements of [λ]λ (i.e., |Bξ ∩ Bζ | < λ for distinct ξ, ζ < 2λ).
For each ξ < 2λ we may apply 5.14 (the version of (b)(α)) to the sequence
〈ηα : α ∈ Bξ〉 and we find Aξ ∈ [Bξ]λ such that each sequence 〈ηα : α ∈ Aξ〉
is θ-hereditary free. Let

B∗
ξ = Bred(T, λ̄, 〈ηα : α ∈ Aξ〉, 〈(Bη, ȳη) : η ∈ T 〉), x̄ξ = 〈xred

α : α ∈ Aξ〉.

Of course, each B∗
ξ is a subalgebra of Bred(T, λ̄, η̄, 〈(Bη, ȳη) : η ∈ T 〉) (gen-

erated by x̄ξ). By 5.13 and 3.7 we know that the marked Boolean algebras
(B∗

ξ , x̄ξ) are (θ,notλ)-Knaster. To show that they witness (θ, λ, 2λ) ∈ Ksmk

suppose that n < ω, ξ0, . . . , ξn−1 < 2λ and βε,l < λ (for ε < λ, l < n) are
such that

(∀ε1 < ε2 < λ)(∀l < n)(βε1,l < βε2,l),

and of course {βε,l : ε < λ} ⊆ Aξl
. Since Aξl

are almost disjoint we may
assume that

(∀ε1, ε2 < λ)(∀l1 < l2 < n)(βε1,l1 6= βε2,l2).

Further we may assume that we have i∗ < cf(µ) such that for each ε < λ
the sequences ηβε,l

�i∗ for l < n are pairwise distinct.
By the choice of η̄, T , λ̄ etc. we may apply 4.3.1 to conclude that for all

sufficiently large ε < λ the set

Zε = {i < cf(µ) : ¬(∃Iηβε,0
�i
γ0) . . . (∃

Iηβε,n−1
�i
γn−1)(∃λζ)(∀l < n)

(ηβε,l
�(i+ 1) = (ηβε,l

�i)_〈γl〉)}

is in the ideal Jbd
cf(µ). Take one such ε. Choosing i ∈ cf(µ) \ Zε, i > i∗ such

that h(i) = n we may follow exactly the last part of the proof of 4.3 to find
ε0, ε1 < λ such that for each l < n,

ηβε0,l
�i = ηβε1,l

�i, but Bηβε0,l
�i |= yηβε0,l

�(i+1) ∩ yηβε1,l
�(i+1) = 0,

which implies that
(∀l < n)(B∗

ξl
|= xred

βε0,l
∩ xred

βε1,l
= 0).

Proposition 6.4. Assume that :

(a) 〈λi : i < δ〉 is an increasing sequence of regular cardinals such that
δ < λ0 and λi > max pcf{λj : j < i} (the last is our natural assumption),

(b) ℵ0 < θ = cf(θ) <
⋃

i<δ λi (naturally we assume just cf(θ) = θ < λ0),
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(c) λ = maxpcf{λi : i < δ},
(d) (θ, λi,max pcf{λj : j < i}) ∈ Ksmk,
(e) for each τ ∈ {λ} ∪

⋃
α<δ pcf{λi : i < α} we have

{ξ < τ : cf(ξ) = θ} ∈ I[τ ],

or at least for some f̄τ =〈fτ
ε : ε<τ〉, <J=τ

-increasing cofinal in
∏

i<α λi/J=τ

we have
γ < τ & cf(γ) = θ ⇒ fτ

γ is good in f̄τ

(see [21], [20, §1 and 1.6(1)], and then Magidor and Shelah [9]),
(f) |pcf{λi : i < δ}| < θ or at least |pcf{λi : i < α}| + |δ| < θ for each

α < δ.

Then (θ, λ) ∈ Kwmk. Moreover (θ, λ, χ) ∈ Ksmk provided there is an
almost disjoint family of size χ in [λ]λ. We may get algebras Bred, Bgreen as
in the main constructions such that

Bred |= θ-Knaster, Bgreen |= λ-cc, Bred ∗ Bgreen |= ¬λ-cc.

Remark 6.4.A. This continues also the proof of [22, 3.5]. Of course
instead of clauses (e) + (f) we may demand (∀α < θ)(|α||δ| < θ = cf(θ)).

P r o o f. The main difficulty of the proof will be to construct a hereditary
θ-free <J<λ

-increasing sequence η̄ = 〈ηα : α < λ〉 ⊆
∏

i<δ λi. This is done
in the claim below. For the notation used there let us note that if α ≤ δ is
a limit ordinal, τ ∈ pcf{λi : i < α} then J=τ [{λi : i < α}] = Jα

τ is the ideal
on α generated by

J<τ [{λi : i < α}] ∪ {α \ bτ [{λi : i < α}]}.

So in particular tcf(
∏

i<α λi/J
α
τ ) = τ .

Claim 6.4.1. There exists a tree T ⊆
⋃

i<δ

∏
j<i λj such that some T ′δ ⊆

limδ(T ) is θ-hereditary free (and <J<λ
-cofinal). Moreover for each α < δ

the size of Tα is ≤ max pcf{λi : i < α}.

P r o o f. For a limit ordinal α ≤ δ and τ ∈ pcf{λi : i ≤ α} (if α = δ then
τ = λ) choose a <Jα

τ
-increasing sequence f̄α,τ = 〈fα,τ

ζ : ζ < τ〉 ⊆
∏

i<α λi

cofinal in
∏

i<α λi/J
α
τ and such that

(⊗̃) if ζ < τ , cf(ζ) = θ, then for some unbounded set Yζ ⊆ ζ (for sim-
plicity consisting of successor ordinals) and a sequence s̄τ = 〈sτ

ξ : ξ ∈
Yζ〉 ⊆ Jα

τ we have

[ξ1, ξ2 ∈ Yζ & ξ1 < ξ2 & i ∈ α \ (sτ
ξ1
∪ sτ

ξ2
)] ⇒ fα,τ

ξ1
(i) < fα,τ

ξ2
(i).

[Why can we demand (⊗̃)? If in the assumption (e) the first part is satisfied
then we argue similarly to the proof of 5.14, compare [20, 1.5A, 1.6, pp.



Cellularity of free products 193

51–52]. If we are in the “at least” case then this is exactly the meaning of
goodness.] Further we may demand that the sequence f̄α,τ is bcontinuous:

(⊕̃) if |δ| < cf(ζ) < λ0, ζ < τ, then
fα,τ

ζ (i) = min
{⋃

ξ∈Cf
α,τ
ξ (i) : C is a club of ζ

}
[compare the proof of [21, 3.4, pp. 25–26]].

For a limit ordinal α ≤ δ we define

T 0
α = {f ∈

∏
i<αλi : (a) f = max{fα,τl

ζl
: l < n} for some n < ω,

τl ∈ pcf{λi : i < α}, and ζl < τl,

(b) for every τ ∈ pcf{λi : i < α},
if τ = λ or α < δ then
there is ζf (τ) < τ such that
fα,τ

ζf (τ) ≤ f & fα,τ
ζf (τ) = f mod Jα

τ }.

(Note that if α = δ then there is only one value of τl, τ which we consider
here: λ.) Let T ′ ⊆

⋃
i≤δ

∏
j<i λj be the tree such that for γ ≤ δ,

T ′γ =
{
f ∈

∏
i<γλi : f�α ∈ T 0

α for each limit α ≤ γ
}
.

Let
A = {ζ < λ : there is f ∈

∏
i<δλi such that

fδ,λ
ζ ≤ f & fδ,λ

ζ = f mod Jδ
λ & (∀i ≤ δ)(f�i ∈ T ′i )]},

and for each ζ ∈ A let f∗ζ be a function witnessing it. Now, let T ⊆⋃
i<δ

∏
j<i λj be a tree such that Tα = {f∗ζ �α : ζ ∈ A}.

By definition, T is a tree, but maybe it does not have enough levels?
Let χ be a large enough regular cardinal. Take an increasing continuous
sequence 〈Ni : i ≤ θ〉 of elementary submodels of (H(χ),∈, <∗) such that

|Ni| = Υ = θ + |pcf{λα : α < δ}| < λ0, Υ + 1 ⊆ Ni ∈ Ni+1,

and all relevant things are in N0. We define f∗ ∈
∏

α<δ λα by

f∗(α) = sup
( ⋃

i<θ

Ni ∩ λα

)
.

As in [18, pp. 63–65], one proves that f∗�α ∈ T 0
α for each limit α ≤ δ.

Hence for some ζ we have f∗ = fδ,λ
ζ mod Jδ

λ and fδ,λ
ζ ≤ f∗ thus ζ ∈ A.

Consequently, A is unbounded in λ.
By induction on α ≤ δ we prove that

(}̃) if fζ ∈ Tα (for ζ < θ) are pairwise distinct, then there are Z ∈ [θ]θ

and j < α such that

(∀ζ0, ζ1 ∈ Z)(ζ0 6= ζ1 ⇒ [fζ0�j = fζ1�j & fζ0(j) 6= fζ1(j)]).
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If α is a non-limit ordinal then this is trivial. So suppose that α is limit,
α < δ. Then for some τζ,l ∈ pcf{λi : i < α}, ξζ,l < τζ,l, nζ < ω (for ζ < θ,
l < nζ) we have

fζ = max{fα,τζ,l

ξζ,l
: l < nζ}.

As θ > |pcf{λβ : β < α}| we may assume that nζ = n∗, τζ,l = τl and for each
l < n∗ the sequence 〈ξζ,l : ζ < θ〉 is either constant or strictly increasing.
Now, the second case has to occur for some l and we may argue similarly to
5.14.1 and then apply the inductive hypothesis. We are left with the case
α = δ. So let fζ = f∗βζ

for ζ < δ and continue as before (with λ for τl).
This ends the proof of the claim (note that the arguments showing that

all the T 0
α are not empty prove actually that the tree T has enough branches

to satisfy our additional requirements).

Now let T be a tree as in the claim above. Let η̄ = 〈ηα : α < λ〉 ⊆ limδ(T )
be the enumeration of {f∗ζ : ζ ∈ A} from the proof such that η̄ is <J<λ

-
increasing cofinal in

∏
i<δ λi/J<λ. By the assumption (d) for each η ∈ T we

find a marked Boolean algebra (Bη, ȳη) such that for every i < δ the sequence
〈(Bη, ȳη) : η ∈ Ti〉 witnesses that (θ, λi, |Ti|) ∈ Ksmk. These parameters
determine a (δ, µ, λ)-constructor C, so we have the corresponding Boolean
algebra Bred(C) (and its counterpart Bgreen(C)). To show that they have the
required properties we follow exactly the proof that (θ, λ, χ) ∈ Ksmk, so we
will present this proof only.

First note that by 5.13 the algebra Bred(C) has the θ-Knaster property.
Now, let 〈Aζ : ζ < χ〉 ⊆ [λ]λ be such that

ζ1 < ζ2 < χ ⇒ |Aζ1 ∩Aζ2 | < λ.

Let x̄ζ = 〈xred
ξ : ξ ∈ Aζ〉 and let Bζ be the subalgebra of Bred(C) generated

by x̄ζ . We want to show that the sequence 〈(Bζ , x̄ζ) : ζ < χ〉 witnesses
(θ, λ, χ) ∈ Ksmk. For this suppose that ζ0 < . . . < ζn−1 < χ, n < ω and
βε,l ∈ Aζ,l are increasing with ε (for ε < λ, l < n) and without loss of
generality with no repetition. We may assume that

(∀l < n)(∀ε < λ)
(
βε,l 6∈

⋃
m6=l

Aζm

)
.

Further we may assume that for some i∗ < δ and pairwise distinct ηl ∈ Ti∗

(for l < n) we have

(∀ε < λ)(∀l < n)(ηβε,l
�i∗ = ηl).

Now we take i ∈ [i∗, δ) such that

(∀γ < λi)(∃λε < λ)(∀l < n)(ηβε,l
(i) > γ)

(remember that each 〈ηβε,l
: ε < λ〉 is <J<λ

-cofinal). Since |Ti| < λi we can
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find ν0, . . . , νn−1 ∈ Ti such that ηl E νl and

(∀γ < λi)(∃λε < λ)(∀l < n)(ηβε,l
�i = νl & ηβε,l

(i) > γ).

Consequently, we may choose a sequence 〈〈γξ,l : l < n〉 : ξ < λi〉 ⊆ λi such
that ξ < γξ,l and

(∀ξ < λi)(∃λε < λ)(∀l < n)(ηβε,l
�(i+ 1) = νl

_〈γξ,l〉).
Now we use the choice of (Bνl

, ȳνl
) (witnessing (θ, λi, |Ti|) ∈ Ksmk) and we

find ξ1 < ξ2 < λi such that

(∀l < n)(Bνl
|= yνl

γξ1,l
∩ yνl

γξ2,l
= 0),

which allows us to find ε1 < ε2 < λ such that for each l < n the intersection
xβε1,l

∩ xβε2,l
is 0.

Conclusion 6.5. If 〈µi : i ≤ κ〉 is a strictly increasing continuous
sequence of strong limit singular cardinals such that κ < µ0, 2µi = µ+

i ,
κ < θ = cf(θ) < µ0 and (∀α < θ)(|α|κ < θ) or

i ≤ κ ⇒ {α < µ+
i : cf(α) = θ} ∈ I[µ+

i ]

then (θ, µ+
κ ) ∈ Kwmk and we may construct the corresponding Boolean alge-

bras Bred, Bgreen.

Proposition 6.6. Suppose that we have Boolean algebras Bred, Bgreen

such that

• Bred satisfies the θ-Knaster condition,
• for each n < ω the free product (Bgreen)n satisfies the λ-cc,
• the free product Bred ∗ Bgreen fails the λ-cc.

Then (θ, λ, χ) ∈ Ksmk, where χ = λ+ (or even if χ is such that there is an
almost disjoint family A ⊆ [λ]λ of size χ).

P r o o f. We have yα ∈ (Bred)+ and zα ∈ (Bgreen)+ for α < λ such that
if α < β < λ then

either Bred |= yα ∩ yβ = 0 or Bgreen |= zα ∩ zβ = 0.

Let Aζ ∈ [λ]λ (for ζ < χ) be pairwise almost disjoint sets. We want to show
that the sequence

〈(Bred, ȳ�Aζ) : ζ < χ〉
is a witness for (θ, λ, χ) ∈ Ksmk. So we are given ζ0 < ζ1 < . . . < ζn−1 < χ
and sequences 〈αε,l : ε < λ〉 ⊆ Aζl

with no repetitions. Then for some
ε∗ < λ we have

ε∗ ≤ ε < λ ⇒ αε,l 6∈
⋃

m6=l

Aζ,m.

We should find ε1 < ε2 such that for all l < n,

Bred |= yαε1,l
∩ yαε2,l

= 0.
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For this it is enough to find ε∗ < ε1 < ε2 such that for l < n,

Bgreen |= zαε1,l
∩ zαε2,l

6= 0.

But this we easily get from the fact that the free product (Bgreen)n satisfies
the λ-cc.

Comment 6.7. (1) The proofs that the algebra Bgreen satisfies the λ-cc
(see 4.3, 6.4) give that actually for each n < ω the product (Bgreen)n satisfies
the λ-cc. So it is reasonable to add it (though not needed originally).

(2) The “η̄ is (strongly) J-cofinal for (T, λ̄, Ī)” has easy consequences for
the existence of colourings.

Remark 6.8. For µ strong limit singular we may sometimes get a cofinal
sequence of length λ ∈ (µ, 2µ] without 2µ = µ+. By [23, §5], if:

(a) Ii is a χi-complete ideal, |Ii| = τi, χi regular,
(b) χi ≤ τi ≤ (χi)+n∗ , n∗ < ω,
(c) tcf(

∏
i<δ(χi)+l/J) = λ for each l ≤ n∗,

then:

(α) there is a cofinal sequence in
∏

i<δ(P(λi)/Ii)/J , because
(β) it has the true cofinality.

So if for arbitrarily large χ, 2χ = χ+, 2χ+
= χ++ then we have the ideal

we want and maybe the pcf condition holds. Thus, combining this and 6.9
below, we find that there may be an example of our kind not because of
GCH reasons, but still requiring some cardinal arithmetic assumptions.

Proposition 6.9. Suppose that 〈λi : i < δ〉 is a strictly increasing
sequence of regular cardinals, Ii is a (

∏
j<i λj)+-complete ideal on λi (so∏

j<i λj < λi) and (Bi, ȳi, Ii) is a λi-well marked Boolean algebra (for i < δ).

(1) Assume that
∏

i<δ(Ii,⊆)/J has true cofinality λ. Then there exists
a (θ,notλ)-Knaster marked Boolean algebra.

(2) Suppose in addition that h : δ → ω is a function such that

(∀n < ω)(h−1[{n}] ∈ J+)

and I [h(i)]
i (for i < δ) are the product ideals on (λi)n:

I
[h(i)]
i := {B ⊆ (λi)n : ¬(∃Iiγ0) . . . (∃Iiγh(i)−1)(〈γl : l < h(i)〉 ∈ B)}.

Assume that
λ = tcf

( ∏
i<δ

(I [h(i)]
i ,⊆)/J

)
and that the (Bi, ȳi, Ii) satisfy the following requirement :
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(∗̃)h(i) if B ⊆ (dom(ȳi))h(i) is such that

(∃Iiγ0) . . . (∃Iiγh(i))(〈γl : l ≤ h(i)〉 ∈ B),

then there are γ′l , γ
′′
l < λi (for l ≤ h(i)) such that for each l,

Bi |= yi,γ′l
∩ yi,γ′′l

= 0.

Then we can conclude that ((2|δ|)+, λ, λ+) ∈ Ksmk and we have a pair of
algebras (Bred,Bgreen) as in main theorem 4.4.

P r o o f. The main point here is that with our assumptions in hand we
may construct a sequence 〈ηα : α < λ〉 ⊆

∏
i<δ λi which is quite stronger

J-cofinal: it satisfies the requirement of 2.2(6)(b) weakened to the demand
that the set there is not in the dual filter Jc. Of course this is still enough
to carry out our proofs and we may use such a sequence to build the right
examples.

(1) Let 〈〈Aα
i : i < δ〉 : α < λ〉 witness the true cofinality. By induction

on α < λ choose γα < λ and ηα ∈
∏

i<α λi such that

• 〈{ηβ(i)} : i < δ〉 ∈
∏

i<δ Ii,
• if β < α then γβ < γα and (∀J i)(ηβ(i) ∈ Aγα

i ), and
• ηα(i) 6∈ Aγα

i .

For α = 0 or α limit, first choose γα = sup{γα1 + 1 : α1 < α} and then
choose ηα(i) by induction on i.

For α = α1 + 1 first note that

〈{ηα1(i)} : i < δ〉 ∈
∏
i<δ

Ii.

Hence for some γ0
α < λ we have

(∀J i)(ηα1(i) ∈ A
γα

i ).

Let γα = max{γα1 , γ
0
α}. Now choose ηα(i) by induction on i.

As Ii is |Ti|+-complete, clearly 〈ηα : α < λ〉 is J-cofinal for (T, J, Ī) and
3.7, 3.8 give the conclusion.

(2) The construction of η̄ is in a sense similar to the one in the proof of
2.8, but we use our cofinality assumptions. We have a cofinal sequence in∏

i<δ(I
[h(i)]
i ,⊆)/J :

〈〈Aα
i : i < δ〉 : α < λ〉.

For each Aα
i we have “Skolem functions” fα

i,l for l < h(i) (as in the proofs
of 4.3.1, 5.4).

We define ηα by induction on α < λ. In the exclusion list we put all
substitutions by ηγ0�i, . . . , ηγl−1�i for γk < α to fα

i,l: each time we obtain a
set in the ideal Ii and a member Ā of

∏
i<δ Ii such that if (∀J i)(η(i) 6∈ Ai),
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η ∈
∏

i<δ λi then η satisfies the demand. Eventually we have |α|<ω such
elements of

∏
i<δ Ii, say {B̄α,ξ : ξ ≤ |α|+ ℵ0}. Then for some γα,

(∀ξ < |α|+ ℵ0)(∀J i < δ)(Bα,ξ
i ⊆ Aγα

i ),

and similarly
(∀β < α)(∀J i < δ)(ηβ(i) ∈ Aαi

i ).

Choose ηα ∈
∏

i<δ(λi \Aγα

i ).

Remark 6.10. One of the main tools used in this section are (variants
of) the following observation. Suppose (B, ȳ) is a λ-marked Boolean algebra
such that B is θ-Knaster and if ε(α, l) < λ (for α < λ, l < n) are pairwise
distinct then for some α < β < λ, for each l < n we have B |= yε(α,l) ∩
yε(β,l) = 0. Then (θ, λ, λ+) ∈ Ksmk.

Concluding Remarks 6.11. If µ is a strong limit singular cardinal
and cf(µ) < θ = cf(θ) < µ then, by the methods of [1] or [3], we hope to
get consistency of the statement: If an algebra B satisfies the θ-cc then it
satisfies the µ+-Knaster condition.

One may formulate the following question now:

Question (mostly solved) 6.12. Suppose that B is a Boolean algebra
satisfying the θ-cc and λ is a regular cardinal between µ+ and (2µ)+. Does
B satisfy the λ-Knaster condition?

There a reasonable amount of information on consistency of the negative
answer in the next section, though 6.12 is not fully answered there. But a
real problem is the following.

Problem 6.13. Assume λ = µ+, cf(µ) = θ and µ is a strong limit
singular cardinal. Suppose that an algebra B0 satisfies the λ-cc and an
algebra B1 satisfies the θ+-cc. Does the free product B0 ∗ B1 satisfy the
λ-cc? (Is this consistent? See 5.15.)

Problem 6.14. Is it consistent that each Boolean algebra with the ℵ1-
Knaster property has the λ-Knaster property for every regular (uncountable)
cardinal λ?

7. Some consistency results. We had seen that without inner models
with large cardinals we have a complete picture, e.g.:

(ℵ) If θ = cf(θ) > ℵ0, B is a Boolean algebra satisfying the θ-cc and λ is
a regular cardinal such that

(∀τ < λ)(τ<θ < λ),

then the algebra B satisfies the λ-Knaster condition.
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(i) If θ = cf(θ) > ℵ0, θ < µ = µ<µ < λ = cf(λ) < χ = χλ, then there is
a µ+-cc µ-complete forcing notion P of size χ such that


P “the θ-cc implies the λ-Knaster property”.

(ג) If θ = cf(θ) < µ, µ is a strong limit singular cardinal, cf(µ) = θ, then
the θ+-cc does not imply the µ+-Knaster property (and even we have
a product example).

In ,(ג) if we allow (2θ)-cc we may even get a better conclusion. In this
section we want to show, under a large cardinals hypothesis, the consistency
of failure.

Proposition 7.1. Assume that κ is a supercompact cardinal , κ < λ =
cf(λ). Let B be a Boolean algebra which does not have the λ-Knaster prop-
erty. Then

(∃θ)(ℵ0 < θ = cf(θ) < κ & B does not have the θ-Knaster property).

P r o o f. Since κ is supercompact, for every second order formula ψ, if
M |= ψ then for some N ≺M , |N | < κ, N |= ψ (see Kanamori and Magidor
[7]).

Proposition 7.2. (1) If ℵ0 < λ0 < λ1 are regular cardinals such that

(∗)λ0,λ1 for every x ∈ H(λ+
1 ) there is N ≺ (H(λ+

1 ),∈) such that x ∈ N
and N ∼= (H(λ+

0 ),∈),

then if a Boolean algebra B has the λ0-Knaster property then it has the
λ1-Knaster property (and B |= λ0-cc implies B |= λ1-cc).

(2) The condition (∗)λ0,λ1 above holds if for some κ0, κ1, κ0 < λ0, κ1 <
λ1 we have:

(⊕) there is an elementary embedding j : V → M with the critical point
κ0 and such that j(κ0) = κ1, j(λ0) = λ1 and Mλ1 ⊆M .

(3) If κ0 is a 2-huge cardinal (or actually less) and , e.g., λ0 = κ+ω+1
0

then for some λ1 = κ+ω+1
1 the condition (⊕) above holds (we can assume

GCH ).

P r o o f. Just check.

Proposition 7.3. Assume that

V |= “GCH + there is a 2-huge cardinal > θ = cf(θ)”

(can think of θ = ℵ0). Then there is a θ-complete forcing notion P such that
in VP:

(a) GCH holds,
(b) if a Boolean algebra B has the θ+-Knaster property then it has the

θ+θ+1-Knaster property (note that if ℵθ > θ then θ+θ+1 = ℵθ+1).



200 S. Shelah

P r o o f. Similar to Levinski, Magidor and Shelah [8].

Chasing arrows what we use is

Proposition 7.4. If V |= GCH (for simplicity), θ = cf(θ) = cf(µ) < µ,
a Boolean algebra B does not satisfy the µ+-Knaster condition and Q =
Levy(θ, µ) then VQ |= “B does not have the θ+-Knaster property”.

8. More on getting the Knaster property. Our aim here is to
get a ZFC result (under reasonable cardinal arithmetic assumptions) which
implies that our looking for (κ,notλ)-Knaster marked Boolean algebras near
strong limit singular is natural. Below we discuss the relevant background.
The proof relies on pcf theory (but only by quoting a simply stated theorem)
and seems to be a good example of the applicability of pcf, in particular,
for the “revised GCH” of [25].

Theorem 8.1. Assume µ = µ<iω .

(1) If a Boolean algebra B of cardinality ≤ 2µ satisfies the ℵ1-cc then B
is µ-linked (see below).

(2) If B is a Boolean algebra satisfying the ℵ1-cc then B has the λ-
Knaster property for every regular cardinal λ ∈ (µ, 2µ].

Definition 8.2. (1) A Boolean algebra B is µ-linked if B \ {0} is the
union of ≤ µ sets of pairwise compatible elements.

(2) A Boolean algebra B is µ-centred if B\{0} is the union of ≤ µ filters.

Of course we can replace the ℵ1-cc, iω by the κ-cc, iω(κ) (see more
later). The proof is self-contained except a reference to a theorem quoted
from [25].

Let us review some background. By [14, 3.1], if B is a κ-cc Boolean
algebra of cardinality µ+ and µ = µ<κ then B is µ-centred. The proof did
not work for B of cardinality µ++ even if 2µ ≥ µ++ by [16], the point being
we consider three elements. But if µ = µ<µ < λ<λ, then for some µ+-cc
µ-complete forcing notion P of cardinality λ, in VP we have:

• if B is a µ-cc Boolean algebra of cardinality < λ then B is µ-centred

(follows from an appropriate axiom). Hajnal, Juhász and Szentmiklóssy
[5] continue this restricting themselves to µ-linked. Then the proof can be
carried out for µ++, and they continue by induction. However, as in quite
a few cases, the problem was for λ+ when cf(λ) = ℵ0, so they assume

(⊗) if λ ∈ (µ, 2µ), cf(λ) = ℵ0 then λ = λℵ0 and �λ

(on the square, see Jensen [6]). This implies that if we start with V = L
and force, then the assumption (⊗) holds, so it is a reasonable assumption.
Also they prove the consistency of the failure of the conclusion when ⊗
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fails relying on Hajnal, Juhász and Shelah [4] (on a set system + graph
constructed there) and on colouring of graphs (see [5, §2]). Specifically, they
prove the consistency of 2ℵ0 = ℵ1, 2ℵ1 = ℵω+1, and for some B, |B| = 2ℵ1 ,
B satisfies the ℵ1-cc but is not ℵ1-linked, only ℵ2-linked.

This gives the impression of essentially closing the issue, and so I would
have certainly thought some years ago, but this is not the case, exemplifying
the danger of looking at specific cases. In fact, as we shall note in the end,
their consistency result is best possible under our knowledge of relevant
forcing methods. They use [4] to have “many very disjoint sets”(i.e., 〈Xα :
α ∈ S〉, S ⊆ {δ < ℵω+1 : cf(δ) = ℵ1}, Xα ⊆ α = sup(Xα), and α 6= β ⇒
Xα ∩Xβ finite).

On pcf see [22]. Now, [25] has half jokingly a strong claim of proving
GCH under reasonable reinterpretation. In particular [25] says there cannot
be many strongly almost disjoint quite large sets, so this blocks reasonable
extensions of [5]. Now the main theorem of [25] enables us to carry out the
induction on λ ∈ (µ, 2µ] as in [14, 3.1], [5, §3].

Proposition 8.3. Suppose that :

(a) λ > θ = cf(θ) ≥ κ = cf(κ) > ℵ0,
(b) there are a club E of λ and a sequence P̄ = 〈Pα : α ∈ E〉 (with

α ∈ E ⇒ |α| divides α) such that :

(i) Pα ⊆ [α]<κ, |Pα| ≤ |α| and P̄ is increasing continuous,
(ii) if X ⊆ λ has order type θ, then for some increasing 〈γε : ε < κ〉

we have γε ∈ X and for each ε < κ, for some ζ ∈ (ε, κ) and
α ≤ min(E \ γζ) we have {γζ : ζ < ε} ∈ Pα,

(c) B is a Boolean algebra satisfying the κ-cc, |B| = λ.

Then we can find a Boolean algebra B′ and a sequence 〈B′
α : α ∈ E〉 of

subalgebras of B′ such that :

(α) B ⊆ B′ ⊆ Bcom (the completion),
(β) B′ =

⋃
α∈E B′

α, |B′
α| ≤ |α|+ℵ0, 〈B′

α : α ∈ E〉 is increasing continuous
in α,

(γ) if α ∈ E, x ∈ B′ \ {0} then for some Y ⊆ B′
α \ {0} with |Y | < θ we

have:

• if y ∈ Y then y ∩ x = 0B′ , and
• if z ∈ B′

α is such that z∩x = 0B′ then z ≤ sup(Y ′) ∈ B′
α for some

Y ′ ∈ [Y ]<κ,

(δ) if either (∗)1 or (∗)2 below holds then we can add

Y generates the ideal {z ∈ B′
α : z ∩ x = 0B′},

where
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(∗)1 (∀ε < θ)(|ε|<κ < θ),
(∗)2 for some cofinal P∗ ⊆ [θ]<κ of cardinality θ, in clause (b) we

add : for some unbounded w ⊆ θ, for every v ∈ [w]<κ there is u
such that v ⊆ u ∈ P∗ and for γ ∈ X we have {γε : ε ∈ u} ∈ Pγ

(if θ = θ<κ, we can ask u = v).

P r o o f. Let χ be a large enough regular cardinal. Let B = {xε : ε < λ}
and let Bcom be the completion of B. By induction on α ∈ E we choose
an elementary submodel Nα of (H(χ),∈, <∗

χ) of cardinality |α|, increasing
continuous in α, such that B, 〈xε : ε < λ〉, Bcom, P̄, λ, θ, κ belong to N0

and 〈Nζ : ζ ≤ ε〉 ∈ Nε+1.
Note: if α ∈ nacc(E) then α ∈ Nα, and hence Pα ⊆ Nα.
Let B′

α := Nα ∩ Bcom, B′ =
⋃

α∈E

B′
α.

By induction on α ∈ E we define a one-to-one function gα from B′
α onto α

such that
β ∈ α ∩ E ⇒ gβ ⊆ gα, and gα is the <∗

χ -first such g,

so gα ∈ Nmin(E\(α+1)). Let g =
⋃

α∈E gα. Thus g is a one-to-one function
from B′ onto λ. Now clearly

(∗) if x ∈ B′
α and β = min{γ ∈ E : g(x) ∈ B′

γ} then β < α ∨ β = α
∈ nacc(E)

hence in any case β ∈ Nα so P−β ⊆ Nα.
In the conclusion clauses, (α), (β) should be clear; let us prove (γ). So

let α ∈ E and x ∈ B′ \ {0}. We define J = {z ∈ B′
α : B′ |= “z ∩ x = 0”}.

Then J is an ideal of B′
α. We now try to choose by induction on ε < θ

elements yε ∈ J such that:

(i) yε is a member of J \ {0B},
(ii) there is no u ∈ [ε]<κ such that yα ≤ supζ∈u yζ ∈ B′

α (sup in the
complete Boolean algebra Bcom),

(iii) under (i) + (ii), g(yε) (< λ) is minimal (hence under (i) + (ii),
βε := min{β ≤ α : yε ∈ B′

β} is minimal).

If we are stuck for some ε < θ, then for every y ∈ J the condition (ii) fails
(note that (iii) does not change at this point), i.e., there is a corresponding
set u so the desired conclusion of (γ) holds. So suppose yε is defined for
ε < θ. Clearly

ζ < ε ⇒ g(yζ) < g(yε),

and hence ζ < ε < θ ⇒ βζ ≤ βε, and ζ < ε ⇒ yζ 6= yε. Now apply clause
(b)(ii) of the assumption to the set X = {γ′ε : ε < θ}. We get a subset Y
of X of order type κ such that letting the sequence 〈γε : ε < κ〉 list Y in
increasing order, we have (letting γε = γ(ε)):
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(∗∗) for every ζ < κ for some ξ ∈ (ζ, κ) the set {g(yγε) : ε < ζ} belongs
to Pβγ(ξ)

[Why? as the α given by clause (b)(ii) is min(E \g(yγ(ξ))) which is βξ by
its definition in clause (ii) above, by (∗) above the set {γε : ε < ζ} belongs
to Nα. Also, as in the analysis in (∗), g�{yγε

: ε < ζ} is included in a
one-to-one function from Nα hence {yγε : ε < ζ} belongs to Nα].

Hence for every ζ < κ, sup{yγε : ε < ζ} belongs to B′α, but each yγε is
disjoint to x (in Bcom) together it belongs to J . By our inductive choice of
yγ for γ < θ, we have yγξ

6≤ sup{yγε
: ε < ζ}. As this holds for every ζ < κ

and κ is regular we have gotten a contradiction to B, hence Bcom satisfying
the κ-cc, so really clause (γ) holds.

We are left with proving clause (δ) there. We repeat the proof of clause
(γ), only changing clause (ii) in the inductive choice of yγ to

(ii)′ yε does not belong to the ideal (of B′α) generated by {yζ : ζ < ε}.

Again if we are stuck at some ε < θ we get the desired conclusion, so
assume toward contradiction that yε is defined for every γ < θ. Now first
assume that possibility (∗)1 from clause (δ) holds, so clearly for some club
C of θ we have: if ζ < ξ ∈ C and u is a subset of ε of cardinality < κ and
sup{yγε

: ε < ζ} belongs to the ideal of B′α generated by {yγε
: ε < θ}, then

it belongs to the ideal of B′α generated by {yγε : ε < ξ}. Now choose an
ordinal ζ ∈ acc(C) of cofinality κ and continue as in the proof of clause (γ).

So clause (δ) holds when possibility (∗)1 holds, so assume that possibility
(∗)2 holds. Let 〈uε : ε < κ〉 list the family P∗ of subsets of θ of cardinality
< κ each appearing κ times. We change the construction by adding to
clause (ii):

(ii)+ if there is ξ < θ satisfying: uξ is a subset of ε and sup{yζ : ζ ∈ uε}
belongs to B′α but does not belong to the ideal of B′α generated by {yζ :
ζ < ε} then yε is equal to such sup for the minimal possible ξ.

Note that we probably lose ζ < ξ < θ ⇒ βζ ≤ βξ.
Still, by (∗)2 applied to X := {g(yγε) : ε < θ} we get an unbounded

subset w of θ such that for every v ∈ [w]<κ for some u ∈ [w]<κ and ε < θ we
have v ⊆ u and {g(yγε

) : ε ∈ u} ∈ Pβε
. Let v be a subset of w of cardinality

< κ such that sup{g(yγε) : ε ∈ v} is equal to sup{g(yγε) : ε ∈ w}, and
let u ∈ P∗ be as guaranteed by (∗)2. Let ξ < θ be such that uξ = u,
so for every ε < θ large enough, ξ satisfies the assumption in (ii)+ above,
but we do not use the same ξ twice, so necessarily for some ζ < θ we have
yζ = sup({yγ : γ ∈ uξ} but then we can find ε ∈ w \ (ζ + 1), so yε belongs
to the ideal generated by {yi : i < ε}, contradiction.
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Proposition 8.4. Suppose that :

(a) λ > θ = cf(θ) ≥ κ = cf(κ) > ℵ0 and µ = µ<θ ≤ λ ≤ 2µ,
(b) as in assumption (b) of 8.3 and either (∗)1 or (∗)2 of clause (δ) of

8.3,
(c) B is a κ-cc Boolean algebra of cardinality λ,
(d) every subalgebra B′ ⊆ Bcom of cardinality < λ is µ-linked (see Defi-

nition 8.2(1)).

Then B is µ-linked.

P r o o f. Let 〈B′
α : α ∈ E〉, B be as in the conclusion of 8.3. Without loss

of generality we may assume that the set of elements B′
α is α. For α ∈ E,

let hα : B′
α \ {0} → µ be such that

hα(x1) = hα(x2) ⇒ x1 ∩ x2 6= 0B.

For each x ∈ B′ \ B′
min(E) let α(x) = max{α ∈ E : x 6∈ B′

α} (well defined as
B′ =

⋃
α∈E B′

α and 〈B′
α : α ∈ E〉 is increasing continuous), and let Yx,α ⊆ B′

α

be such that |Yx,α| < θ and

Yx ⊆ Jx := {y ∈ B′
α : y ∩ x = 0B}

and Yx is cofinal in Jx (Yx exists by 8.3, see clause (δ)).
Define u0

x = {0, α(x)}, let Y 0
x be the subalgebra of B′ generated by {x},

and un+1
x = un

x ∪ {α(y) : y ∈ Y n
x \min(B′

α)} and Y n+1
x be the subalgebra of

B′ generated by

Y n
x ∪

⋃
{Yx1,α : x1 ∈ Y n

x and α ∈ un
x}.

Finally let Y ω
x =

⋃
n<ω Y

n
x and ux =

⋃
n<ω u

n
x . As θ is regular, |Y n

x | < θ
and as in addition θ is uncountable, |Y ω

x | < θ. Let ux = {α(y) : y ∈ Y ω
x }.

We can find Aζ ⊆ B′ \ {0} for ζ < µ such that B′ \ {0} =
⋃

ζ<µAζ and

(~̃) if x1, x2 ∈ Aζ , then there are one-to-one functions f : Y ω
x1

onto−→ Y ω
x2

and g : ux1

onto−→ ux2 such that:

(i) f , g preserve the order,
(ii) f(x1) = x2 and if y ∈ Y ω

x1
then g(α(y)) = α(f(y)),

(iii) if α ∈ ux1 , y ∈ B′
α ∩ Y ω

x1
then hα(x1) = hg(α)(f(x1)),

(iv) f is an isomorphism (of Boolean algebras),
(v) g is the identity on ux1 ∩ ux2 ,

(vii) f is the identity on Y ω
x1
∩ Y ω

x2
.

[Why? By [2] or use 〈ηx : x ∈ B′〉, ηx ∈ µ2, with no repetitions.]
So it is enough to prove:

x1, x2 ∈ Aζ ⇒ x1 ∩ x2 6= 0B.
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Let D1 be an ultrafilter of Y ω
x1

to which x1 belongs, and set D2 := {f(y) :
y ∈ Y ω

x2
} (an ultrafilter on Y ω

x2
to which x2 belongs). It suffices to prove

that for each α ∈ E, the set (D1 ∩ B′
α) ∪ (D2 ∩ B′

α) generates a non-trivial
filter on B′

α. We do it by induction on α (note that if α ≤ β this holds
for α provided it holds for β). If α ∈ ux1 ∩ ux2 use clause (iii) of (~̃)
and the choice of hα—note that this includes the case when α = 0. For
α ∈ acc(E) it follows by the finiteness of the condition. In the remaining
case β = sup(E ∩ α) < α and if Y ω

x1
∩ B′

α ⊆ B′
β and Y ω

x2
∩ B′

α ⊆ B′
β this

is trivial. So by symmetry we may assume that β ∈ ux1 \ ux2 and use the
definition of Yy for y ∈ Bα ∩ Y ω

x1
\ B′

β .

Proposition 8.5. Assume µ = µ<iω(κ). Then for every λ ∈ (µ, 2µ] of
cardinality > µ, for every large enough regular θ < iω(κ) clause (b) of 8.3
holds.

P r o o f. By [25], for every τ ∈ [µ, λ) for some θτ < iω(κ), we have:

(�̃) there is P = Pτ ⊆ [τ ]<iω(κ) closed under subsets such that |P| ≤ τ
and every X ∈ [τ ]<iω(κ) is the union of < θτ members of members
of Pτ .

Now, as cf(λ) > µ for some n < ω, the set

Θ = {τ : µ < τ < λ, θτ ≤ in(κ)}
is an unbounded subset of Card∩(µ, λ). Let θ < (in+1(κ)) be regular.
Choose a club E of λ such that α ∈ nacc(E) ⇒ |α| ∈ Θ, and choose
Pα ⊆ [α]<κ increasing continuous with α ∈ E such that for α ∈ nacc(E),
for every X ∈ [α]θ, for some h : X → in(κ), if Y ⊆ X, |Y | < κ and h�Y is
constant then Y ∈ Pα.

Now suppose X ⊆ λ, otp(X) = θ, so let X = {γε : ε < θ} with γε

increasing with ε; let βε = min{α ∈ E : γε < β}, so ζ < ε ⇒ βζ ≤ βε and
βε ∈ nacc(E), and there is hε : {ζ : ζ < ε} → in(κ) such that for every
j < in(κ),

u ∈ [ε]<κ & (h�u constant) ⇒ {γζ : ζ ∈ u} ∈ Pβε
.

Applying the Erdős–Rado theorem (i.e., θ → (in(κ)+)2in(κ)) we get the
desired result (the proof is an overkill).

Main Conclusion 8.6. Suppose that κ is a regular uncountable cardi-
nal , µ = µiω(κ) and B is a Boolean algebra satisfying the κ-cc.

(1) If |B| ≤ 2µ then B is µ-linked.
(2) If λ is regular ∈ (µ, 2µ] then B satisfies the λ-Knaster condition.

P r o o f. (1) We prove this by induction on λ = |B|. If |B| ≤ µ it is trivial
and if cf.(|B|) ≤ µ it follows easily by the induction hypothesis. In other
cases by 8.5, for some θ∗ < iω(κ), for every regular θ ∈ (θ∗,iω(κ)), clause
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(b) of 8.3 holds. Choose θ = (θκ)++, so for this θ both clause (b) of 8.3
and (∗)1 of clause (δ) of 8.3 hold. Thus by Proposition 8.4 we can prove the
desired conclusion for λ = |B|.

(2) Follows from (1).

Proposition 8.7. (1) In 8.6 we can replace the assumption µ = µiω(κ)

by µ = µ<τ if

⊗ for every λ ∈ (µ, 2µ) of cardinality > µ, for some θ = cf(θ) ≥ κ clause
(b) of 8.3 and (∗)1 ∨ (∗)2 of clause (δ) of 8.3 hold.

(2) If λ∗ ∈ (µ, 2λ) and we want to have the conclusion of 8.6(1) with
|B| = λ∗ and 8.6(2) for λ∗-Knaster only then it suffices to restrict ourselves
in ⊗ to λ ≤ λ∗.

Proposition 8.8. In 8.3, if (∀ε < θ)[|ε|<κ < θ] then we can weaken
clause (ii) of assumption (b) to

(ii)′ if X ⊆ λ has order type θ then for some 〈γε : ε < κ〉 we have γε ∈ X
and

(∀ε < κ)(∃α)({γζ : ζ < ε} ∈ Pα & α = min(E \ sup{γζ : ζ < ε})).
P r o o f. Let X = {jε : ε < θ} be strictly increasing with ε, and let

βε = min(E \ (jε + 1)), so ζ < ε ⇒ βζ ≤ βε. Let
e := {ε < θ : ε is a limit ordinal and

if ε1 < ε and u ∈ [ε1]<κ and {jξ : ξ ∈ u} ∈
⋃

ζ<θPβζ

then {jε : ε ∈ u} ∈
⋃

ζ<εPβε
}.

Now, e is a club of θ as (θ is regular and) (∀ε < θ)[|ε|<κ < θ]. So we can
apply clause (ii)′ to X ′ := {jε : ε ∈ e}, and get a subset {γε : ε < κ} as
there; it is as required in clause (ii).

Proposition 8.9. (1) Assume λ > θ = cf(θ) ≥ κ = cf(κ) > ℵ0. Then
a sufficient condition for clause (b) + (δ)(∗)1 of Claim 8.3 is

(⊗1) (a) λ > θ = cf(θ),
(b) for arbitrarily large α < λ for some regular τ < θ and λ′ ≤ λ,

for every a ⊆ Reg∩|α| \ θ of cardinality ≤ θ for some 〈bε : ε <
ε∗ < τ〉 we have a =

⋃
ε<ε∗ bε and [bε]<κ ⊆ J≤λ′ [a] for every

ε < ε∗,
(c) (∀ε < θ)[|ε|<κ < θ] or for every λ′ ∈ [µ, λ], �{δ<λ′:cf(δ)=θ}.

(2) Assume µ > θ ≥ κ = cf(κ) > ℵ0. A sufficient condition for clause
(b) of 8.3 to hold is:

• for every λ ∈ [µ, 2µ] of cofinality > µ, for some θ′ ≤ θ, (⊗1) holds
(with θ′ instead θ).

P r o o f. (1) By [23], [18, 2.6], or [13]. (2) Should be clear.
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Remark 8.10. So it is still possible that (assuming CH for simplicity)

⊗ if µ = µℵ1 , B is a c.c.c. Boolean algebra, |B| ≤ 2µ then B is µ-linked.

On the required assumption see [19, Hyp. 6.1(x)].
Note that the assumptions of the form λ ∈ I[λ] if added save us a little

on pcf hyp. (we mention it in 6.5). But if we are interested in [κ-cc ⇒ λ-
Knaster], it can be waived.
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[4] A. Hajna l, I. Juh á sz and S. She lah, Splitting strongly almost disjoint families,
Trans. Amer. Math. Soc. 295 (1986), 369–387.
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