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Abstract. We give examples of a Vitali set and a Hamel basis which are Marczewski
measurable and perfectly dense. The Vitali set example answers a question posed by Jack
Brown. We also show there is a Marczewski null Hamel basis for the reals, although a
Vitali set cannot be Marczewski null. The proof of the existence of a Marczewski null
Hamel basis for the plane is easier than for the reals and we give it first. We show that
there is no easy way to get a Marczewski null Hamel basis for the reals from one for the
plane by showing that there is no one-to-one additive Borel map from the plane to the
reals.

Basic definitions. A subset A of a complete separable metric space X
is called Marczewski measurable if for every perfect set P ⊆ X either P ∩A
or P \ A contains a perfect set. Recall that a perfect set is a non-empty
closed set without isolated points, and a Cantor set is a homeomorphic
copy of the Cantor middle-third set. If every perfect set P contains a per-
fect subset which misses A, then A is called Marczewski null. The class of
Marczewski measurable sets, denoted by (s), and the class of Marczewski
null sets, denoted by (s0), were defined by Marczewski [10], where it was
shown that (s) is a σ-algebra, i.e. X ∈ (s) and (s) is closed under comple-
ments and countable unions, and (s0) is a σ-ideal in (s), i.e. (s0) is closed
under countable unions and subsets. Several equivalent definitions and im-
portant properties of (s) and (s0) were proved in [10], for example every
analytic set is Marczewski measurable, the properties (s) and (s0) are pre-
served under “generalized homeomorphisms” (also called Borel bijections),
i.e. one-to-one onto functions f such that both f and f−1 are Borel mea-
surable (i.e. pre-images of open sets are Borel), a countable product is in
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(s) if and only if each factor is in (s), and a finite product is in (s0) if and
only if each factor is in (s0).

The perfect kernel of a closed set F is the set of all a ∈ F such that
U ∩ F is uncountable for every neighborhood U of a.

A set is totally imperfect if it contains no perfect subset. A totally
imperfect set of reals cannot contain uncountable closed set, so it must
have inner Lebesgue measure zero. A set B is called Bernstein set if every
perfect set intersects both B and the complement of B, or, equivalently,
both B and its complement are totally imperfect. Clearly, no Bernstein set
can be Marczewski measurable.

A set A is perfectly dense if its intersection with every non-empty open
set contains a perfect set.

Let R denote the set of all real numbers and Q denote the set of all
rational numbers. We use c to denote the cardinality of the continuum.

The linear closure (or span) over Q of a non-empty set A ⊆ R is the set

span(A) = {q1a1 + . . . + qnan : n < ω, qj ∈ Q, aj ∈ A}
and span(∅) = {0}. A is called linearly independent over Q if q1a1 + . . . +
qnan 6= 0 whenever n < ω, qj ∈ Q for 1 ≤ j ≤ n with qj 6= 0 for at least
one j, and a1, . . . , an are different points from A. A linearly independent
set H such that R = span(H) is called a Hamel basis. Note a Hamel basis
must have cardinality c. The inner Lebesgue measure of any Hamel basis H
is zero (Sierpiński [8], see also Erdős [2]). A Hamel basis can have Lebesgue
measure 0 (see Jones [4], or Kuczma [6], Chapter 11).

A Hamel basis H which intersects every perfect set is called a Burstin
set [1]. Every Burstin set H is also a Bernstein set, otherwise if P ⊆ H
for some perfect set P , by the linear independence of H it follows that
H∩2P = ∅ (where 2P = {2p : p ∈ P}), a contradiction since 2P is a perfect
set.

A Burstin set can be constructed as follows. List all perfect subsets of R
as {Pα : α < c}, pick a non-zero p0 ∈ P0 and, using the facts that

|span(A)| ≤ |A|+ ω < c if |A| < c

and |Pα| = c for each α, pick by induction

pα ∈ Pα \span({pβ : β < α})
and let Hc = {pα : α < c}. If H is a maximal linearly independent set with
Hc ⊆ H, then H is a Burstin set.

A set V ⊆ R is called a Vitali set if V is a complete set of representatives
(or a transversal) for the equivalence relation defined by x ∼ y iff x−y ∈ Q,
i.e. for each x ∈ R there exists a unique v ∈ V such that x−v ∈ Q. No Vitali
set is Lebesgue measurable or has the Baire property. One may construct a
Vitali set which is a Bernstein set.
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Perfectly dense Marczewski measurable Vitali set. Recall that
an equivalence relation on a space X is called Borel if it is a Borel subset of
X ×X. The Vitali equivalence ∼ as defined above is Borel. We first show
that a Vitali set cannot be Marczewski null.

Theorem 1. Suppose X is an uncountable separable completely metriz-
able space with a Borel equivalence relation, ≡, on it with every equivalence
class countable. Then, if V ⊆ X meets each equivalence class in exactly
one element , V cannot be Marczewski null.

P r o o f. By a theorem of Feldman and Moore [3] every such Borel equiva-
lence relation is induced by a Borel action of a countable group. This implies
that there are countably many Borel bijections fn : X → X for n ∈ ω such
that x ≡ y iff fn(x) = y for some n. If V were Marczewski null, then so
would X =

⋃
n<ω fn(V ).

To obtain a Marczewski measurable Vitali set we will use the following
theorem:

Theorem 2 (Silver [9]). If E is a coanalytic equivalence relation on the
space of all real numbers and E has uncountably many equivalence classes,
then there is a perfect set of mutually E-inequivalent reals (in other words,
an E-independent perfect set). In the case of a Borel equivalence relation E,
one can drop the requirement that the field of the equivalence be the whole
set of reals.

If E ⊆ X×X is a Borel equivalence relation, where X is an uncountable
separable completely metrizable space, and B is a Borel subset of X, then
the saturation of B, [B]E =

⋃
x∈B [x]E , is analytic since it is the projection

onto the second coordinate of the Borel set (B × X) ∩ E. The saturation
need not be Borel, for example let B be a Borel subset of X = R2 whose
projection π1(B) into the first coordinate is not Borel. Define (x, y)E(u, v)
iff x = u (i.e. two points are equivalent if they lie on the same vertical line).
Then [B]E = π1(B) × R is not Borel. On the other hand, if E is a Borel
equivalence with each equivalence class countable, and fn are as in the proof
of Theorem 1, then the saturation [B]E =

⋃
n<ω fn(B) of every Borel set B

is Borel.

Theorem 3. Suppose X is an uncountable separable completely metriz-
able space with a Borel equivalence relation E. Then there exists Marczewski
measurable V ⊆ X which meets each equivalence class in exactly one ele-
ment.

P r o o f. Let {Pα : α < c} list all perfect subsets of X. We will describe
how to construct disjoint Cα, each Cα either countable (possibly finite or
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empty) or a Cantor set such that the set Vα =
⋃

β<α Cβ is E-independent.
Then extend the set Vc =

⋃
α<c Cα to a maximal E-independent set V .

Case (a). If Pα∩ [Cβ ]E is uncountable for some β < α, then let Cα = ∅.
Subcase (a1): |Pα ∩ Cβ | > ω. Then the perfect kernel of Pα ∩ Cβ is

contained in both Pα and Vα (and hence in V ).

Subcase (a2): |Pα∩Cβ | = ω. Then, since Pα∩[Cβ ]E \Cβ is uncountable
analytic, it contains a perfect set Q which misses V .

Case (b): Not Case (a). Then

|Pα ∩ [Vα]E | =
∣∣∣Pα ∩

⋃
β<α

[Cβ ]E
∣∣∣ ≤ |α|ω < c,

and hence Pα \ [Vα]E contains a Cantor set P .

Subcase (b1): The restriction of E to P has only countably many
classes. Let Cα be a countable E-independent subset of P with P ⊆ [Cα]E .
Then P \ Cα contains a perfect set which misses V .

Subcase (b2): Case (b) but not case (b1). Then, by the above theorem
of Silver, there is a perfect E-independent set Cα ⊆ P (and Cα ⊆ V ).

Remark 4. The Vitali equivalence shows that a Borel equivalence need
not have a transversal that is Lebesgue measurable or has the Baire property.
See Kechris [5], 18.D, for more on transversals of Borel equivalences.

Theorem 5. There exists a Vitali set which is Marczewski measurable
and its intersection with each non-empty open set contains a perfect set.

P r o o f. By Theorem 3 there is a Marczewski measurable Vitali set V ,
and by Theorem 1, V contains a perfect set C. Split C into countably
many Cantor sets C0, C1, . . . , fix a basis {Bn : n < ω} for the topology of
R and pick rational numbers qn so that the set qn + Cn = {qn + c : c ∈ Cn}
intersects Bn for each n. Then

V ′ = (V \ C) ∪
⋃
{(qn + Cn) : n < ω}

is a perfectly dense Marczewski measurable Vitali set.

Remark 6. A Vitali set V cannot have the stronger property that its
intersection with every perfect set contains a perfect set. This is because if
V contains a perfect set P , then the perfect set

P ′ = P + 1 = {p + 1 : p ∈ P}
does not intersect V . Similarly, if H is a Hamel basis that contains a perfect
set P , then

2P = {2p : p ∈ P}
is a perfect set which misses H.
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Marczewski null Hamel bases

Remark 7 (Erdős [2]). Under CH there is a Hamel basis H which is a
Lusin set (and hence Marczewski null). To see this, note that by a result of
Sierpiński there is a Lusin set X such that X + X = {x + y : x, y ∈ X} = R
(see e.g. [7]). Let H be any maximal linearly independent subset of X; then
clearly span(H) = span(X) = R.

Our construction (without CH) of a Marczewski null Hamel basis is
slightly simpler for the plane, so we do it first.

Theorem 8. There exists a Hamel basis, H, for R × R, i.e. a basis for
the plane as a vector space over Q, which is a Marczewski null set , i.e.,
every perfect set contains a perfect subset disjoint from H.

Lemma 9. Suppose V with |V | < c is a subspace of R × R as a vector
space over Q (not necessarily closed), p ∈ R× R, y ∈ R, and

U ⊆ Uy = ({y} × R) ∪ (R× {y})
with |U | < c. Then there exists a finite F ⊆ (Uy \U) with p ∈ span(F ∪ V )
and such that F is linearly independent over Q and independent over V ,
i.e., span(F ) meets V only in the zero vector.

P r o o f. Case 1: p = (u, 0). Let y1 and y2 be so that

y2 − y1 = u, (y1, y) 6∈ U and (y2, y) 6∈ U.

Clearly, p ∈ span({(y1, y), (y2, y)}). Let

F ⊆ {(y1, y), (y2, y)} ⊆ Uy \ U

be minimal such that p ∈ span(V ∪ F ). Then F works.

Case 2: p = (0, v). Obviously, this case is symmetric.

Case 3: p = (u, v). Apply Case 1 to (u, 0) obtaining F1. Let

V ′ = span(V ∪ F1)

and apply Case 2 to V ′ obtaining F2 (and let F = F1 ∪ F2) so that

(u, 0), (0, v) ∈ span(V ∪ F1 ∪ F2).

Proof of Theorem 8. The theorem is proved from the lemma as follows.
Let {Bα : α < c} list all uncountable Borel subsets of R × R which have
the property that for every y the set Bα ∩ Uy is countable. Let also {pα :
α < c} = R × R and {yα : α < c} = R. Construct an increasing sequence
Hα ⊆ R× R for α < c so that

1. Hα are linearly independent over the rationals,
2. β < α implies Hβ ⊆ Hα,
3. Hλ =

⋃
α<λ Hα at limit ordinals λ,

4. Hα+1 \Hα ⊆ Uyα
is finite,
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5. pα ∈ span(Hα+1),
6. Hα ∩Bβ ⊆ Hβ+1 whenever β < α,
7. Hα ∩ Uyβ

⊆ Hβ+1 whenever β < α.

At successor ordinals α + 1 apply the lemma with p = pα, V = span(Hα),
and

U = {p ∈ Uyα
: ∃β < α (p ∈ Bβ or p ∈ Uyβ

)}.
Then let Hα+1 = Hα ∪ F .

The set H =
⋃

α<c Hα is a Hamel basis; note that for every yα ∈ R we
have H ∩ Uyα ⊆ Hα+1 and so

|H ∩ Uyα | < c

and similarly for every α we have

|H ∩Bα| < c.

To see that H is Marczewski null, suppose that P is any perfect subset
of the plane. If P ∩Uy is uncountable and closed for some y ∈ R, then since
|H ∩Uy| < c and every perfect set can be split into continuum many perfect
subsets, there exists a perfect set P ′ ⊆ P ∩ Uy disjoint from H.

On the other hand, if there is no such y then P = Bα for some α
and therefore |P ∩H| < c. Thus again by splitting P into continuum many
pairwise disjoint perfect subsets, there must be a perfect subset of P disjoint
from H.

Theorem 10. There exists a Hamel basis, H, for the reals which is a
Marczewski null set.

Obviously, this implies Theorem 8, since (H × {0}) ∪ ({0} × H) is a
Marczewski null Hamel basis for the plane. But the proof is a little messier
so we chose to do the one for the plane first.

For p, q ∈ ω2 define

σ(p, q) =
∞∑

n=0

p(n)
22n+1

+
∞∑

n=0

q(n)
22n+2

.

So we are basically looking at the even and odd digits in the binary expan-
sion. The function σ(p, q) maps ω2 × ω2 onto the unit interval [0, 1]. For
any p ∈ ω2 define

Up = {σ(p, q) : q ∈ ω2}
The following is the analogue of Lemma 9.

Lemma 11. Suppose we have a subspace, V ⊆ R, with |V | < c and
1 ∈ V , p ∈ ω2, U ⊆ Up with |U | < c, and z ∈ R. Then there exists a finite
F ⊆ Up \ U such that

z ∈ span(V ∪ F ) and span(F ) ∩ V is trivial.
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P r o o f. Case 1: z = σ(0, q) (where 0 ∈ ω2 is the constantly zero
function).

We may assume that there are infinitely many n such that q(n) = 0,
because otherwise z ∈ Q and so we may take F to be empty. Let

A = {n : q(n) = 0}.
For any B ⊆ A define the pair qB , q′B ∈ ω2 as follows:

qB(n) =
{

q(n) if n 6∈ B,
1 if n ∈ B,

q′B(n) =
{ 0 if n 6∈ B,

1 if n ∈ B.

Since q(n) = 0 for each n ∈ B, it follows that q(n) = qB(n) − q′B(n) for
every n. Since we never do any “borrowing” we have

z = σ(0, q) = σ(p, qB)− σ(p, q′B).

Since |U | < c there are continuum many B ⊆ A such that neither σ(p, qB)
nor σ(p, q′B) are in U . Fix one of these B’s and let

F ⊆ {σ(p, qB), σ(p, q′B)} ⊆ Up \ U

be minimal such that z ∈ span(V ∪ F ).

Case 2: z = σ(q, 0). Since
1
2z = 1

2σ(q, 0) = σ(0, q)

this follows easily from Case 1.

To prove the result for general z ∈ R \ Q first we may assume that
z = σ(q1, q2) for some q1, q2 ∈ ω2 since a rational multiple of z is in [0, 1].
Next we may apply Case 1 to σ(0, q2) and then iteratively (as in the proof
of Lemma 9) to σ(q1, 0). Then since z = σ(q1, 0) + σ(0, q2) the lemma is
proved.

Proof of Theorem 10. For any distinct p1, p2 ∈ ω2 if neither is eventu-
ally one, then Up1 and Up2 are disjoint. The proof is now similar to that
of Theorem 8, using the family of Up for p ∈ ω2 which are not eventually
one.

Remark 12. Similar proofs can be given to produce Marczewski null
Hamel bases for Rn, Qω, and Rω. For Rn one can either modify the proofs
of Theorem 8 and Lemma 9, or else observe (for example when n = 3) that
if H is a Marczewski null Hamel basis for R, then

(H × {0} × {0}) ∪ ({0} ×H × {0}) ∪ ({0} × {0} ×H)

is a Marczewski null Hamel basis for R3. If X = Qω or X = Rω then X is
isomorphic to X ×X and the proofs are similar to the proof for the plane.

Conjecture 13. Suppose X is an uncountable completely metrizable
separable metric space which is also a vector space over a field F and scalar
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multiplication and vector sum are Borel maps. Then there exists a basis H
for X over F such that H is Marczewski null.

Note that our conjecture reduces to the case where the field F is either
Q or Zp for some prime p. This is because if K is a subfield of F and and
H is a Marczewski null basis for X over K, then some maximal linearly
independent (over F) subset of H is a Marczewski null basis for X over F.

F. B. Jones [4] constructed a Hamel basis containing a perfect set and at-
tributed the construction of what might be called Vitali-independent perfect
set to R. L. Swain.

Theorem 14. There is a Hamel basis for R which is Marczewski mea-
surable and perfectly dense.

P r o o f. Let C be a linearly independent Cantor set and H0 a Marczew-
ski null Hamel basis. Split C into countably many Cantor sets C0, C1, . . . ,
fix a basis {Bn : n < ω} for the topology of the real line and for each n pick
a non-zero rational qn such that qnCn intersects Bn. Note that

C ′ =
⋃
{qnCn : n < ω}

is still linearly independent (though not a Cantor set) and for all open sets
U there exists a perfect P ⊆ C ′ ∩ U . Let H1 ⊆ H0 be maximal such that

H = C ′ ∪H1

is linearly independent. It is easy to see that H works.

Borel additive mappings. We might hope to obtain Theorem 10 as a
corollary to Theorem 8 getting a Borel linear isomorphism between R × R
and R. Since a Borel bijection preserves the Marczewski null sets, we would
be able to obtain a Marczewski null Hamel basis for the reals from one for
the plane.

This will not work because of the following result. A mapping is called
additive iff f(x+y) = f(x)+f(y) for any x and y. Note that if f is additive,
then f(rx) = rf(x) for any rational r.

Theorem 15. Any additive Borel map f : R×R → R fails to be one-to-
one.

Lemma 16. Suppose g : R → R is an additive Borel map. Then there
exists a comeager G ⊆ R and a real a such that g(x) = ax for every x ∈ G.

P r o o f. This is due to F. Burton Jones [4]. Since g is additive it is
not hard to prove that g(ax) = ag(x) for every rational a ∈ Q and real x.
Also, since g is Borel there exists a comeager G such that the restriction
of g to G is continuous. Since aG is comeager for any non-zero a we may
without loss assume that aG ⊆ G for every non-zero rational a. Let x0 be
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any fixed non-zero element of G. For any a ∈ Q we have g(ax0) = ag(x0)
and ax0 ∈ G. So by the continuity of g we get g(yx0) = yg(x0) for any y
with yx0 ∈ G. Now for any x ∈ G,

g(x) = g

(
x

x0
x0

)
=

x

x0
g(x0) = x

g(x0)
x0

and so a = g(x0)/x0 works.

Proof of Theorem 15. Assume that f is an additive map. By the lemma
there exist comeager Gi and reals ai, i = 0, 1, such that for every x ∈ G0

we have f(x, 0) = a0x and for every y ∈ G1 we have f(0, y) = a1y. Since f
is additive it follows that for every x, y ∈ G = G0 ∩G1,

f(x, y) = a0x + a1y.

If either ai is zero, then of course f is not one-to-one. So assume both are
non-zero. Let x and x′ be arbitrary distinct elements of G and define

z = −a0

a1
(x− x′)

Since G is comeager, so is G + z and hence we can choose y in both G and
G + z. If we let y′ be so that y = y′ + z, then y′ = y − z ∈ G and

f(x, y) = a0x + a1y = a0x + a1y
′ − a0(x− x′) = a0x

′ + a1y
′ = f(x′, y′)

and f is not one-to-one.

We use similar Baire category arguments to prove the following theorem:

Theorem 17. There is no Borel (or even Baire) 1-1 additive function f
of the following form for any n = 1, 2, . . . :

(1) f : Rn+1 → Rn,
(2) f : Rn → Qω, or f : Rn → Zω (even for any 1-1 additive f ),
(3) f : Qω → Rn, or f : Zω → Rn.

P r o o f. (1) This argument is a generalization of Theorem 15. There
exists a comeager G ⊆ R and a linear transformation L : Rn+1 → Rn with
the property that

f(x1, . . . , xn+1) = L(x1, . . . , xn+1) for any x1, . . . , xn+1 ∈ G.

Since L cannot be 1-1 there must be distinct vectors u and v with L(u) =
L(v). Since G is comeager there exists a vector w such that ui + wi, vi + wi

∈ G for all coordinates i = 1, . . . , n + 1 (choose wi ∈ (G − ui) ∩ (G − vi)).
But then

f(u + w) = L(u + w) = L(u) + L(w) = L(v) + L(w) = L(v + w) = f(v + w)

implies that f is not 1-1.
(2) It is enough to prove this for the case f : R1 → Qω, since there are

such maps from R1 into Rn and from Zω into Qω. Let f(x)(m) ∈ Q refer to
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the mth coordinate of f(x). If f is 1-1 and additive, then for each non-zero
x ∈ R there is some m such that f(x)(m) 6= 0. By Baire category there
must exist some q0 ∈ Q with q0 6= 0, coordinate m, open interval I and
H ⊆ I comeager in I such that

f(x)(m) = q0 for every x ∈ H.

But this is impossible because we can find ε ∈ Q with ε close to 1 but
different from 1 and some x such that x, εx ∈ H but

f(x) + f(εx) = f(x + εx) = f((1 + ε)x) = (1 + ε)f(x).

Since both x and εx are in H we have f(x)(m) = f(εx)(m) = q0, contra-
dicting 2q0 6= (1 + ε)q0.

(3) We show there is no such map f : Zω → Rn. Since there is a 1-1
additive Borel map (inclusion) from Zω into Qω, this suffices. We start by
giving the proof for n = 1. Assume for contradiction that G ⊆ Zω is a
comeager Gδ-set and f�G is continuous on G.

The topology on Zω is determined by the basic open sets

[s] = {x ∈ Zω : s ⊆ x}

where s ∈ Z<ω is the set of finite sequences from Z.

Claim. For any N ∈ ω and any s ∈ Z<ω there exists t ∈ Z<ω with s ⊆ t
and for every x ∈ G ∩ [t] we have f(x) > N .

P r o o f. Let m = |s| be the length of s (so s = 〈s(0), . . . , s(m − 1)〉).
For each k ∈ Z let xk ∈ Zω be the sequence which is all zeros except on
the mth coordinate where it is k. Since f is additive and 1-1 we must have
either limk→∞ f(xk) = ∞ or limk→−∞ f(xk) = ∞. Since G is comeager
there exists u ∈ [s] such that u + xk ∈ G for every k ∈ Z (i.e., choose
u ∈

⋂
k∈Z(−xk + G)). Note that u + xk ∈ [s] for every k and f(u + xk) =

f(u) + f(xk), hence for some k ∈ Z we have f(u + xk) > N . Since f is
continuous on G we can find the t as required. This proves the Claim.

According to the Claim for each N there exists a dense open set DN such
that for every x ∈ DN ∩ G we have f(x) > N . But this is a contradiction
since it implies

G ∩
⋂

N∈ω

DN = ∅.

For the case of f : Zω → Rn the argument is similar, we just prove a claim
that says: For any N ∈ ω and any s ∈ Z<ω there exists t ∈ Z<ω with s ⊆ t
and for every x ∈ G ∩ [t] we have f(x)(i) > N for some coordinate i < n.
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